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Adult and childhood obesity have reached pandemic level proportions. The idea that
caloric excess and insufficient levels of physical activity leads to obesity is a commonly
accepted answer for unwanted weight gain. This paradigm offers an inconclusive
explanation as the world continually moves towards an unhealthier and heavier
existence irrespective of energy balance. Endocrine disrupting chemicals (EDCs) are
chemicals that resemble natural hormones and disrupt endocrine function by interfering
with the body’s endogenous hormones. A subset of EDCs called obesogens have been
found to cause metabolic disruptions such as increased fat storage, in vivo. Obesogens
act on the metabolic system through multiple avenues and have been found to affect the
homeostasis of a variety of systems such as the gut microbiome and adipose tissue
functioning. Obesogenic compounds have been shown to cause metabolic disturbances
later in life that can even pass into multiple future generations, post exposure. The rising
rates of obesity and related metabolic disease are demanding increasing attention on
chemical screening efforts and worldwide preventative strategies to keep the public and
future generations safe. This review addresses the most current findings on known
obesogens and their effects on the metabolic system, the mechanisms of action through
which they act upon, and the screening efforts through which they were identified with.
The interplay between obesogens, brown adipose tissue, and the gut microbiome are
major topics that will be covered.

Keywords: EDC, MDC, obesity, endocrine disrupting chemical, obesogens, adipogenesis, metabolism
disrupting chemicals
OBESITY IS A SERIOUS PROBLEM

Obesity has become a present-day pandemic affecting people of all ages across the world. According
to the World Health Organization, the prevalence of global obesity has nearly tripled since 1975
with a continued upward trajectory (1). In 2016, the WHO reported more than 1.9 billion adults as
overweight, with 650 million of those adults as obese. The prevalence of obesity in children has
continued to rise in the U.S alone, despite the nation’s efforts to promote better nutrition practices
and increase physical activity levels in the educational system (2). In 2019, a staggering 38.2 million
children under the age of 5 were reported as overweight or obese, worldwide (1). Comorbidities
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associated with obesity affect nearly all physiological systems and
lead to serious health complications including mortality and a
lowered quality of life. Obesity contributes to a growing list of
health complications including insulin resistance, cardiovascular
diseases, airway dysfunctions, metabolic syndrome, kidney
disease, osteoarthritis, skin diseases, reproductive disorders,
and cancer (3, 4) and death from COVID-19 (5). In addition
to physiological comorbidities, the burden of obesity affects the
individual’s psychological well-being, leading to higher stress and
depression. Obesity often presents together with depression and
negative self-image in both children and adults, creating a vicious
cycle where the conditions potentiate each other (3, 6). Those
who suffer from depression are 58% more likely to develop
obesity, and those who are obese are 55% more likely to develop
chronic depression (7). Obesity makes it less likely for students to
stay in school past the 12th grade, independently of their parent’s
socioeconomic status (8). Similarly, lower education levels have
been linked to higher weight gain and obesity (9). Obesity places
a financial and emotional burden on individuals, their families,
and the nation at large when loss of productivity and loss of work
is considered. The CDC reported the national obesity-related
cost to be $147 billion in 2008, however, more recent data from
2014 estimates the cost of obesity and its comorbidities to be
closer to $2 trillion dollars (10, 11). It is estimated that the annual
cost of obesity in the U.S will rise $48-66 billion each year
throughout 2030 (4). Therefore, the severe consequences of
obesity on both individual and population-level health demand
that urgent attention be paid to this worsening pandemic.
OBESITY IS MORE THAN CALORIES
IN/OUT

Obesity is a multifaceted disease, and its etiology remains widely
misunderstood. Weight gain has primarily been blamed on high
calorie diet and a sedentary lifestyle. Many types of fad diets have
shown short-lived improvements in body weight, but the overall
success for long-term weight loss through caloric restriction
remains inefficacious and the global prevalence of obesity
continues to rise. Recent research has highlighted the
shortcomings of the energy balance, or “calories in versus
calories out” paradigm of weight management. The idea that
people must consume less calories than they burn in order to lose
weight is self-evident, but is no longer an all-inclusive
explanation for the increasing rate of obesity and long-term
weight gain.

