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The exponential global increase in the incidence of obesity may be partly attributable to environmental chemical (EC) exposure. Humans are constantly exposed to ECs, primarily through environmental components. This review compiled human epidemiological study findings of associations between blood and/or urinary exposure levels of ECs and anthropometric overweight and obesity indices. The findings reveal research gaps that should be addressed. We searched MEDLINE (PubMed) for full text English articles published in 2006–2020 using the keywords “environmental exposure” and “obesity”. A total of 821 articles were retrieved; 102 reported relationships between environmental exposure and obesity indices. ECs were the predominantly studied environmental exposure compounds. The ECs were grouped into phenols, phthalates, and persistent organic pollutants (POPs) to evaluate obesogenic roles. In total, 106 articles meeting the inclusion criteria were summarized after an additional search by each group of EC combined with obesity in the PubMed and Scopus databases. Dose-dependent positive associations between bisphenol A (BPA) and various obesity indices were revealed. Both individual and summed di(2-ethylhexyl) phthalate (DEHP) and non-DEHP metabolites showed inconsistent associations with overweight and obesity indices, although mono-butyl phthalate (MBP), mono-ethyl phthalate (MEP), and mono-benzyl phthalate (MBzP) seem to have obesogenic roles in adolescents, adults, and the elderly. Maternal exposure levels of individual POP metabolites or congeners showed inconsistent associations, whereas dichlorodiphenyldichloroethylene (DDE) and perfluorooctanoic acid (PFOA) were positively associated with obesity indices. There was insufficient evidence of associations between early childhood EC exposure and the subsequent development of overweight and obesity in late childhood. Overall, human evidence explicitly reveals the consistent obesogenic roles of BPA, DDE, and PFOA, but inconsistent roles of phthalate metabolites and other POPs. Further prospective studies may yield deeper insights into the overall scenario.
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Introduction

Obesity is characterized by excess body fat, total body fat, or a particular depot of body fat (1). The most commonly evaluated anthropometric indices of obesity are body mass index (BMI), waist circumference (WC), hip circumference (HC), skinfold thickness (ST), percent body fat (%BF), fat mass (FM), and waist-to-height ratio (WHtR) (2–5). An adult individual is overweight if BMI ≥25 kg/m2 to <30 kg/m2, and obese if BMI ≥30 kg/m2 or WC ≥80 cm in women and WC ≥90 cm in men (6). Childhood overweight and obesity can be defined as BMI z-scores >1 and >2, respectively (3, 4, 6). Sex- and age-specific WC ≥90th percentile or WHtR ≥0.5 are also used to determine obesity in children (7, 8). Some alternative measurements are still available for both children and adults, and differ with age, gender, and country (9).

Whether obesity should be declared a disease is controversial (1). However, obesity leads to many aspects of ill health or functional impairment and several diseases (10–13), reduces health quality of life (14, 15), and increase mortality and morbidity (16–18). It is a complex condition with many causal contributors, including genetic factors and environmental factors (19–21). Recent epidemiological research has also reported the associations with overweight and obesity of environmental exposure sources that include environmental chemicals (ECs), air pollution, particulate matter, heavy metals, noise, green space, and others (22–31). According to the “obesogen hypothesis,” ECs, which are termed environmental obesogens (EOs), regulate lipid metabolism and adipogenesis, leading to obesity (32).

Over time, the use of synthetic chemicals has grown exponentially with the development of commerce and industry (33). Excessive usage results in environmental contamination. Humans are exposed to these ECs through environmental media by ingestion, inhalation, absorption, and even through transplacental transfer and breast milk (34–42). The human exposure levels of these ECs are generally estimated by biomonitoring of their metabolites or parent compounds in human urine or blood (cord blood or peripheral blood) as exposure biomarkers worldwide (43–47).

Recently, there has been increased interest in epidemiological studies of EC biomonitoring and subsequent evaluation of their obesogenic effects (4, 8, 34, 48–51). A concise view of the overall epidemiological findings is required to clarify whether obesogenic evidence of ECs is sufficient or consistent for the advancement of future research. Some previous reviews have explored the obesogenic role of ECs. However, most of these considered only a single group of ECs, and/or selected ECs based on their endocrine-disrupting properties, and/or considered limited exposure and outcome assessment period or age, and even not focused on epidemiological studies, and/or focused on a mechanism (52–59).

A further review addressing the current epidemiological evidence of the obesogenic effects of ECs at all stages of life from a public health perspective is needed. Accordingly, the objectives of the present review are to illuminate epidemiological study findings of the associations between EC exposure and anthropometric overweight and obesity indices, uncover the current research gap, and contemplate future research.



Methods


Selection and Grouping of EOs

Research articles that demonstrated the associations between environmental exposure and obesity in MEDLINE of PubMed were searched for using “environmental exposure” AND “obesity” as keywords to select EOs (Figure 1). After additional filtering for full text, journal articles, inclusion of humans, English, and publication year (2006–2020), a total of 821 articles were retrieved. Of these, 719 articles were excluded owing to the following reasons: abstract not available (n=10); involved clinical trials (n=7), review/systematic review/meta-analysis (n=299); cell line studies (n=12); animal studies and statistical/computational models (n=21); editorial/commentary/protocol and approach (n=19); investigated associations of EC exposure with other adverse outcomes, including hypertension, puberty, diabetes, polycystic ovary syndrome, cardiovascular diseases, cancer risk, and others, and simple biomonitoring and ecological studies (n=351). In the remaining 102 articles, the ECs were predominantly studied environmental exposure (ECs = 62 and others = 40). Also, the production and uses of agricultural, industrials, and other synthetic chemicals are increasing, and recognized as major environmental pollutants over other environmental exposures namely heavy metals, noise or sound, green space and particulate matters. Therefore, we selected ECs as the major EOs apart from other environmental exposure and grouped them as follows: (i) phenols [bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), and others], (ii) phthalates (all phthalates and their metabolites), and (iii) persistent organic pollutants (POPs) [organochlorine compounds (OCs), polybrominated diphenyl ethers (PBDEs) and per- and polyfluoroalkyl substances (PFASs), and their metabolites or congeners] (Figure 1).




Figure 1 | Schematic diagram of the strategy for selection and grouping of environmental obesogens.





Literature Search and Inclusion Criteria

A primary search in PubMed and Scopus databases for each group of EO used the keywords “bisphenols” AND “obesity,” “phthalate” AND “obesity”, and “persistent organic pollutants” AND “obesity” to identify original research articles of human epidemiological studies. Additional PubMed filtering and Scopus refining were performed to select relevant articles (Figure 2). Articles were considered relevant when they investigated the associations of selected EOs with anthropometric overweight and obesity indices. The references of the selected primary research articles were also searched for relevant publications. A secondary search was also performed for each group of POPs combined with obesity (Figure 2).




Figure 2 | Schematic diagram of study selection. *Cell line studies, animal/rodent/drosophila studies, investigation of other associations (e.g., growth, metabolic syndrome, fatty liver disease, diabetes, cardiometabolic risk, inflammation, polycystic ovary syndrome, prostate cancer, food intake, semen quality, puberty), ecological studies, and or simple biomonitoring studies.



All full-length articles, short communications, and brief reports of original research work from all over the world, irrespective of sex, religion, and race/ethnicity, were included in this review (Figure 1). Inclusion criteria included (i) epidemiological study (cohort, cross-sectional, and case-control); (ii) all ages and/or life-stage at exposure or outcome assessment; (iii) primary outcomes of overweight and/or obesity, or at least one anthropometric index of overweight or obesity; (iv) EO concentrations measured in urine or blood as human biomonitoring; (v) assessment of only non-occupational exposure levels of EOs; (vi) published after postulating “obesogen hypothesis”; and (vii) written in English. All other articles were excluded (Figure 2). Finally, 106 original research articles were included in this review.



Visualizing Evidence

Associations of EOs with overweight and/or obesity have been demonstrated in the aforementioned three groups. We grouped the early- and later-life exposure and outcome assessment age into seven categories (Matrix Tables 1–6): infants (up to 1 year), toddlers (>1– 2 years), preschoolers (>2– 5 years), school-aged (>5– 13 years), adolescents (>13– 19 years), adults (≥20– 60 years), and elderly (>60 years) as classified previously (60). Matrix tables were created according to categories.




Results


Environmental Phenols and Obesity

We summarized a total of 33 human epidemiological studies, including 13 cohort studies and 20 cross-sectional studies that explored the association between prenatal and early- to later-life urinary phenols, especially bisphenol exposure levels with anthropometric overweight and obesity indices (Table 1 and Matrix Table 1). Most of the cohort studies were birth cohorts. The study subjects enrolled in the birth cohorts ranged from 173 to 1128 mother-child pairs. Among the 20 cross-sectional studies, 9 involved children and adolescents between the ages of 3 and 19 years, and 11 involved adults and elderly participants >18 years. Both the cohort and cross-sectional studies measured BPA, BPS, and BPF in spot urine other than the first morning void urine, or 24 h urine.


Table 1 | Associations of environmental phenols with anthropometric overweight and obesity indices.







Maternal urinary BPA levels showed null or positive associations with one or more anthropometric obesity indices in infants and toddlers (61, 73, 80). Similar associations were also found between maternal BPA exposure levels and obesity measures in preschoolers and school-aged children. These associations were sex-specific (8, 50, 61, 70–73, 78, 80). Only one study reported negative associations between prenatal BPA exposure and BMI z-score and %BF (79). Toddler and preschooler exposure levels of BPA reported null or positive associations with overweight or obesity indices in toddlers, preschoolers, and school-aged children (8, 70, 72, 73, 78, 79). Associations were mostly null in children 5 to 9 years of age (72, 79). Urinary BPA concentrations among school-aged children showed inconsistent relationships with one or more obesity indices (8, 63, 68, 79, 81). However, several studies recruited children with ages ranging from 6 to 19 years and investigated the associations of urinary BPA, BPS, and BPF exposure levels with overweight and obesity indices. All these studies found positive associations with one or more anthropometric parameters of obesity (7, 34, 62, 66, 82, 83, 85). Adult exposure levels of BPA, BPS, and BPF were also positively associated with at least one anthropometric index of obesity in adults and elderly individuals (2, 41, 48, 64, 65, 67, 69, 75–77, 84, 86) with the exception of inconsistent associations in one study (63). One panel study (cohort) investigated the association between urinary BPA concentrations and overweight. The authors reported a positive association in the case of overall and female study participants, but not in male participants (74). Some other studies also observed a sex-stratified relationship between prenatal bisphenol exposure and overweight and obesity indices (8, 61, 72, 79). A few studies reported sex-dependent associations between childhood bisphenol exposure levels and obesity or adiposity measures (7, 66, 81). Race- or ethnicity-specific associations of urinary BPA concentrations with obesity indices were also reported, with a significant association of BPA levels only in non-Hispanic white subjects (83). Pubertal status was reported as a confounder of the associations between BPA concentrations and BMI, WC, and ST, especially in girls (70, 79). Maternal exposure levels of 2, 5-dichlorophenol, benzophenone-3, and triclosan showed null associations with %FM in children aged 4–9 years (71). In contrast, one study reported positive associations between urinary 2, 5-dichlorophenol levels in children aged 6–8 years and BMI, WC, and %BF in later childhood, which consistently increased up to 13 years of age (68).

BPA levels in urine varied among the studies and ranged from non-detectable to >2594 ng/ml (Table 1). Children and adolescents (6–19 years) with urinary BPA, BPS, and BPF concentrations of ≥2, ≥1.30, and ≥0.2 ng/ml, are susceptible to developing overweight or obesity (7, 34, 62, 81). In adults, BPA, BPS, and BPF showed obesogenic effects at concentrations ≥0.71, ≥1, and 1 ng/ml, respectively (41, 64, 67, 69, 77, 86). In addition, BPA concentrations ≥0.39 ng/ml may be responsible for subsequent development of overweight or obesity in elderly people (74).



Environmental Phthalates and Obesity

A total of 32 studies (11 birth cohort, 19 cross-sectional, and 2 case-control studies) explored the association of both prenatal and postnatal urinary exposure levels of phthalate metabolites with overweight and obesity measures in human populations of different ages (Table 2, and Matrix Tables 2, 3). In the birth cohort studies, urine samples were collected from both the pregnant mother and their children aged 1–14 years. The study subjects ranged from 128 to 1128 mother-child pairs in the birth cohorts. Among the 19 cross-sectional studies, 11 involved children and adolescents, 8 involved only adults and elderly people (male and/or female) of different ages. Almost all the studies determined phthalate metabolites in the spot urine of the study participants.


Table 2 | Associations of environmental phthalates with anthropometric overweight and obesity indices.






Associations between maternal 1st trimester DEHP exposure levels and obesity measures in preschoolers, school-aged children, and adolescents were inconsistent (50, 70, 87, 93). Similarly, the individual or sum of maternal 2nd trimester urinary DEHP metabolites showed both positive and null associations with different obesity indices in preschoolers, school-aged children, and adolescents (50, 87, 95, 96). However, negative or null associations were found between the 2nd and 3rd trimester DEHP exposure levels and anthropometric obesity indices in infants, preschoolers, school-aged children, and adolescents (50, 87, 98–101). Infant (1 year) exposure to DEHP was negatively associated with obesity indices at 8 years of age. In contrast, preschoolers exposed to DEHP (4 and 5 years) were negatively or positively associated (93, 96). Associations of DEHP exposure levels at 6–19 years of age (individual metabolite levels or sum of levels) with overweight or obesity indices in school-aged children and adolescents were very inconsistent (89–92, 94, 96, 102, 105–111). Most of the studies that recruited adults and elderly people reported positive or null associations between one or more DEHP metabolites or the sum of DEHP and different overweight and obesity indices in overall adult and elderly populations or after sex stratification (2, 48, 49, 65, 88, 97, 104, 106, 111, 112).

Similar inconsistent associations were also found among non-DEHP metabolites [mono-butyl phthalate (MBP), mono-ethyl phthalate (MEP), mono-methyl phthalate (MMP), mono-benzyl phthalate (MBzP), mono-isobutyl phthalate (MiBP), mono-(carboxylnonyl) phthalate (MCNP), mono-isononyl phthalate (MINP), and others], and obesity indices at different stages of life. First to 3rd-trimester maternal urinary concentrations of non-DEHP metabolites (except MCPP) displayed null or negative associations with anthropometric parameters of obesity in preschoolers, school-aged children, and adolescents (50, 70, 93, 98, 99, 101, 103). In contrast, one study found positive associations between maternal urinary concentrations of MEP, MBP, MBzP, and MiBP and obesity indices among all study participants (95). Another study also found positive associations after sex-stratified analysis in both males (MBzP) and females (MiBP and MBP) (87). Exposure levels of non-DEHP metabolites in toddlers and preschoolers showed null associations with their obesity measures (96, 101). However, one study described positive associations between MEP, MBP, and MBP, and obesity indices in girls, with negative associations in boys (93). Exposure levels of school-aged to adolescents to non-DEHP metabolites (MMP, MEP, MBP, MiBP, and MBzP) were mostly positively associated with one or more anthropometric indices in school-aged children or adolescents (89, 91, 92, 94, 96, 102, 105–110). In contrast, after sex stratification, inconsistent associations were evident (94, 102, 107, 110). One study recruited subjects 6–80 years old and found inconsistent associations among non-DEHP metabolite concentrations at different exposures (6-11, 12-19, 20-59 and 60-80 y) and corresponding outcome assessment ages (111). Exposure levels of non-DEHP metabolites in adults and the elderly also showed null or positive associations with their overweight and obesity indices (2, 48, 49, 65, 88, 97, 104, 106, 112). One study evaluated ethnicity-dependent association and found that higher maternal urinary concentrations of MCPP heightened the odds of being overweight or obese in Hispanics than in non-Hispanic blacks, although null associations were found with BMI (99). Prepubertal girls showed positive associations between %MEHHP and BMI, WC, and %BF, and showed significant odds increase in the 3rd and 4th quartiles compared to the 1st quartile. The relationship was null in pubertal girls (90).

Data regarding the lowest threshold levels of phthalate metabolites for overweight or obesity outcomes in humans are limited. Low molecular weight phthalate (LMWP) metabolite concentrations ≥0.27 µmol/ml were associated with significantly increased overweight or obesity indices in male children and adolescents (106). Another study reported increased BMI and WC for median urinary MEP concentrations ≥131 and ≥948 µg/g creatinine, respectively (110).



Environmental POPs and Obesity

A total of 41 human epidemiological studies (33 cohort and 8 cross-sectional studies) explored the relationships between in utero and early life exposure to POPs and anthropometric indices of overweight and obesity among infants, children, adults, and elderly populations (Table 3). The studies assessed POP levels in blood (serum/plasma) or umbilical cord blood (whole blood, serum/plasma).


Table 3 | Associations of environmental persistent organic pollutants with anthropometric overweight and obesity indices.







A total of 8 epidemiological studies (7 cohort and one cross-sectional study) investigated the associations of several PBDEs with anthropometric measures of obesity along with other POPs in children, adults, and elderly individuals. Inconsistent associations were documented (Table 3 and Matrix Table 4). PBDE congeners, including BDE28, BDE47, BDE99, BDE100, BDE153, and BDE154, were mainly associated with obesity indices. In most of the included studies, the BDE153 congener was negatively associated with one or more overweight or obesity indices in children and adults (4, 114, 117, 123, 127). All other PBDE congeners (BDE28, BDE47, BDE99, BDE100, BDE154, BDE209, and sum of PBDE), except BDE154, showed null associations with obesity indices (4, 103, 114, 117, 127, 141, 145). One study instead showed a positive association between BDE47 and BMI in adults ≥18 years of age (117). Associations of PBDE congeners with obesity in elderly people aged ≥70 years were null in two separate studies (141, 145). Early childhood exposure to PBDEs was negatively associated (BDE153) or inconsistent (others) with obesity indices, especially BMI and WC, at 7 years of age (114, 127).

Eleven birth cohort studies investigated the associations between in utero or maternal and childhood exposure to PFAS and obesity indices. Associations between maternal exposure levels of PFAS metabolites and obesity indices were inconsistent (Table 3 and Matrix Table 5). First- to 2nd-trimester exposure levels of PFOS and PFOA showed inconsistent associations with the obesity indices of infants and toddlers (51, 146). In contrast, almost all studies found positive associations between maternal PFOA concentrations and different obesity indices in overall and/or sex-stratified populations of preschoolers and school-aged children (3, 115, 121, 122, 124), with two exceptions: in utero PFOA exposure showed a null association with BMI, WC, and overweight in school-aged children (120, 137). In contrast, PFOS and other PFAS levels were inconsistently associated with anthropometric measures of overweight and obesity in preschoolers and school-aged children (113). Prenatal exposure levels of PFOA were positively associated only in adult females, but the associations were null for all PFASs when considering the overall population (138). However, exposure levels of PFAS in preschoolers and school-aged children mostly showed null or negative associations with overweight or obesity indices (3, 120, 121). Gestational exposure levels of PFOA ≥4.3–6.4 ng/ml were associated with increased WC in the children 2–8 years of age (122). In contrast, 1st and 2nd trimester exposure levels of PFOA (0.5– ≤7.10 ng/ml in boys and 1.10 to ≤6.70 ng/ml in girls) showed null associations with BMI or overweight at 7 years of age (137).

Positive, negative, or null associations have also been reported between in utero or prenatal and postnatal, and between early childhood to the elderly concerning exposure to OCs and overweight and obesity indices (Table 3 and Matrix Table 6) (103, 115–119, 121, 125, 126, 128–136, 139–145, 147–149). Maternal 1st to 3rd trimester blood and/or umbilical cord blood levels of OC metabolites, especially DDE and HCB levels, were positively associated with different anthropometric indices of obesity, whereas associations of PCBs, DDT metabolites, and β-HCH concentrations were null or positive in toddlers and preschoolers (115, 116, 126, 132, 142, 148). Inconsistent associations (positive and null) were also found between PCBs, DDT metabolites, DDE, HCB, and β-HCH levels in the 1st to 3rd trimester maternal blood or umbilical cord blood and obesity indices in school-aged children (103, 118, 130, 133–136, 139, 149). One study found positive associations of 2-week postpartum HCB levels, but not other OCs, with anthropometric indices in 18-month-old and 5-year-old children (121). Among the OCs, DDT and its metabolite DDE showed potent positive associations with obesity indices in the overall population or in school-aged boys and girls (103, 118, 130, 134, 135). Only one study investigated the relationship between prenatal exposure levels of DDE and adult obesity measures, and subsequently addressed the positive associations of adults aged 20–50 years. PCBs showed null associations in the same study participants (147). Again, associations sometimes varied among the countries within the study. A prospective cohort study of 412 Norwegian and Swedish mother-child pairs observed a non-monotonic dose-response relationship between PCB-153 concentrations and child overweight/obesity among Swedish children at 5 years of age, but not in Norwegian children (115). Exposure levels of PCB153 and DDE metabolites in infants were not associated with obesity measures in preschool and school-aged children (133). Early childhood or preschooler exposure levels of HCB, DDE, and PCBs were negatively associated with anthropometric parameters in preschoolers (121). School-aged exposure levels of PCBs, DDE, and HCB showed inconsistent associations with obesity indices in school-aged children, adolescents, and adults (125, 129). Exposure levels of DDE and β-HCH in adults (≥18 years) showed positive associations, PCBs showed inconsistent associations (positive and negative), and other OCs also showed null associations with different anthropometric indices of overweight and obesity (117, 119, 128, 131, 143, 144). OC exposure in elderly people also showed contradictory findings. DDE exposure levels showed positive or null associations, whereas PCBs showed very inconsistent associations (positive, negative, and null) with anthropometric indices in elderly people aged 50 to 75 years (140, 141, 145). Furthermore, cord blood HCB levels >1.03 ng/ml were associated with increased BMI in children at 6.5 years of age (149).