Some lower income countries have reported a decrease in
exercise, other higher income countries, such as the U.S., have
reported a consistent or even increased level of exercise over the
last 30 years despite the continuous rise in obesity (12, 13). If the
population is gaining weight despite recommended physical
activity levels, then the problem must also include the nature of
the foods ingested as well as energy expenditure. We must
consider the quality of the calorie being consumed since not all
calories are created equal. The quality of the calorie, and whether it
is coming from healthy foods or unhealthy foods, influences the
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types of food we should and shouldn’t eat and how our bodies
metabolize those calories for maximal benefit. Primates who were
given calorically equal meals that only differed in the percentage of
cis or trans-fats showed a disparity in weight gain after six years,
with the trans-fat group showing an increase in visceral fat (14).
The composition of our diets, more so than the caloric count of
our daily diets, affects hormonal imbalances, metabolic efficiency,
epigenetics, gut health, and fat accumulation (15). According to
the carbohydrate-insulin model of obesity, the way we metabolize
processed carbohydrates and foods that are higher on the glycemic
index (such as starchy, refined, and sugary foods) promotes fat
storage in fat cells and is driven by spikes in insulin levels (16).
Therefore, eating the same number of calories in candy vs Brussel
sprouts will be processed, metabolized, and stored in very different
ways. Taken together, the current caloric models of obesity and
weight gain are insufficient as stand-alone explanations for the
sudden increase in global obesity over the past few decades.
EDCs AND OBESOGENS

While environmental, nutritional, and socioeconomic factors may
all contribute to weight gain, there are other components of our
immediate environment that offer a more in-depth explanation for
the etiopathology of obesity. Increasing evidence has linked
chemical exposure, ingestion, and inhalation of industrial
compounds to obesity and other metabolic and endocrine
related diseases. As the world modernizes, more chemicals
pollute our food, water, air, and soil, making exposure
unavoidable. Endocrine disrupting chemicals (EDCs) are
chemicals or mixtures that disrupt endocrine function and
interfere with the body’s endogenous hormones (17). EDCs are
structured like and act similarly to natural hormones and disrupt
homeostasis by binding to hormone receptors (18). Naturally
found EDC’s include plant phytoestrogens such as those in soy-
based foods and dairy products. Phytoestrogens can behave as
endocrine disruptors by affecting estrogen receptor-mediated
pathways (19). Synthetic EDCs are found in common industrial
products such as pesticides, fungicides, flame retardants, plastics,
food wrappers, solvents, and metals. Both in vitro and in vivo
studies have shown that synthetic EDCs exert effects on multiple
systems including the reproductive system, the central nervous
system, the immune system, and on metabolic function (20). In
addition to endocrine pathways there are many non-hormonal
cellular signaling pathways that could potentially be disrupted by
chemical exposures. The concept of “signal toxicity” has been
developed to account for this potential disruption of the thousands
of cellular signaling pathways that could be targeted (21). Relevant
examples of signal toxicity include disruption of neurotransmitter
signaling, growth factor signaling pathways, receptor kinase
signaling, etc. These should not be ignored in the developing
discussion about environmental chemicals and obesity.

While EDCs can affect multiple physiological systems, recent
research has placed much needed focus on chemicals that might
be associated with the rising rates of metabolic syndrome and
obesity. A subset of EDCs act as obesogens – chemicals that lead
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to increased fat storage, in vivo after exposure [reviewed in (22–
24)]. The environmental obesogen model proposes that
obesogens cause greater susceptibility to weight gain, lipid
storage, and energy imbalances that lead to obesity (25). In
2015, the Parma consensus broadened the definition of
obesogens to include EDCs that affect other obesity related
metabolic conditions that drive metabolic syndrome, such as
insulin resistance, hypertension, dysl ipidemia, and
hyperglycemia (26). This class of EDCs was denoted as
metabolism disrupting chemicals (MDCs) [reviewed in (26,
27)]. Many chemical obesogens have been identified and
numerous reviews have been written about them in recent
years (22–24, 28). The total number of obesogens is currently
unknown because no systematic attempt has been undertaken to
identify them. This review will identify recent findings on
possible obesogens, their effects on metabolism and lipid
dysregulation and the mechanisms through which they act.
ADIPOGENESIS, NUCLEAR RECEPTORS,
AND KEY PATHWAYS

The obesogen hypothesis holds that exposure to obesogenic
chemicals will lead to increased white adipose tissue (WAT)
mass. Adipogenesis is the cellular process by which pluripotent
stem cells or preadipocytes commit their fate to differentiating into
adipocytes (29). WAT can be found subcutaneously or viscerally,
and too much WAT can result in in excess lipid storage, altered
adipocyte homeostasis, the disruption of energy balance, and
changes in metabolic set points [reviewed in (30)]. In healthy
individuals, WAT plays an important role in metabolism and
energy homeostasis throughout the body. However, people with
obesity and type two diabetes (T2D) experience an inflammatory
response in their adipose tissue, particularly in visceral white fat
that contains higher levels of reactive oxidative species (29, 31).
WAT differentiation and cell functioning is primarily controlled
by the peroxisome proliferator-activated receptor gamma
(PPARg), also known as the “master” regulator of adipogenesis
(32). PPARg is a ligand-activated transcription factor which is
responsible for the growth and development of adipose tissue and
acts as the receptor for antidiabetic drugs such as rosiglitazone
(32). Some obesogenic EDCs can bind to PPARg, creating
downstream effects that influence multipotent mesenchymal
stromal stem cells (MSCs) to favor the adipogenic pathway.
EDCs can bind to other nuclear receptors as well, including
estrogen, androgen, and progesterone receptors, thyroid
receptors, and retinoid X receptors (18). EDC action is not
limited to nuclear receptors; EDCs can also bind to nonnuclear
receptors and nonsteroid receptors (18). Orphan nuclear
receptors, such as estrogen related receptor alpha and estrogen
related receptor beta, have been found to play a role in metabolic
disease, weight gain, and obesity when exposed to EDCs such as
Bisphenol AF (18, 33, 34). When EDCs bind receptors that are
meant to regulate vital cellular functions and cell signaling, major
health consequences can arise, disrupting homeostatic
mechanisms and correct development.
Frontiers in Endocrinology | www.frontiersin.org 3
IN VITRO ASSAYS FOR OBESOGENS

There are many in vitro models that can be used to assess the
potential obesogenic properties of chemicals. A list of in vitro
model systems and obesogens identified using these models is
presented in Table 1. When using non-human cell types as
obesity models, it is important to understand that the
translational application to humans might sometimes be
limited by differences between species (53). The first studies on
adipogenesis and obesogens occurred in the early 2000’s on
mouse 3T3-L1 cells derived from 3T3 cells [reviewed in (30)].
3T3-L1 is a well-established preadipocyte cell line derived from
17–19-day old mouse embryos and has a fibroblastic
morphology that can be readily induced into adipocyte
differentiation (54, 55). To differentiate 3T3-L1 cells into
adipocytes, the cells were treated with a minimum level of an
adipogenic cocktail that often includes insulin, dexamethasone,
and 3-isobutyl-1-methylxanthine (56). The benefits of this cell
type include its ease of culture and cost effectiveness compared to
mature adipocytes and other primary cells. 3T3-L1 cells have
been used for toxicogenomic studies aimed at evaluating the
efficacy of screening for obesogens (57). Although these cells can
maintain high stability in transcription patterns, they produce
differing lipid accumulation levels between tested compounds
which can interfere with the interpretation of the mechanistic
possibilities (57). 3T3-L1 cells are also highly sensitive to small
perturbations in assay conditions such as brand of plastic plates,
batches of bovine sera, origin and passage number of cells, and
density at induction, all of which can impact their utility (58).

Another cell type that has been used for a similar purpose is the
C3H10T½ cell line, which was developed in 1973 from mouse
embryonic stem cells (59). These cells can differentiate into
various mesodermal cel l types including myocytes,
chondrocytes, and adipocytes. C3H10T½ cells exhibit a
fibroblast like morphology resembling multipotent MSCs,
leading some investigators to mistakenly refer to these cells as
bona fide MSCs. The primary applications for C3H10T½ cells
have centered around evaluating the impact of compounds on
adipogenesis and the molecular mechanisms underlying
adipogenic differentiation (60). Notable characteristics of these
cells are their ability to maintain a relatively homogenous
population of multipotent stem cell-like cells and their
usefulness in assessing adipocyte commitment and differentiation.