Discussion


Controversies and Elucidation

We present evidence of the relationship between urinary/blood levels of selected EOs and their metabolites or congeners, and anthropometric overweight and obesity indices. These relationships are contentious. Prenatal or in utero, newborn, and early childhood to elder life exposure to selected EOs might contribute to the development of adiposity at different stages of life, although the findings were inconsistent depending on exposure and outcome assessment periods. Some studies have clarified positive associations, whereas other studies described negative or null associations for the same EO exposure levels and the subsequent anthropometric indices of obesity (Tables 1–3).　

A representative example is two separate birth cohort studies from China and the United States (8, 72) with almost the same number of children (430 and 408). The studies indicated contradictory associations of BPA concentrations at age 3 years with anthropometric obesity indices at age 7 years. The study from China found positive associations, whereas the US study found null associations, despite the same exposures and outcome ages (8, 72). Many other studies have also reported contradictory findings among the same exposure and outcome age groups (Tables 1–3). In contrast, some studies conducted in different countries recruiting different populations reported similar associations between the same or different EO and obesity outcomes (7, 34, 62, 82, 83, 89, 92). These conflicting findings across studies might be explained by methodological variations, particularly the characteristics of the study populations. Other potential reasons are exposure levels (low, medium, or high) and the timing and duration of EO exposure. Associations seem to differ between boys and girls, adult males, and females (Tables 1–3). Some studies reported ethnicity-specific associations between EO exposure and obesity indices (83, 99, 112). The reasons for racial and ethnic differences in overweight and obesity are largely unknown. Possible reasons might be the different patterns of calorie intake or energy consumption, physical activity, metabolic activity, endocrine, and genetic susceptibility among racial and ethnic groups (150, 151).

Among the environmental phenols, BPA has been widely investigated and has been positively associated with anthropometric overweight and obesity indices, mainly in school-aged children, adolescents, and adults. The use of BPA has been decreasing to reduce its negative health impact. This has led to increased use of BPS and BPF. Several studies investigated the association of BPS and BPF with obesity measures and described inconsistent relationships (7, 34, 48, 50, 67). These few studies might be insufficient to conclusively determine the reason for the contradictory associations. Both DEHP and non-DEHP metabolites showed inconsistent associations with overweight and obesity indices at different stages of life. Among the non-DEHP metabolites, MEP, MMP, and MBzP seem to have obesogenic roles in adult and elderly humans. Among the POPs, DDE and PFOA showed almost consistent positive associations with obesity. PFOS also seems to be positively associated with obesity measures, but the associations were sometimes inconsistent. Compared with DDE, DDT showed a weaker association with obesity indices. Although DDT and DDE have already been banned in many countries, the long half-lives of these EOs (7 and 10 years for DDT and DDE, respectively) in both the environment and humans might be responsible for the adverse effects (152–157). Similarly, PFAS metabolites are also very persistent in the environment (half-lives of 3–10 years) and humans are exposed through ingestion of contaminated food, drinking water, and ingestion or inhalation of PFAS from contaminated dust and soil, and even via transplacental and breast milk passage from mother to child (158–163).

Usually, a single EO or a group of similar EOs was included in previous studies, making the results straightforward and easily interpretable. The rising concern is that generalized linear regression can provide a simple relationship between a single chemical or a group of similar chemicals and outcomes, but cannot explore the joint effect of mixed exposure (48). In addition, to study causality, researchers need to consider mixed environmental exposures and their complex nonlinear interactions. Eventually, ignoring the joint effects of other chemicals could contribute to false-positive or false-negative results (164). We found only a limited number of studies that investigated the associations between cumulative exposure to EOs and overweight and obesity indices using a multipollutant approach. Findings were inconsistent (48, 103, 116, 117). In one study, the associations of phthalate metabolites and bisphenols with obesity indices varied when considering single and cumulative exposure levels using three different statistical models (48). Thus, the application of a multipollutant statistical model to clarify the joint effects of mixed EOs should be accepted and utilized to explore the effect of a cumulative exposure burden on the outcomes in one direction per occasion, and the exposure-response function of each chemical, while controlling other chemicals at certain levels.

Some EOs (e.g., bisphenols and phthalates) are lipophilic. They can accumulate in adipose tissue of obese women and can influence the development of obesity in their offspring. A recent population-based prospective cohort of 1396 mothers showed that women in highest group of pre-pregnancy BMI (>30kg/m2) had significant higher concentrations of BPS [OR=0.15 (0.01, 0.27)] total bisphenols (sum of BPA, BPS, and BPF) [OR= 1.88 (0.13, 4.78)], phthalic acid [OR=13.16 (2.51, 29.86)], high molecular weight phthalate (HMWP) [OR=46.73 (14.56, 93.72)] and DEHP [OR=32.34 (6.90, 70.75)] concentrations in comparison to women in normal pre-pregnancy BMI (20–24.9kg/m2) group (165). Another study found that prenatal exposure to PCBs (>1.95 µg/g lipid) was associated with increased BMI in girls from overweight mothers, but not in normal-weight mothers (130). Thus, pre-pregnancy BMI is an important confounder that must be considered when investigating obesity outcomes in a birth cohort. Three studies considered pre-pregnancy BMI as a confounder in birth cohorts (103, 132, 142). Adjustment of pre-pregnancy BMI might shed light on the relationship between EO exposure and obesity.

Daily consumable items (diet or foods and personal care products) are an important route of exposure to several EOs and are intrinsically related to energy balance. BPA and phthalate exposures occur primarily through ingestion and dermal absorption, as these compounds are found in common consumer goods, such as food containers, children’s toys, and personal care products (166–169). Thus, it can be predicted that those who consume or use more of these products are more likely to have higher exposure levels and, perhaps, are more likely to be obese. Several studies reported a direct link between dietary exposure to EOs and obesity (41, 83, 85). Most of the studies in the current review considered diet, calorie intake, energy consumption, and physical activity as potential confounders to address the relationships that strengthen the findings (Tables 1–3).

Puberty features hormonal transition. Both girls and boys undergo physical changes. Puberty has been associated with the development of obesity (170). Several studies evaluated the relationship between EOs and anthropometric measures of obesity in an age- and sex-specific manner before and after puberty (7, 61, 66, 72, 73, 78, 79, 81, 96). A sex-stratified analyses found that increased exposure to urinary concentrations of BPA was positively associated with the sum of skinfold thickness (ST) in girls, while exposure to MEHP, MEHHP, MECPP, and MEOHP were inversely related to BMI z-score, WC, and the sum of ST in boys (70). However, when the analyze was restricted to children who had not yet begun the pubertal transition, the results shifted and showed positive relationships between BPA in girls and MEHP in boys with the sum of ST. In the prenatal exposure period, the authors observed an inverse relationship between MBzP and a child’s BMI z-score, but this finding did not persist when the analyses were restricted to children prior to puberty. In a case-control study, prepubertal girls showed positive associations between %MEHHP and BMI, WC, and %BF, and showed significantly increased odds in the 3rd and 4th quartiles compare to the 1st quartile, whereas the relationship was null in pubertal girls (90). How the associations differ before and after puberty is not yet clearly understood. Knowledge of hormone levels related to pubertal growth, including thyroid hormones, leptin, adiponectin, and others, might provide more insight into the potential mechanisms of EO-mediated s adiposity (171).



Research Gap

One of the limitations of the birth cohort studies outlined here is the use of single spot urine during the 1st, 2nd, or 3rd trimester to estimate EO exposure. The biological half-lives of some of these chemicals are short and they are quickly excreted in urine (e.g., phthalates and bisphenols). Epidemiologists ideally prefer to use 24 h urine and repeated urine sampling when assessing these chemicals in relation to obesity, which occurs incrementally over time and has a multifactorial etiology (172, 173). The time of the day or season could account for some intrapersonal or interpersonal variations in urinary concentrations of analytes in single spot urine samples (174–177). However, single spot is the conventional test, despite these methodological limitations. In most of the included studies, biomonitoring EOs were done using methods lacking validated external quality assurance. Maintaining internal and external quality control and quality assurance might make study findings comparable and could strengthen the findings. Some studies had very limited information on pre-pregnancy BMI due to the availability of self-reported weight and the timing of recruitment in their original birth cohorts. These studies relied on maternal BMI. However, most of the studies collected data using self-reported questionnaires or home visits. Therefore, under- or over-estimated data could not be avoided. There was little or no data of phthalate metabolite (both DEHP and non-DEHP) levels and subsequent obesity assessment in infants and toddlers (Matrix Tables 2, 3). In addition, the assessment of obesity in adolescents related to OC (DDT, DDE, β-HCH, HCB, and PCBs) exposure was insufficient (Matrix Table 6). Very few studies investigated the relationship between cumulative EO exposure levels and overweight or obesity indices. Therefore, the possibility that prenatal and/or postnatal exposure to other unmeasured chemicals correlated with measured chemicals may have confounded the associations under study cannot be excluded. Finally, there are scant data concerning the trajectories of exposure and outcome assessments.