The OP9 mouse stromal cell line was developed from the
calvaria of newborn mice that were genetically modified to be
deficient in macrophage colony stimulating factor. This bone
marrow derived stromal cell line is known for its ability to collect
large amounts of triglyceride droplets when stimulated towards
adipogenesis after 72 hours, allowing these cells to be an
appropriate model for rapidly screening chemicals for
adipogenic effects (61, 62). A clonal derivative denoted as OP9-
K cells was later developed that could differentiate rapidly and
reproducibly. OP9-K cells are readily transfected with an
efficiency of ~80% and were validated as a model system for
microarray analysis of the differentiated transcriptome (63). In
comparison with 3T3-L1 and mouse bone-marrow derived
MSCs, OP9 cells were more sensitive to the induction of
November 2021 | Volume 12 | Article 780888

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Mohajer et al. Identifying Obesogens and Their Mechanisms
adipogenesis by chemicals known to activate PPARg and RXR
(51, 58). The OP9 cell line appears to be a promising in vitro
model to study adipogenesis using mouse cell lines.

Multipotent mesenchymal stromal stem cells, also known
mesenchymal stem cells (hMSCs) have been used to assess
possible metabolic disruptors in vitro (64, 65). MSCs are used
as an alternative to human pre-adipocytes which have reduced
Frontiers in Endocrinology | www.frontiersin.org 4
proliferative ability and can exhibit physiological differences
related to the fat depot of origin within the body (66). MSCs
are bona fide, multipotent precursors of a variety of cell types
including adipocytes, chondroblasts, osteoblasts, and
hematopoietic‐supporting stromal cells (67). MSCs can
simultaneously express genes characteristic of various
mesenchymal cell lineages while also maintaining osteogenic
TABLE 1 | In vitro model systems and associated obesogens.

Model System
(in vitro)

Chemical Source/Use Proposed Mechanism Effects References

3T3-L1 3-tertbutyl-4-
hydroxyanisole
(3-BHA)

Used anthropogenic
antioxidants in food

Regulated transcriptional and protein
levels of the adipogenetic biomarkers
upstream of the PPARg signaling pathway

Induces the differentiation of adipocytes
and increases cellular lipid accumulation

(35)

Bisphenol A
(BPA)

Used in personal products,
household care products, and
plastics

PPARg activator Induces the differentiation of adipocytes (36, 37)

Parabens Used as cosmetic
preservatives and as
bactericides/fungicides

PPARg activator Induces the differentiation of adipocytes (36)

Phthalates Used in cosmetics,
pharmaceuticals, paints,
medical equipment, and
plastics

PPARg activator Induces the differentiation of adipocytes (36)

Tonalide A musk compound used as a
synthetic perfume

Acts via non-PPARg mediated
mechanism; more research needed.

Induces the differentiation of adipocytes (36)

Bisphenol A
diglycidyl ether
(BADGE)

Used in the manufacturing of
coatings and resins

Proposed to act through a mechanism
that is downstream of/parallel to, PPARg.

Induces adipogenesis (38)

Bisphenol S
(BPS)

Used as a substitute for BPA in
plastics

Targets the PGC1a and the ERRg genes Increases cellular lipid accumulation,
increases glucose uptake, and
increases and leptin production

(39)

Dibutyltin (DBT) Used to manufacture products
containing plastic and rubber
materials

PPARg/RXRa partial activator Induces adipogenesis (40, 41)

Triphenyltin Fungicide/antifoulant PPARg and RXRa activator Stimulates adipocyte differentiation and
increases the expression of adipocyte
marker genes

(42)

Dioctyl sodium
sulfosuccinate
(DOSS)

A major component of the oil
dispersant,
COREXIT; widely used in
pharmaceuticals, flavored
drinks, and personal care
products

PPARg activator Induces adipogenesis and increases
cellular lipid accumulation

(43)

Imidacloprid Insecticide Proposed to be mediated via the
pregnane X receptor

Increases adipocyte differentiation and
lipogenesis

(44, 45)

Mono-
Ethylhexyl
Phthalate
(MEHP)

Used in manufacturing
products made of polyvinyl
chloride

PPARg and PPARa
activator

Increases adipocyte differentiation and
insulin sensitization

(46)

Quizalofop-p-
ethyl

Pesticide PPARg activator Induces lipid accumulation (47)

Sorbitan
monooleate
(Span 80)

A nonionic surfactant and a
component of Corexit

Transactivates RXRa Promotes adipogenesis (48)

Tributyltin
(TBT)

Biocide/antifoulant/pesticide PPARg and RXRa agonist Induces adipogenesis, increases
triglyceride storage, and increases the
expression of adipogenic marker genes

(42, 49, 50)

OP9 Pioglitazone Used in pharmaceuticals PPARg agonist Enhances lipid accumulation (51)
Prallethrin Insecticide PPARg agonist Enhances lipid accumulation (51)

Human
embryonic
derived stem
cell (hESC’s)

Bisphenol A
(BPA),
Bisphenol S
(BPS)

Found in plastic products PPARg agonist Increases triglyceride levels and
increases expression of adipogenic
genes

(52)
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and adipogenic potential in vitro (68). A key advantage of the
MSC model is that two important parameters of adipogenesis
can be evaluated: commitment of stem cells to pre-adipocytes
and the differentiation of pre-adipocytes to mature adipocytes
(69, 70). The ability to evaluate both endpoints make MSCs a
favorable system to study adipogenesis, although they are
currently less utilized than the preadipocyte models such as
3T3-L1 cells. Using human MSCs may aid in understanding the
effects of contaminants in humans as well as facilitate
translational efforts (65).
IN VIVO ASSAYS FOR OBESOGENS

In vivo models allow the study of chemical effects on complex
organisms in which multiple systems must work simultaneously
in a natural physiological environment. Using in vivomodels is a
valuable tool in determining if and how chemicals act as EDCs in
a way that is more translatable to how EDCs may act in humans.
Various in vivo model systems and obesogens identified using
these models are listed in Table 2. Rodents, particularly mice
have been a very widely used model to study the effects of
chemical exposures and infer possible effects in humans. Mouse
models have allowed more focus to be placed on the
developmental origins of disease, which aids in understanding
the origins of chronic and adult-onset diseases. Mouse models
have also allowed for the discovery of obesogens and
endocrine disruptors.

Diethylstilbestrol (DES), a chemical that was once prescribed
to prevent miscarriage, was discovered to be a dangerous EDC
that causes lifelong health issues (75). DES was identified as a
chemical that increased adiposity, in vivo, presumably as a result
of its action on the estrogen receptor (76).

Mouse models also made it possible to show that tributyltin
chloride (TBT) not only caused adipocyte differentiation in cell
models but had adipogenic effects in vivo. TBT studies began
with in vitro models using 3T3-L1 cell lines and were later
extended into animal models. Triphenyltin and TBT were
discovered to be activators of PPARg and retinoid X receptor
(RXR) via a preadipocyte 3T3-L1 cell model (42). A
contemporaneous study showed that TBT could elicit
adipocyte differentiation in 3T3-L1 cells and fat accumulation
in mice treated prenatally (49). Dibutyltin (DBT) is an organotin
used as a heat stabilizer in polyvinyl chloride (PVC) plastics and
is also a metabolite of TBT. DBT was shown to be a PPARg and
RXR activator, in vitro, and inducer of adipogenesis in 3T3-L1
cells and in human and mouse MSCs (40, 41). Perinatal exposure
of pregnant C57BL6/J mouse dams led to increased leptin levels,
glucose intolerance, and increased fat storage in adulthood,
confirming DBT’s obesogenic effects in a complex organism
(40). Common fungicides have also become classified as
obesogenic EDCs after being screened using mouse models.
Triflumizole was found to be a PPARg activator in vitro, and
when tested in gestating female mice, it was found to increase
adipose depot weight and shift MSC fate to favor adipogenesis
(80). Another common fungicide, tolylfluanid, was shown to be a
Frontiers in Endocrinology | www.frontiersin.org 5
glucocorticoid receptor activator in vitro, and obesogen in
mice (81).