Future Contemplations and Research Design

Environmental epidemiologists should clearly infer whether exposure to ECs might influence weight gain or obesity, or whether obese study participants might have greater exposure to, or excretion of, ECs by conducting long-term follow-up studies in child and adult populations. Further prospective studies should aim to collect data with repeated measures over extended periods to improve exposure classification, increase general understanding of the timing of exposure, and address the temporal relationship between ECs and obesity. Given the gradual decrease of some ECs and increase exposure to some alternate ECs in human populations, continued biomonitoring of these alternate ECs and further investigations on their obesogenic effects in humans could be undertaken. Researchers should target study participants at all stages of life to assess exposure and obesity outcomes at each age. Many other chemicals, including pesticides, heavy metals, and particulate matter, have been reportedly associated with obesity outcomes in vitro and in vivo in animal studies. However, their obesogenic effects have not yet been completely evaluated in humans (178–186). Thus, an exposome-based approach needs to be developed to investigate the possible obesogenic effects of chemicals, xenobiotics, and pollutants in humans to explore the overall scenario of cumulative exposure. Studies of the obesogenic effects of ECs in the context of diet, stress, ethnicity, gender, and other factors, using sophisticated statistical models to assess complex exposures should be done.




Conclusions

The collective data indicate that BPA, DDE, and PFOA have consistent obesogenic effects in humans. Other bisphenols, phthalates, and POP metabolites or congeners have contradictory relationships with obesity at different outcome assessment times. Further prospective cohort studies with cumulative exposure assessments are required. The findings of this review will increase the awareness of the obesogenic effects of ECs among the general population.
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‘Concentratons were associted with increased 0dds of bong OvenwEight or
obese fo,0DT: OR=25 (1.0, 6.3; p. p-DOT: OR=2.1 (1.0, 4.5) ant p. p
D0E: OR=1.97 (094, 4.13)

‘Simiar resuts were found for increased WC and o, p-DDT (OR=1.98 (05,
4:11).p, DT (OR=2.05 (1.10, 3.82) and p. p~DDE [OR=1.98 (097, 4.04).
Postive assocaions viere 850 0bsenved among prenatal exposur levels of DOT
vt DDE metabotes with BMIZ, WCZ and %8F.

A 1010 inrease i1 o, DO, p, p-DDT and p, pDDE was assocated wi
besity o, p"DDT, OR=1.17 0.7, 1.82): p, p-DOT, OR=1.19 081, 1.74) p, p
*.DDE, ORL=1.22 (0.72, 206), anc BMZ [, p'DDE, B=0.12 (-0.11, 0.35),
‘Sagnifcant posiive associaions were found between DDT and DDE exposure
levels withincreasing age 2, 35..5,a0d7 y) and obesy.

Nut associaions were found betwieen exposure fo OCs and BMI, and
‘ovenveghtiobesiy afteradjusiment of potentl corrates.

Diecren was assocated vith obesty (04 (092-1.18 g vs Q(< 057 ko),
OR=36.(1.3-105) and G5 (>1.18 41 ¥s 1, OR=2.3 0871}

Matomal PFOS (7.3 0 544 ng/mifor boys and 6.4 to <43.5 ng/ for ) and
PFOA (05 to <7.10 ng/m for boys and 1.10 10 <6.70 ng/m for i)
‘concentratons were ot assocated with BMIor overweight at 7.

Matomal PFOA. concentration was assocated wih GO and AO at fomal
ofspring (04 vs Q1 (median: 58 vs. 23 ngimi: RR=.1 (14, 69)and RR=3.0
(1:3,68), respectve.

Matemal PFOS, PFOSA and PFNA concentations were not assocated wih
ofspring BMIand WC.

Increased risk of ovenveight was obsenved in the T3 of cord bood PCB
‘concentratons T3 0.9 ng/m vs T1 (<0.6 ng/m, AR=1.70 (109, 264 and
the T2 of DDE exposure (T2 (07-1.5 ngim) vs TH(<0.7 ngm). RR=1.67 (110,
259, but nll associaton vih DOT exposure 1 overall popuiaion.

A signifant assocaton was found or POBS and ovenweight i the T3 vs T i
s [RR=2.13 (099, 4.7) than n boys [RR=1.43 (0,82, 2.48). S
associtons aso found for DDE.

Plasma PCB1E0 concentatons viere negaively and signfcanty associated vith
B S6BF, subcutancous a, nta-abdominalfat, WG, hp icurference, and
WIHR. POB118 showed sigrifcant posiiv assocatons wih subcutancous a,
ntra-abdomialfal, WG, and WIKR.

‘Conversely, PCB105 and p, p'-DDE viero general incroased or shawed s
associton wih thesa obesty indcss.

In the cross:sactonal anayses, concentrators of the less chiodated PCBS,
/- DDE and doxin had acusted o ratos of 210.3 for AD, Highy chornated
POBS were iversely associted.

In the prospecie anayses, simia bt ity wesker assocations were seen
etvieen POPs and sk of dvelopment o abdominal obesiy.

A 10:0 increase i prenatal senun DDE was associated wih clevated BMZ
RR=1.50.(1.11, 2.0 for normal pre-pregnancy.-weight mothers, nd RR=1.40
(112, 1.75for a mothers) at 14 m.

OCs wero postiey assodated wih @ woght gan and subsequent
‘development of ovenvight.

Among OCs, p, DD predicted higher BMI forming inverted U-shaped dose-
response relaions at 20 ate acusting for the baseine vaes (Dascrwc<001.
fom Q1 t0.09).

Porsitent PCBS wih 27 chorides predicted higher BMI at 20 with smiar
Gose-responsa curves.

A sigrifcant negatve condation between serum lovels of PCBTSS, 180, 170
and sumPCBs, and B, WG, and %FM in entie roups fean and obese
together)

‘Conversely,[-HCH showed signifcant posiive coneaton with WHR, BM, WC,
ewry iy
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Icroased uriary concentatons of MEOHP (04 OR=1.93 (133, 278), MBP
102 0R=1.67 (116, 2.41); 03 OR=2:31 (1.60, 335 Q4 OR=3.24 (222, 472),
MEP (03 OR=1.90 1.32, 274): 4 OR=2.10 (1.45, 3.03), and NP (2
OR=1.63 (.13, 2.35; 0B OR=1.81 (1.25, 2.60); O OR=2.38 (1.14, 3.44] were
‘comeiated vith Higher 0dds of GO.

Urnary MBP loves wero alo assocted wih AO (G2 OR=1.93 (1.21,
OR=2.42 (147, 3.99), and Q4 OR=231 (138, 3.8) 15 Q]

In mon, increasod concontatons of MBP (02 OR=264 (150, 462), 03
OR=3.16 (169, 6.89, and Q4 OR=2.77 (139, .49 wero comokted wih AO.
No sigricant associtons wore observed n wormon.

Log tansiormed winary phinalate metaboite_concentraiions were nol
ascociated wit GO [EPhihalte metabastes, OR=0.93 (068, 128) and AO.
[5Prinalate metaboltes, OR=0.98 (068, 140].

A 272104 increase in PA concentaions in 17 T, of pregrancy wero
assocted wih an ncrease in chidhood BMI[SDS=0.7 (0.00, 0.1

Nt associatons wero observed batwoen othe phifalate metaboltes and BV

.07, €3

Natur logranstomd 1# T, MGP concenators wers o0t i
icrazsod ST [1-3.41 (150, 5.31), BMZ =028 .12, 045] and WO 3259
(0.86, 3.8)). and MBP with only BMEZ ($=0.25 (0.03, 0.46}}. Second T, MBzP
concentation s sssoctodwihceressat ST [1=-2.5 (476, 026]
among g

Matemal urinary 2 T, MBzP concentration was aiso associated with BMIZ
B=0.25 (0.01, 0.49)] and WC [B=2.11 (0.27, 3.95)) among boys.

n vmen,urnary MEHHP and SOEHP concontatons wor assocted i
Gocsty (0445 QT OR=1.72 (119, 249) and OR1.52 1.0, 221).
espocti].

nmen. ey MEP concniaion was foun f b spcanty assaceted i
abesty (0415 Q1 0R-0.71 (050,099

Vomen 350 y showed pasiive assacfions ban iho MEHH, MEOHP.
SOEHP, and ME2P concontaionsand bosy (0 5 Qs OR1 94 (125,
294, 08188 (.21, 204), 0R=204 (131, 3.18), 3 G343 O =145
(102, 205).repocivay.

MO concantatons wers associted with BV (3035 (0.06-066) and WC
B=0.98 (0.28, 1.69)).

MGOP and MEGPP wao associted wih GO [OR=1.80 (122, 269) e
OR=1.62 (1.04, 2.51)]. and AO [OR=1.70 (1.14, 2.64) and OR=1.69 (1.01,
251004 0.

‘The weighted quantie sum index was associated with both GO [OR=1.63 (1.21,
220] 300 A0 0R-1.66.1.16, 234)

A motbaitos had snican posite assocaton il B whereas o
MEOHP shoned a sfcant assocaton i WG e th st

Most of the phthalates were assodiated with obesity (T3 vs T1) [MBP: OR=1.26
(054, 1.98)], [MBzP: OR=5.54 (4.79, 6.28)], IMMP: OR=4.26 (3.56, 4.96]].
[MEHP: OR=3.63 (2.95, 4.31)], and [MEHHP: OR=4.16 (3.31, 5.01)).

n puberl g, ul assodtons wer fond batven DEHP melbores an
aocsty s, SMEHHP among l OEHP metabot was her i 1o
oveenGon prpoerl g4 thn 1 he ontos.

o SMEHHP was postue assocated wih o BV (1193 018, 3.70], WC
B=0.67 (0.15, 1.19)), and %BF [=0.60 (0.03, 1.18)] in prepubertal gis.

“The %MEHHP of prepubertal gits in Q3 and Q4 was significantly higher OR for
40 hn 050 1 01 OR-5.0 o 03 370 OR=7.30 or O

Compared ik romal wogt chicken, higer e of MBP wer detocted
iy Sampls of i vih oS a0 oDy

Postia assocaton was fond baween iy MEP concentaion an
kond ownvogncbesty [OR1.595 (1043 2412,

Alr adusiment, al meaboits showed a posiig r6alonshp wih BMZ
(B=0.17 for MEOHP, B=0.18 for MBZP, B=0.22 for MBP, =0.23 for MEHP and
18-0.30 for MEHH: p < 0.006) and W (3-0.14 for MMP, 1-0.10 for MEOHP,
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117 Bihoohot 90Cs 10 218y 218y 14013+ Posiiv assoclons wih BV wero found n Q4 vs Q1 forp, p-DOT [§=32 (15,
SN, PBOES35 49], B-HCH [3:3.6 (20, 5.2] and BDEA7 [B=1.9 (03, 3.5), whi BDE1S3 vas
Women  POBs. inorsely assocatod [B=-28 (4.4, ~1.2. Postive associatons were aso foud
o8] forp, DO, -HCH, BOEA7, POB74, ar POB99, and iverse associations

wero found for BOE1S3 and POBI0 wih WC.

+ A sigifcant ncreasing trend in ik of obesty i Q2, O3, and O for p, DD
[rospociiay, RR=1.38 (108, 1.76) RR=1.45 (1.1, 185), and AR=1.48 (116,
1.69), and -HCH [tspecivel, RR=0.99 (.77, 1.27), RR=1.43 111, 1.84).
a0 RR=137 (106, 1.77) wero obsorved.

+ Associations were posiiv for BDEA7 [RR=1.29 (1,03, 160], but were inverso
for BOE153 (02 15 Q: RR=0.70 (0.6, 089). P890 concentraions vire
‘assooited with increased ik of sy (p<0.01), whie a decreasing rend was.
observed for PCBT80 p=0.03).

118 2 12y 45313 + i boys. 10404 increase in pronata o, p-DOT, p. p-DDT and p, p-DDE

aw concentratons were associted withincreased BMIZ and WOZ [3-0.37 (0.08,
0.65)and =031 (007, 056]; =026 0.03, 0.48) and B=0.25 (0.05, 048],
and [B=031 (002, 0.59) and B=0.27 (001, 053], rospectivey.

+ Sy, a 1040 increaso n 0, p"DDT and p, p'-DDT were assocated vith
ncreasad ik of dbesty [RR=1.46 (107, 1.97)] and [RR=1.26 (101, 1 64),
respectiey.

119) Coss-  G0POPs 218y 28y NG+ Modan levol of ppDDE among paricipants wih BI <25 was signifcanty
secional (nckudes. owes than tha of partiipants with BMI 225 (0.83 g1 5. 1.26 g/ p<0.0001).
(Span),  PCBS,DDTs, + pp~DDE Kentfed as arisk factor or the development of ovenveight (BMI 225
Aduts (129) DOES) £40(8)-1.38 (.15, 1.60], and obesty [BMI 230: £x0 B)=1.22 (108, 1.38].

120) Bt PFOA PFOS, <22 GW 32,77y 1.2 + In gis i mdchihood (1.7 ) each IOR ncrement of prenatal PFOA
Conot PHS, PRNA (mean)  3a.4a,  concentratons was assocaod wih 0.21 K/ ighor BMI(-0.05, 0.4, 0.76
A, 102,12, e igher sum of subscapuiar and ticeps ST, (-0.17, 1.70), and 0.17 K/
Mother- e ighertotal FMI(-0.02, 0.36) Simiar assocatons were obsorved for PEOS,

i (1006 PRHYS, and PFNA
876 + ot associations found for eay-chidhood (32 y) PFAS concentrations. and
adiposity moasures 1 boys and g,

121) Bithconort HCB, D0, 2wkol 18m5y 1aza - A 1010 noaso in matomal HCB concentations wore assocated wil
(Face  PFOS, PFOA,  postpartum, 5. Sabe, 6, increased BMZ at 18:m [B-0.15 (0,01, 030) and at 5 y (8=0.19 (0.0, 0.3,
lsanck), PGB p.p 72,100, Smiar associations were found betwoen PFOS concentrations and BMIZ
Mother. PRI, PFNA. T [B=023 (0.0%, 0.42) an overweigh sk [RR=129 (101, 1.64) a 18 m.
chld(ae)  PFOA Associations wera ullat 5. A, 10-10d increasa i maternal PFOA was:

‘assooited with the sk of being orenweigh!at 5 y RR=1.50 (1.01, 224).

+ COnid senum-POPs (except PFHXS and DDE) levls inversoly associated vih
BMEZ or overvegnt riskat 5.

122) Bithcohot PFOAPFOS, 16GW,28GW  2-8y  1a.3a.4a, » WG was Nigher among chidren i the T2 (43-64 ngim) (§=4.3 (17, 6.9) and
USA,  PFNAPRRAS  (mean) andat 6a,70,  T3(56-25 ngm) [3=2.2 (-0.5, 4.9 compared wih T1 0.5-4.2 ng/m) of
Mother- bitn 108,112, prenatal PFOA.

i 265) 12,14, Betweon 2 and 8 , BMIZ ncreased ai a geater ate among chidren at T2
15 (=044 (023, 0.64) and T3 [3=0.37 (0.14, 0.60] o PFOA compared wth T
[B=0.12 (-008, 032,

+ Cniken bom [0 women with T2 and T3 PFOA concentaons had increased
sk of ovenweight [RR=1.84 (097, 3.50] or Obesty [R=1.54 077, 307) at 8y
‘compared to chidken bor to women i he T1 category.

129 Bihoohor 10PBOEs  16GW(mea)  1-8y  1a.3a.4a, - Tendodincreases i BOE100 and SPBDES were assocaied wih decreased WO
SN, (PeDEs: 7a.10a  [B=-150 (-293, -0.08)and P=-1.57 (-3.1, ~0.02), respectiv] among
Mother.  BDEs 28, 47, Ma6d  cniren4-8yinage.

A18) 99, 100, 153 + I contast, a 10-10d increaso in BDE1SG3 was associted wih lowes BMZ [j=
-0:36(-0.60, -0.13) at 2-8  anc lowe S4BF [p=-237 (-4.21, -053) at 8.

109 Behoohon 27POPs 1,397, 7y fab, + Matema concentrations of HCB, BHCH, PCB138, and PCB180 wer associted
(Span, g & 20,45abc,  with increased chid BMZ, HCB, BHCH, PCB138, and DDE wih ovorwoight sk
Mother.  OCs, 6 PBDES 6.7 - n priacipe component anayss, the OC factors (DDE, HOB, BHCH, POBIGS,
g 470) 106,11 PCBIS3, POB18D) were posively associed wih BMZ 13 . T1, B-037

(0,03, 0.72)) and with overweight [T3 vs. T1. RR=2.59 (1.19, 5.63)].
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BPA concentrtions 81 4 Y Wi associcied wilh NCresed CHks BMEZ [s0.2
(001, 0.4), WC [§=1.2 0.1, 22 and sum of ST $=37 (0.7, 6.7, anc  higher
prevaience of obesty [RR=2.9 (0.8, 10.5) at age 4.

Log,otransiomed creatiino-adjustod BPA concontrations. during pregnancy
and cary chidhood (25 y nd 4 y) were associted with obosty (RR=0.1
0003, 5.4) for matera; RR= 0.3 (0.01, 6.4 and RR= 2.9 08, 10.5) for
chidnood BPA, respecivel.

Por 10R incroass (096 g/g of creatning) in log-transtommed BPA was
assocated wih overweight [OR=1.17 (104, 1.32). A sqnifcant associaton was
found i women [OR=125 (109, 1.45), bt not i men [OR=07 (0.77, 122,
O of verwoight increased with quarties of BPA (01 = 038, Q2 = 0.39-0.75,
Q0 = 0.76-1.41 and Qd=21.42 sy of creatinne) i women (02 OR=1.54
(102,232, Q3 OR=1.70 (1.10, 262}, and 04 OR=1.81 (1.13, 292).

A soniicant conlaion was obsanved between creatiing-adsted urnry
m0n0-chiord (mCY) BPA ) BMI (1=0.18, p=0.0087)

Obsoved an increase prevaknco in bove normal BMI paricipants ith
increasing tetio of creatnine-adjusted unary ntransformed mOBPA (9=0.056)
but notfor BPA (p=0.254).

An icreasa in the OR for above nomal BMI was obsened for the T3 o
crcatiing-adjustod sy BPA [-2697 /g, OR=1.17(0.57, 2.43) and
mCEPA [>108 /g, OR=1.14(0.50, 2.59) compared with T1.

Sgnifcanty higher BPA levels wore 0bsaved i the subjcts wilh vioera
obesty (WG>102 cm) compare fo the subjocs with WO<102 cm.

WG was Pigher among subects wih a uinary BPA concentraton in the O
(>2:594 pym) et 1 toso n tho O (<0853 ) 9=0.0071).

Posive associaions wore ound between unary BPA concontatons and BM
(20.1866:9-0,0128), WG (3=0.0564: p=0.0503), and %4GF (8=0.1091:
p=00385)

Subjcts at Q4 were more ke 10 be obeso compared 1o thoso at Of
(0R=194 (131, 286,

A 104080 increaso in prenatal and eay-chichood BPA concentatons was
assocated wih a edueton in o BMI(B=-0.1 (-0, 03) and B=-02 (-0,
0.1, respectiey,

Gricron i the eary-chidhood at T3 of BPA (20-314 glg of creatnin) had
Tower BMIat 2y Gference=-0.3 (-0, 0.0] and lrge ncrases i the BMI
Sope fom 2 vough 5 y (B increase pe year=0.12 (007, 0.1) than chiien
0the T1 (2.1-11 g ofcreatiine) [BMincreaso poryear=0.07 (001, 0.13).
Prenatal BPA concentrations was associled wih decreased BMEZ [B=-0.47
(<087, -0.07)] and HBF (B=-4.35 (-8.37. -0.34) and decreased o of
ovenwaighiiobosiy OR=0.37 (0.16, 091 n T (1.7-27.0 yg) s T1 (<LOD-1.0
b among gs.

Unary BPA coneniatons ai 5 y of age were ot assocaed wih obesy
indoesat 50 9.

BPA concentatons at 9 y e postvey assocated with BMEZ (=05 (015,
095), WC (B=5.89 (1.19, 1059, FM [B=4.62 026, 98], and ovenwsight/
opesity (3=4.20 (.60, 1.02) at 9y n boys and it

A 10101 ncrease increatiino acsted BPA conoeniraion was assocated wit
increased WG 2-5coro[8-028 (001, 0.57). BMIZ =028 (-0.06, 063), and
BMZ 265th percentie RR=1.38 0.72, 267) a4 .

BPA was not associted with obesityrealed outcomes at earter a9es (at 6 m
and 14 mof agel.

A Highar urno BPA lovd (:2 ) was assocatod wih more than 2-
increase s ofovenweightCbese (voight 2900 porcente) among g aged
912y (0R=2:32 (1.15.4.65).

S assocatons wero 80 found for ip Gicumleranco (OR=2.88 (112,
745), WC [OR=260 098, 6.91), weigh 0 hoght rato (OR=2.38 (092, 6.16),
ST(OR=1.86 (0.73, 4.71)] and BMI IOR=1.47 (0.71. 3.05)).
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0P motbotos bl asosons.