Rodent studies have been used to confirm the obesogenic
action of a number of plastic monomers, plasticizers and other
additives [reviewed in 27](Table 2). More recent studies testing
the safety of BPS, a BPA substitute used in the manufacturing of
plastics, have used in vivo mouse models to determine if BPS
exhibits obesogenic properties by affecting gene expression and
DNA methylation. It was found, for the first time, that even low
doses of BPS acted as an in vivo obesogen and caused epigenetic
changes in genes related to metabolism (73). BPA and BPS were
found to target PPARg in human macrophages and were
confirmed to cause metabolic abnormalities through PPARg in
mouse models (74). Heavy metal exposure was shown to be
obesogenic in mice [reviewed in 27]. CD-1 female mice that were
exposed to cadmium via their drinking water from gestation to
postnatal day 10 showed delayed obesogenic properties in female
offspring, revealing that cadmium exposure can contribute to
obesity later in life (83). This has particular relevance for
populations living in the desert southwest of the US where
heavy metal exposure via dust is prevalent.

It is important to note that some of the effects of early life
obesogen exposure can be transmitted to future generations.
When adult male or female animals are exposed to a chemical,
they (the F0) are exposed as are germ cells within the animals
(F1) generation. Effects observed in the F2 generation and
beyond are considered transgenerational because these
generations were not exposed to the chemical (89). In contrast,
exposure to a gestating female mammal will elicit direct effects in
the F0 (adult), F1 (embryo) and F2 (germ cells in the embryo)
generations. Therefore, the F3 generation is the first not to be
exposed and effects seen in F3 and beyond are transgenerational.
This topic has been reviewed extensively in recent years and will
not be discussed further here for brevity (23, 90–92).

While rodents have been the primary model used to study
EDCs, less complex organisms have also proven to be valuable
models in studying chemical exposure (Table 2). The adipogenic
pathways taking place in less complex organisms also show
interspecies similarities to those in higher organisms while the
assays themselves are less expensive, shorter, and higher
throughput. Zebrafish larvae have been used as an exposure
model to test the effects of obesogen exposure on lipid
accumulation via Oil red-O staining and to activate PPARg.
Test compounds such as the halogenated BPA analog
tetrabromobisphenol-A (TBBPA) were found to induce
zebrafish larval lipid accumulation (93). Exposure to
environmentally relevant TBT concentrations resulted in
adipocyte hypertrophy within only hours after exposure in
zebrafish larvae, demonstrating the potency of TBT toward
adipogenic endpoints (94).

Other species have also been used to screen for potential
obesogens in vivo, such as the African clawed frog, Xenopus
laevis (Table 2). X. laevis larvae were used to create a PPARg
reporter model to compare the metabolic capacity to those in
mammals. A transgenic approach was used to express both
human PPARg and a series of PPARg Response Element
November 2021 | Volume 12 | Article 780888
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TABLE 2 | In vivo model systems and associated obesogens.

Model
System
(in vivo)

Chemical Source/Use Proposed Mechanism Effects References

Mice Tributyltin (TBT) Biocide/antifoulant/pesticide PPARg and RXRa agonist Increases epididymal adipose mass in
adults. Increases lipid accumulation in
adipose depots, liver, and testis of
neonate mice.

(49)

Bisphenol A (BPA) Found in plastic products such
as water pipes and toys; found
in electronic equipment

Acts partially through GR
signaling; enhances
expression of adipogenic
genes and lipogenic
enzymes, acts on PPARg

Increases body weight, fat mass, chronic
inflammation, and inflammation in white
adipose tissues.

(71, 72)

Bisphenol S (BPS) A BPA substitute; used in the
manufacture of plastics and
resins. Ingestion from food is
the major source of BPS
exposure

PPARg activator; increases
expression of PPARg

Increases liver triglycerides, causes
hyperinsulinemia,
induces changes in gene expression,
causes changes in liver DNA methylation.

(73, 74)

Diethylstilbestrol (DES) A synthetic estrogen previously
used in pharmaceuticals during
pregnancy

Estrogenic activity Induces significant increase in body weight
and reproductive abnormalities

(75, 76)

Dichlorodiphenyltrichloroethane
(DDT) and
dichlorodiphenyldichloroethylene
(DDE)

Pesticide
DDE is the metabolite of DDT

Inconclusive Induces thermogenic impairment of brown
adipose tissue, obesity, insulin resistance,
and dyslipidemia

(77, 78)

DBT Used to make of polyvinyl
chloride (PVC) plastics and
medical devices

PPARg and RXRa agonist;
increases the expression of
adipogenic genes

Induces increased lipid accumulation, fat
storage, leptin levels, and glucose
intolerance.

(79)

Triflumizole Fungicide PPARg
activator

Increases adipose depot weight and
adipogenic gene expression

(80)

Tolylfluanid Fungicide Acts through glucocorticoid
receptor signaling

Induces higher body weight, fat mass,
visceral adipose depots, glucose
intolerance, insulin resistance, and
metabolic and energy disturbances

(81)

Diethyl-hexyl-phthalate (DEHP) Found in personal care
products, lubricants, pesticides,
paints, and PVC plastics.
Exposure is mainly through
food via food packaging

PPARg activator Increases body weight, adipose tissue,
lipids, and glucose levels

(82)

Cadmium (Cd) Ingestion of contaminated
foods

Inconclusive Induces metabolic syndrome-like
phenotypes (impaired glucose and insulin
functioning, hepatic steatosis, weight gain,
increase in fat), oxidative stress and
mitochondrial dysfunction.

(83)

Di (2-ethylhexyl) phthalate Used in the making of PVC
plastics and vinyl products;
used in lubricants, emulsifying
agents, and cosmetics

Possible PPARg activator Induces glucose intolerance, insulin
resistance, hepatic steatosis/
steatohepatitis, increased leptin levels,
increased cholesterol, and white adipose
tissue disfunction.

(84)

Rats Bisphenol A (BPA) Found in plastic products Activates Era and Erb;
thyroid hormone receptor
antagonist

Induces an increase in body weight and
white adipose tissue, adipocyte
hypertrophy, and increased expression of
adipogenic genes

(85)

Tributyltin (TBT) Biocide and molluscicide RXR and PPARg activation Causes ovarian obesogenic effects (86)
Zebrafish
(Danio
rerio

Mono ethyl phthalate (MEHP)
and

Primary metabolite of
di(2-ethylhexyl) phthalate
(DEHP)

PPARg agonist Obesogenic properties (87)

Tetrabromobisphenol A (TBBPA) Flame retardant PPARg agonist Obesogenic properties (87)
Cadmium Ingestion of contaminated

foods, cigarette smoke, and
breathing contaminated air

Inconclusive Increased lipid accumulation (88)

Frog
(Xenopus
laevi)

Tributyltin (TBT) Biocides, antifoulants,
pesticides

PPARg and RXRa agonist Formation of ectopic adipocytes in and
around gonadal tissues

(49)
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(PPRE)-eGFP reporter genes simultaneously (87). This approach
enabled the detection of PPARg activators using an in
vivo context.

The effects of MDCs can even be studied using invertebrate
models to further assess the underlying mechanisms through
which chemicals alter lipid homeostasis. These included species
like the fruit fly, Drosophila melanogaster, the water flea,
Daphnia magna, and the roundworm, Caenorhabditis elegans.
Invertebrates possess organ systems that allow nutrient uptake,
storage, and energy metabolism through forms like glycogen and
lipids (95). Since many intermediary pathways of metabolism are
conserved, invertebrates can be a valuable model system for
measuring metabolic change. For example, exposure of D.
melanogaster to the plasticizer, dibutyl phthalate (DBP) led to
increased lipid storage, starvation resistance, hyperglycemia, and
hyperphagia in males via evolutionarily conserved insulin and
glucagon-like signaling pathways (96). Long term parental
exposure of D. melanogaster to a typical plasticizer, Bis(2-
ethylhexyl) phthalate (DEHP), elicited significant change in
body weight of offspring. The specific changes depended on
the exposure period, dose, and gender of the exposed parent.
Paternal DEHP treatment resulted in increased body weight of
male offspring, whereas maternal exposure led to weight loss in
male offspring (97). Exposure of a variety of aquatic invertebrates
(coral, rotifers, copepods, octopus, scallop, crab, urchins, and
worms) to environmental chemicals (PBDEs, phthalates,
organotins or nanoparticles) led to alterations in the
expression of genes important for de novo lipogenesis, fatty
acid modification and triacylglycerol synthesis (98). BDE-47
increased de novo lipogenesis in the copepod, Tigriopus
japonicus after only 24 hours of exposure (99). Exposure of the
water flea, Daphnia magna to known mammalian obesogens
including TBT and BPA enhanced fat storage, whereas exposure
to DEHP or triphenyltin impaired growth and reduced fat storage
(100). Experiments such as these confirm the value of less
complex model organisms to identify conserved mechanisms
underlying metabolic disease.
THERMOGENIC ADIPOCYTES AND EDCs