() Cws  UNPEOIER  sisy  BISr L2+ T logumemed ameconatons o rne o gl mobes and o
P AL, ks o o D, LI FARAP, 5P 0 o ) e
o fwemeries, vt st vith SV o W a e acimon o a0 n
e NEGHP MOWHP, + Only MEHP and MEP showed signiicant positive associaton with BM [8-0.048
G o, (0007, 0058 0022 (0006, 0040) a1 10099 0009, 0071)

e 5002010006, 0059 e o esment o oer snlts
Conenratons s convates.

(0 Gom  UMPUDMER. say 65 1230 . i oreweon suty paiopans, boi maan B axd WO wor soncanty
ockea R S0 croassd n MEP G2(medan 131 pgo 0 21.7 207, 28 735 10,
e v 76 respecuey, 00 (2354 1 35 2217, 248) i 792 163, 6201
@80 R, 2P, MCPP respectively) and Q4 (948 /g ) 235 (225, 24.9) and 78.8 (76.3, 81.9).

ooyl compae o MEP O 6 by . Sl ot war 850
o P

+ Nl associaions of other phialae metaboltes wih antropomsti measures
of cbest were obearved among the chiden.

i) oo ver e, 680y 6%y 1L4® . inme (059 goups, ot I WC cresed Fom O to Q4 of MEP
st oD P M. 795 (i 120,572, 284 5.0, p-00002) Mo B gl Gessed
N % 1916 aross s among addescent g (2.1, 23.7, 230, and 236 om he Q1
ot 19,08 o MEHP,p 1ond-0.02) 3 arnong 20-68y i 29, 02 285,
Joorors 0028, -0,

m Vet ot cosicets o MEP e psie, i exception of adlsce

males (10 relaionship) and ode femaes en iverse reatonshp). For
dlescent g, mean BV werd 229, 238, 2.1, 30 24.7 (o-r0nd=0.03) with
ncreasing cuarto of metabolto concentraton, and aclsted mean WG viere
77.4,79.7,80.1, a0 816 (p-1rnc=002).

112 Cos- P Ep. v, 8y My LEM .+ Untansiomed MBP, MEHHP. MEOHP. and MEP concentalons wero
e, e, .18 posiively assocted with WC [1=1.20 (SE: 0.3, =1.71 (SE:056),p=1.81
Lkies: es: SE: 060)and B=0.77 (SE:0.29) respecive afer acusied with covaraes (o

<0013

. omor . yoar m, month T, rmestr: T, forcRotie O, auartioGuante; r, craatsng: GO, gonora osiy; AO, abominaloontal obesy: PA, bl ac MBP, mono-bu
okt mond -ty phihaite: MB2P, mono»baney phthalt M, mon-S0buty phalt: MV, rono-methy phthlats; MEP, mono-atyl hihaate; MEHP, oo, -0yt
ohthkto; MEOH, mono (2-ahy-5-0x0hoxy) péhaate: MEHHP, moro (-0t Shyctoxyhey) phihalt MEHE, rond-otyhry phhall; MECPP, moncs2-6h-5-carb0npenty
ot DBP, ity it DEP. ol phinatt; MCNP. mono-carbanyony) phihlte: MCOP, mono(carbosyocy) phihate; MCUHP, mono-2-cabosymey-er
phthaate: MNPINP, mono-isonony! phifalate; MCP, monocycihe phthalate; MCPP, mono-(3-casbosypropy) phihlte: MOPIMNGP, moncsvociyl palte; MHSP.
monchexyphihate; MHDP, mon-2-bepiyphthat MHBP, monofé-hyckosybuty) Pt MCHP, monacyhesy phhatt; TOHMMEOP, mondfémelo-7-yatcsyocty
ohthte; VWP, low moeculr wahtphihta: HIMUP, hh molouar woight phnaate: SDS, tancr dvton scoe: B body mass nckr: BMIZ, B 2-5cce; BSA, body
srtaco are; WG, wait croumiironce; WOZ, WO 2:soort; ST, skeiotd ihckmess: HG, W croumfarnce: WHIR, woight 0 haigh ato; B, body a; M, ft mass; PCA, il
component anayss.

Yago Pt age, “matematage “agescuerc; sex el s ‘ecucation el fmatomal ptemal acucaton): socioaconom stats ipousshokd iy occme,“povery o coma
ato,msurance, “matermal 10t of pukc assstancel: ohysiaue (e ognancylmatenal B o, “gestatonslwoght ga, it woigl; “od (matema it qualy score,
ttatenergycati ik, ch ood nsecutyand fast-fooc consumptonsat esch poi 400 secuty, prenatl ntvegetaies and s Cons.mptons, Grendal i uss, ot
ot itk Pxeast ooing, ety actors: "smoking Csmoking g pogriancy, *serumlinay tin): alcohol Consumon kg tatus; “ctty Cphyscal actiy, exerse
recreatoatacty, *TVARIeo waichig e, “secntryhours, metabol equsssent hues; a0 (matemalpatemalcd rae/ty, matemal courtry f oy iformasono
rograncy Cparty,gestatonsl ag, cosaroan secton and clery experencl;matamal mantal sttus; locaton fpartcpants o sty 10/area, *husig e, oars i US e
o dotary, conon; past istoy (i proie, SBP/DBP, oo sugr, “epressivo symptams,*dabees) ob/occupaon (wark stals cring prograncy: “rgroccte factors
Ptaer stages, “pubery nset, manopausal statusiomone el using cosmets, plast packaging and botied driks; "others Curary Spacic gy, uiary coatnne oo,
Ptk ok, orenatl A, “ue o ant colecton dae, an teacton febetwoen 299 a0 el Concentaton ategares, an eaction e b age squered
ohthto concsntaton cata90rs,"an teracton o botwoen racatholy and 299
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1a,28,3,
4a,50,6a,
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1ab, 22,
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.8, 100,
1a
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162

1.2.30,

40, 60,
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1,23, 4,
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12,4,
600, c,
108,160

12,8,
103, 163,

Matemal urnary BPA conoentaton (ange: 0.17-280 ) was associted it
WG in chidren aged 7y [3=0.51 (007, 0.95). Postive associaions were
observod oy n i [3=0.69 (0.04. 1.34) ot n boys.

Riscof AO relted to prenatal BPA exposaure was igher i the T2 and the T3
1hanthose e T1 [OR=251 (115, 5.50) and OR=2.58 (.19, 6.6),
respecivey]. No sgnican assocaions wih GO o evident a 7.

Riskof AD a7 y n T3 of eary chichood (3 y) BPA exposuse was highes than
thoso i T1 [0R=2.85 (1.02, 804).

Urinary BPA loels wero ot assocated vith GO risk. Partcipants n tho Q4 o
8PAJevel had 1.75 imes igher sk of AO than particpants i the Q1 of BPA
Tovel,

Urinary BPA level sigifcanty assocated with AO in women [OR=1.50 (1.00,
226) but not i men [OR=1.13 (085, 1.50). Aso, the associaon was.
signficant i postmenopausal women [OR=2.23 (101, 4.92) but non-signicant
in premenopausal women (OR=1.31 0.78, 2.20].

Nul associations were evident betueen matemal bisphendl concentatons and
‘chidhood adposty measues at 10,

A 240id ncrease in BPA concentations (range: 0.1-63 ng/m) was associated
i igher waist 0 ip ato (3=0.003 (0001, 0.005) among overal chid.

A 2404 increase in BPA concontraions was associted wih increased WO
[B=020 £.00, 0.50) and subscapar ST [3=0.15 (001, 0:30] i gt
Assocatons wero nu i boys.

BPS was associted wih both GO [OR=1.44 (101, 207) and AO (OR=1.47
(1.01,2.16) (04 v5. 1) whereas BPA showed nonsgniicant assocations wih
GO (OR=1.53 (099, 2:35) and AD [0R=1.36 087, 2.13).

Tnero were no associalons of 24.P and 2,5-0P with GO and AO.
e mean BM increased sgrfanty from T1 o T3 (T1: 8.70-78.90,
246,80 and T3: 247-725 gyl (T2: Gference=3.65 (.92, 538 and T3:
iflerence=8.26 (648, 10.00)vs T, respectly. Smiary, consistent
‘assocition aso found between BPA leves and WG [7.97 (364, 1231) and
1626 (1181,20.72) at T2 and T3, rospectio.

Partcpants in the T2 and T3 had higher odds for obesiy [OR=A.11 (1.56
1081) and OR=12.48 (336, 46.39, respectvedy, in comparison with T1.
Increase odds of ety were found among the Q2 [OR=1.25 (095, 1651, Q3
[OR=1.30 (103, 1.86) and O [OR=1.43 (111, 1.84) compared wih Q1 boloro
creatiine adjusiment. Afe the adusimen, the assocations were nu; Q2.
[OR=0.83 (066, 1.03], Q3 (OR=0.91 (0.70, 1.18) and O4 [OR=095 (074,
121

Chiren ervoled in 2003-2008 with higher urinary BPA concentratons had
olovatod ks ofobesiy, whoreas those associaions were iconsistent who
‘onrolod during 2000-2014.

A 1040 increaso n BPS, tho 00 of GO increased by 16% [OR=1.16 (102
1:32).sevece obesiy by 18% [OR=1.18(1.03, 1.35), and AO by 13%
(0R=1.13(1.02,127),

Detected BPF (detected vs not detected) Concentaion was associted vith a
increased prevaence of AQ [OR=1.29 (1,01, 1.64) and continuous BMZ
8-0.10 001,020},

BPA was not assocted wih obesiy.

e OR of GO comparing the Q4 wih Q1 of rinary bisphend aves wea (174
(0.92,3:31) for BPA (398 vs 046 ng/m 1.54 (1.02, 232) for BPF (.55 v5
.14 ng/m, and [1.38 (0.53, 3.5 for BPS(1.30 v 0.07 ng/m.

Urinary BPA, BPF, and BPS leves (O4) were signifanty assocaled vith both
GO@nd AD oy i s

The woghted prevaence of GO and AQ were 21% (155, 26.4)and 35% (282,
419,

Urinary BPA_ concentatons was assocated with incroased odds of GO
[OR=1.54 (1002 2:37) and AD [OR=1.16 081, 1.66) n the Q4 (-2 g vs.
Q1<0.7 pal.

2.70-
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A 1040 increase n materal EDEHP was assocated wih decreased WC [3-
~26(-4.72, ~0.48] i boys and =2.14 (-0.14, 4.49) n gts anc WHIR [p=
-001 (-0.03, 001 in boys and [=0.02 001, 004) .

(Gnid MEP and MBP were assodated withfower BMIZ 1 boys [B=-0.22 (-0.44,
-001)and B=-0.1 (-0.35, 0.18), respectved] and ih highes BMIZ n gits
[B=0.17 (-0.12,0.45) anc =039 0.1, 0.66),rospectiveh]. Crid SDEHP
Showed simiar assocaions 1 boys s 9.

A 10-id increasa in chid MBP vias assoced wih a changa in BMIZ [3=
-031 (-0, ~0.02] i boys and 3:0.74 (037, 1.1] n .

1 boys, a1 ngmi creass in MB2P, MECPP, or MEOHP lovel was associted
with decreased WG [3=-0.011 (-0.021, -0.001), B=-0.023 (-0.038, ~0.007) or
B=-0.010(-0.010, -0.01),respociivey.

In s, @ 1 ngimi increaso in MMP concontiations was. assocated it
ncreased ST (3=0,038 (0.002. 0.076], whereas MECPP concentratons were
‘associated with decreased ST [3=-0.050 (-0.085, ~0.005). A 1 ng/ ncreaso
i the MEHP level was assocated wih decreased BMI [3=-0.020 (-0.036,
-0005),

Pronatal MBZP concentaton was iversely assocaled wih BMIZ [B=-021
(-0.41, ~0.02) anc i inasy MEHP conceniraton vas nversely associated
With W [B=-1 86 (-3.36, -0.35) and EST [B=-2.08 (-3.80, -037).

(Ghid uinary phinaiate metaboltes were showed sigicant inverse reatonshi
with BMEZ MEOHP, B=-0.26 (-051, -0.005), WC [MECPP, p=-2.13 (-4.22,
~0.04) MEHHP, P=-2.02 (402, -0.03) and MEOHP, p=-2.13 (-4.16, 0.10],
an SST (MEHP, =-2.95 (-5.08, ~0.82] in boys but al assocatons were ul
in ges.

Logs transiormed prenatal uinary metaboltes of DEP, DBP, BzBP, and DEHP
wero postiely associated with BMZ, WCZ, and %8F at 5,7, 9,108, and 12.
A 2400 increase i prenatal concentraons of some metabaltes werd
‘associted vith ncreased odds of being ovenveightiopese VEP, OR=20 (1.0,
39, MBP, OR=2.1 (1.1, 42], MBZP, OR=19 (09, 3.7), and IDEHP, OR=22
(1,485 at12y.

A 210 increase in MBP was associted wih a change in BMZ of 0.13 (002,
024)nboys s -001 (-0.14,0.12) n s and a change in WCZ of 0.10 001,
020)inboys vs ~0.03-0.15, 0.08) i gis.

Nul assocatons were found batwoen urinary MEHHP, MEOHP and MEP
concentatons, and BMI and WG [MEHHP, B=0.03 (-0.01, 0.06) and B=0.002
(<001, 0.02): MEOHP, B=0.02 (002, 0.08) and B=-0,001 (-0.01. 0.01): and
MEP, B=-001 (-0.04, 002) and B=-0.002 (-001. 0.01).

Both matemal and chidood winary MB2P concentations wero inverse
assacated wit adiposiy at 8y of age.

A 10-10d ncreaso i prenatal iy MB2P concentrations was associated wih
reduction i BF [p=-17 (-36, -02)atage 8.

A 10:0 incease in SOEHP concentraons ai 1 and 5 y was associated wih
decrease [3=-2. (-4.8, -0.5] and icease [3-29 03, 5.5) i %6,
respectiey.

MEP concentations at 8y of age were assocated wih Hgher chid adiposty,
ut eaor chidhood concentatons were .

Overal, Nigher wrinary levels of MMP, MB2P, MEHHP, and MECPP wero
assacated withincreasect OR of AO. Sgnicanticreased odds wero observed
Q2 [OR=1.56 (111, 220], Q3 [OR=1.33 (105, 1.88], and Q4 [OR=1.91
(134, 2.721) of MMP [OR=1.52 (118, 2.06) of MB2P: 2 [OR=1.46 (1.13,
1.90), 03 [OR=1.53 (118, 1.98), and O [OR=1.56 (119, 2.04] of MEHH;
00 O3 [OR=1.43 (1.1, 1849) 27 04 (OR=1.33 (1,02, 1.74) of MECPP.
Higher urnary levets of MM, and MEHHP wero associled i increased odds
Of AO nfeales i1 G2 [OR=1.79 (1.16, 275], QB [OR=1.59 (1.04, 242], and
4 0R=2.02 (1.33, 3.06) of MMP; and Q2 [OR=1.63 (104, 254), G3
OR=2.37 (151, 3.72)], and Q4 [OR=1.80 (1.16, 2.81)] of MEHHP.
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(14 Crose-  TORSe, 0 QY WY RS ¥ TS SACHIIROTS OF 11 TU Tk TIe 0N Rl S G LY W
0.8, al posiiel r8atad 10 FM {p < 0.00). Subjects i tho Q5 fo PCBI0S andt

sectonal  OCs, BOEA7, 69,7

(Sweden), ok o POB118 showed a mean FM that was 4.8 (30, 6.7) and 4.6 28, 6.5 more than

Bder subjects intho Q1.

peopie 1 contast, tho POBIS, 167, 169, 170, 160, 189, 104, 206, and 200 word

@90, nogativly roaled to FM (=0.0001). For POBISA, subects i tho 05 showed a
mean FM that was 108 s than subjects i the Q1

(146) Bthoohot PFOAPFOS 1°-2°T,  §m.12m 1a.4,5, + A 1 ngiml nease i the matemal bood levels of PFOS wero inversely
(Deoma) 6672 associled to chdren's weih, afer acistment [3=-5.8 (~104, ~1.2]at 12 m.
Mother- H1a, 17, +  Matomal PFOA concaniratons was also associed with BMIZ at 12 m of 299
ot (14 [B=-0007 (-0011, -0.002].

(147) Bith conort PCBS.ODE  During 20-50y  1b,5ach, + Compared with matamal DDE kel of <1.503 g, aughter weight was 5.93
wsA, prognancy 80,111, ighor whn prenatal DDE levels were 1.503-2.9 pgl ad 992 g i avols woro
Mother- 180,17 >2.9 1, and ofspring BMI was 1.65 tmes hghar whon penatal DDE aves
g were 1.503-2.9 ! 2.88 i vl wore 2.9 ol
(1518129) « Pronatal PCBs showod nul associaons wih ofisprng weght and BM

(146) Bihoonot 5PCBS,HCB, Aibih(Cod  1-3y NG+ Increasing conentatons of cord blood PGBs were associated with higher BM
(sgum). OO blood) S0 vaues at 1-31 of ages 3=0.003(0.001) p=0.03.

Moer- b, pDDE had a smal efct on BV SOS in chidren of nonsmoking mothes but
nfant 138) smoking enhanced the reation between DDE and BMI SDS at 3.

(145) Brihoohot HCB,7PCBS, AlbAn(Cod 65y + Chidren with HCB leves >1.08 g/ in cord blood had  igher BMI (3=0.80
(Span, PP DDE,p.  bood) (SE:0:34) than chicron wih HCB lves < 0.46 g/
Griden p-DOT + Pronatal exposuro 1o HOB was also assocaled with an inreased i of being
o) ovenvieight (RR=1.60 (1.05, 2.72) and obase [RR=2.02(1.06, 3.85) at 6.5 .
A 10-10d increase in HOB concontiations at brth associated with radcod BM
‘and weight ot age 6.5 (3-0.39 and 084, respectiely, n the chidren rom
nomoweight women.

. oo . yos; . ont T, mestor T, cclfete O, QuarthoQuantio; NG, ol consrd; POPS, pesstentorgaric poluants: OC, argarochirvs: PIBOES,polyeomited
cpheny ethers; PFAS, per and polyuooakyl substances; PFOA, peruorooctanoate; PROS, perfuoroactano sufnate; PROSA, pertucrooctan sufonamides PR,
porhorononancote; PRHIS, poruorohoxans sulb: PGS, parfuorobutanasuon i, PFDOA, peruorododcanoc acs: PFDA, parucrodecand ac: POB, polyahornated
ophenyt; HCB, haxachiorobenzone: DOE. dchivodphanytichioroathyone; DD, dhbrosphonyiiohooathano; HCH, [Hhexachiorohaxand; NG, trans-nonachir; TN,
ansionochiontan, SOS, standurd dovaton scor; OR, it uatho ango; GH, ook, of gostaton; R, 06t 1sk; OR, 00 rato; BMI, body mass nc; B, BMI 2-scoro
P, o mass: BF by, ST, sk s WG, wait ccumiranco; WCZ, WO 2-50ore: WHIR,wait (o gt s WIHE, woht 0 hoighl o 1, poncaalindr: GO, genc
obasiy: A0, abomalontal oty

"ago mtometago/mstomatagoat ey chil age, ofspring 90 t okow g S0x ok s ‘ccaton e Pmatalpatena dhcao:‘s0600conomi tatus Chousohoky
famiy ncomal: ‘pysiqus{pro-prognancylmatomal B, gesatonlwoigt ain, it wigh oasoin BMIGbesiy."patoma B parotal verwGghobesy apid growth s,
"higmatormalhogh, oan mass, o crognancy obesty: ood Cprnata viamin o, *roast s st od, uraton o raasfooiog, matena sh itk g progracy,
motemal ot cid ot ttal norgylcako skl soking (atiolpassiv Smoking durngprognancy,“patomal moking v rograncy, “matomal soren cofisne, “cgaret
smokingl aconol consumplonikin sats: actty mo piayiog outsc, “TVAR walchng e 4o playig vidoo games, “cd physalacityphysia actiy, ogul
ercsa: 1aco Cmateralpatomallchi racotatciy, “matovnl county of oty fomaion ofprognancy Cportyepregeancyneral, 0 of dovory, ‘O gustatna
age ‘it it ok, “uamber of v bits, Tumbirs of ofsring prograncies) “matemal martal satus; Plocaton of patopants o study years ofUSA resdeccetie it US a
o, *istory of lctaton, sty centestudy sub-cohr; “past istory (ossio Symptors, 4 ofle, HIV tats) “occupationod (worksttus eig prognancy o0l
cvs): rprockctvo foctors: others gostatonal ago at tood g, s, nd ntraion boswoon vistand PEAS, i of bood daw, proatal PBS).
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increased isk of ofspring overvight [RR=1.11 (082, 159 in Greeniandic
1,02 0.72,1.44) in Usaiian chicken

ncrease sk of haviog WHR 0.5 [FR=1.30 097, 1.73) an [RR=1.38 105,
1,62} especiiey i tho ol sty sbjects.

G TPOB conceniraions werd ersely associated with WO and S6BF i g
14-16 Y 00 (9=0.04 and p=0.03, especiiey,

T inverse associaon betwoen SPGB (PCB138, 153, and 180) and BUIZ was
‘dantamong thosain he T3 (-0.28 g pid) compared wih tha T (<0.16
49/ among vomen 20-22 y 4 [} =-0.44 (-0.80, -0.08).

A 100 crease in matemal HGB concentatons was associted with a ghes
BMZ =049 (012, 0.86), obesity [RR=6.14 (185, 35.1), AO [RR=3.49 (106,
11.26),and reatr sum of ST §=7.71 (204, 13:39]at 4y of ae.

Prenaial DOE sxposuro was o assocated wih highor BMZ (3027 (004
05, AO [RR=3.76 (1.70, 830],

Matemal serum S4PEDE conceniratin was ot assocated wih the BMZ [
~0.08 (-0.41, 0.25), WCZ [B=-0.02 (-245, 0.28], o the 0ds o being
ovenweight [OR=0.82 038, 1.79] at 7y of age.

A 10404 ncrease i SAPEDE conceniraion was assocatod with decreass
BMZ in gis [3=-0.41 (-0.87, ~0.05) compared with boys [3=0.26 (-0.19,

072)

Chid's senum BOE1SS concentraton showed inverse associaions wilh BMZ
(B=-1.16 (-1.83, -0.77) at WCZ [3=-0.95 (-1.26, ~0.64) at 7y of age.
HCH, heptachiorodbenzosp-<icxn, octachorodibenzo-p-dioxn, and POBT26
Shovwed sironger posiive coneatons, whereas PCBS wih 26 chiorings nversely
‘ortelated with trnk 6FM than vih kg M.

‘Songer imerse coneiaions exsted between POPS and trurk %FM mainy i
particpants <40y ofage. Songe positve cordiations betwoen POPS and
ek 6FM vire cbserved in older paricipants.

I unadusted anayss, prenata exposure 1o HOB and ppDDE wer
‘sgpicanty anc postively assocated wih BMZ, WC, WHIR, and sum offour
st

Aer adsimen, @ 2.72400 increase in prenatal p.-DDE Concentratons vies
assocated wih WG (B=1.02 (1,00, 1.03) and WHR [B=1.04 101, 107 in
ors.

The Q4 (>1.95 gy i) of prenatal POB exposure was assocaled wih
increased BMI[3=2.0710359, 355 at age 7 y i s with oveweght moihers,
Figh prenalal PCB and DDE exposus was assocled wih creased B
[8=1.2 042, 205 and =111 (030, 192, tespecive] and WC (=248 110,
3.85) and p=2.21 (084, 3.56),respective] from 5107 yof age.

POB was assosated wih ncreased W in g both wih oveweght (3=2.48
and normaweight mothers (B=1.25), whereas DDE was asocated with
creased WC ony i s wilh ovenvieght mothers (8=2.21)
Logioransiormed serum PCBS koo, but ot p,pi- DD, shoved an inverse
rlaonship vith woight and BV 1 spearman conlaon ansyss 0<0.01).
Total serum POPs levls (sum of 28 POBS and p, -DDB) were posiiely
assocated wih WG and WIHR (0<0.01).

A 10104 increase in DDE and HOB were associted with ovenweight (RR=1.15
(105, 1.28) and RR=1.19 (1.06-1.34). respectivob]

Efectof 10-40d increase n DDE on ovenvsght was tronger i nfants who e
reasted <16 wooks comparod with hose breastid for @ ongor period
[RR=1.26 (1.1, 1.49) and AR=1.02 086, .21, rospectvob.

Nt associtions vire ound between pregnancy PCBISS and p, '-DDE, and
chi BV in T35 Tt were [3=-0.07 (-0.2, 0,18 and [B=-0.10 (-0.30, 010},
respecive

Nt assocatons wiers a0 observed or estimated postnatal POBISS and p,
*-D0E concentatons during thefst 12 m of o and BMIn T3 15 T1 (3-0.12
(<015, 0.39) and (B=-0.03 (~0.20, 0.271), respectively, at 5-0v.
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@ Bihoonot 9PBDES  Albith (cord 7y 1ab.2a - Cord senm BDEISS and BDETSA conoontraions were sgnficant assocaled
(China, soum) 32,425, wihlower chichood BMIZ [B=-0.15 (-0.29, -0.02) and =-023 (-0.43,
Mother. 72,5 -0.03). respectiey and ower WC [B=-0.75 (-1.43, ~0.08) and 122
ohid 318) (-228,-021), respectvely.

+ Pronatal BOET54 exposure was reated o decreasedrisk of sty or chicken
29847 y [OR=0.46 (0.22, 094 On the cther hand, BOE153 and BOE 154
showed sgrificant negaive associaions wih BMIZ WC, and cbesty ony n
boys.

51) Brthconort PFHIS, PROS, 113GW 3m 122,35 - AU3mand 18 m of age, 1 ng/mi iicreases in PFOA, PFNA, and PFDA wero
(Deoomar),  PFOAPFNA,  (median) 18m  Sa7a  assoaied with aveage icreases s ho P SDS f 007 (001, 0,13, 024 008,
Mother.  PFDA Tla,17a 041)nd 0,60 (.18, 1.02) respectiy and BMISOS of 0.18 0.2, 034), 042
chid 649) (001, 084, and 004 (-0.01,0.10).respecivly

+ I gits aged 3 m and 18 m, PFNA and PFDA concentiations. were assocated
with increased BMI SDS [PFNA: 026 (0,03, 0,49, PFOA:0.58 (-0.13, 1.19) and
PISDS [PFAA: 036 (0,13, 059), PFDA: 1.02 (0,40, 1.64). Associtons were
nulinboys.

+ PPNA.and PFOA were posiively associted wih %6F SDS at 3 m (3:0.20 (006,
0:34) and [B=0.40 004, 0.75) for 1 g/ increases, respectively, but not at 18

@) Bithoonot PFOS,PFOA,  ~16GW, at 12y 1ab.2a - Seum PFOA and PFHXS conconirations during pregrancy ware assocaled wi
USA,  PENAPRS bin 3,812y 3a5a.7a  increasein AO across a antopomelrc measusos and OoweiGhYCbeSty.
Mother- 102, 11a, + A 2old increase in pronatal PFOA concenitaton was assocaled with WHR
chid212) 12,16 [B-0.02 (0.0, 0.09) but ot with WG [B=20 (-0, 4.3 and other cbesty

indicss.

+ PFOA and PFHXS concenirations during pregnancy were associled wih higher
oveal obesiy and AO across almeasures n g, whio on consisent resuls
found 1 boys.

+ Cridhood PPAS concentrations were not assocaled wih adposiy measures.

(119) Bih conort PFOS, PFOA, At bith (oord Sy 1235 -+ Inods. a 1040d increase i PFBS concontation was assocted with incroasos
(Choa), PFNA'PFDA.  blood) 1% WG [p1.48 (032, 259), FM [3<050 (0008, 0.9), %BF [3=1.79% (004,
Mother.  PFUA,PFBS, 72 354), and WHIR (8001 (001, 0.02).
hid(0n  PFDOA, + el at T3 of PFBS concontratons had igher WG (3206 (0.43, 368), FM

PR B=079 (008, 1.51), %BF [B=2:84 (0.2, 5:39) and WHR [3=0.01 (00008,
0.03) n comparecwin T1.

+ Increased PFDoA concentations were associated wih lower WG [3=-1.95
(361, 0.3, FM [3=-0.93 (-1.65, -02], and %EF [3=-3.02 (-5.61, -043) at
T2 compared wth T1 g, PFNA concenratons were assocted wih igher %
BF (T35 T1: B=2.16 (007, 425) i boys. Other PFAS showed nul associatons
with obesity ndices

(1) Cohot  PBOESEDE  1.2,3,58y 8y  1ab.2a - A 1040d creaso i BDEIS3 conconraton at 1. 2, 3, 5, and 8 y wero
usw, 847,99, 4a5a  assocdledwilh wer GBF of 20% (-39, -0.1), 20% (49, -09) 36% (-55.
Cnigren 100, 159 60,72.8,  -17) 5.6% (7.8, -3.4, a0 6.9% (-9.1, -4.7), tespeciiey. Associaions were
(206 Oabc, 108, stronger inboys.

121a + A 1040 increase in BDEIS3 conceniraton at 2,5, and 8 y were assocled
with a decrease of 4.0 o (69, 1.1, 7.3 &m (-105, -40), ad 9.3 cm
(125, -6.1) nWC.

(15) Brtnoohort PFOS, PFOA, <20 GW Sy tada . A272/d icrease in matemal serum PFOS concentations was ssocaled
(Norway 7 POBS, HCB, Seb6c.  wih increased BMIZ [8=0.18 (001, 0.39) and rceps ST 2:so0re [3=0.16 (002,
and P."D0E, 7a,  027)nchidren
Swoden),  oxchiordane, Ta  + Overl. a 2720 increas it matemal seum PFOS and PFOA concentations
Mother- p. p00T, e assocated with increased odds for hid ovenweigntobesty (OR=2.04
hd@12)  HOH, LNC (11, 3.74) and OR=161 0.75,3.46), respeciel. But greator ods viero

eported among Novwegian chicren [OR=2.96 (1.42, 6.15] fo PFOS and
[0R=290(1.10, 769 for PFOA.

+ PFOS and POBIS3 concentations in Swecksh chikken showed dose-dependent
‘associaions with chid ovenvegh/obesty.

(16) Brvoonot OCs(p.p  Newdehery 2y  1a.3a4, + Among gis, matemal p, p-DDT kvel vas assodated wih highor BMfor-ago
o OO satla  [}=022(0.10,035), weigntforheignt [}=022 (009, 034), and weiht-or-age
Aica, 00N 1abc [B=0.17 (005, 029, p. p~DDE aso showed simiar associatons i a snge

‘olkiant mockl bk nat s Blaealn kemal rscing saosaion modsl