Broadly speaking, there are two major types of adipose tissue
found in the human body: white adipose tissue (WAT), which
primarily stores lipids and is maintained throughout adulthood,
and thermogenic brown adipose tissue (BAT) which “burns”
lipids and is primarily found in newborns and infants. BAT was
previously thought to be non-existent or very minimal in adult
humans but there are indeed brown fat depots found in adults
(101). CT and PET-CT scans revealed multiple locations of BAT
within the adult body. Brown adipose tissue is found both
subcutaneously and viscerally. The major BAT depot in adult
humans is subcutaneous in the supraclavicular region with
smaller deposits under the clavicles and in the axilla (102).
Visceral BAT can be perivascular, perivisceral and around solid
organs such as the pancreas, kidney, liver and spleen (102).
White adipocytes make up most of our body fat mass and form
the visceral and subcutaneous fat tissues that store energy in the
Frontiers in Endocrinology | www.frontiersin.org 7
form of triglycerides. White adipose cells typically contain a large
unilocular lipid droplet while brown adipocytes contain smaller,
multilocular droplets that are rich in mitochondria (103). Brown
adipocytes exhibit thermogenic activity when uncoupling
proteins such as UCP1 are activated in response to
environmental stimuli, mainly exposure to cold temperatures
(104). Due to their large number of mitochondria, brown
adipocytes act as energy generators rather than energy storers
and burn calories as heat is expended. In addition to these
distinct types of fat cells, a third, hybrid type of fat known as
beige or brite adipose tissue, can form past infancy into
adulthood. This process, known as “browning” or “beiging”,
occurs as WAT is exposed to stimuli such as cold temperatures,
catecholamines, physical activity, or thiazolidinediones,
transforming them into brown-like, mitochondria rich,
thermogenic adipocytes (105).

The discovery that brown and beige adipocytes exist in adults
has raised increased interest in possible therapeutic strategies to
treat obesity and type 2 diabetes (T2D) through the browning of
white adipose tissue. Abundance of brown adipose tissue is
associated with lower levels of metabolic disorders such as
T2D, and its presence is associated with the improvement of
insulin resistance (106). Increased BAT resulting from 10 days of
cold exposure in 14-15°C resulted in a 43% increase in insulin
sensitivity in people with T2D (107). Enhancing the formation or
function of thermogenic adipocytes appears to be a promising
key in the future treatment of obesity and related metabolic
diseases (108, 109).

Since brown and beige adipose tissues are important for
preventing obesity and T2D, interest is growing in the effects
of EDCs on the formation and function of these valuable forms
of thermogenic fat cells (110). Below we discuss some recent
findings in this area. A list of obesogens associated with the
disruption of thermogenic fat and adipose tissue is presented
in Table 3.
BISPHENOLS

The potential of BPA and its analogs as obesogens and their
effects on brown thermogenic fat have become a topic of recent
interest since many products labeled as “BPA free” likely contain
its analog substitutes BPS and BPF. These compounds are found
in products containing polycarbonate plastics and epoxy resins
(including adhesives, plastics, paint, and sealants). BPS and BPF
were shown to be as hormonally active as BPA, acting as estrogen
receptor agonists and androgen receptor antagonists in vitro and
in vivo [reviewed in (128)]. As obesogens, BPS and BPF elicited
adipogenic differentiation in mouse preadipocytes and promoted
the proliferation of fat cells, causing an increase in body mass
(129). BPS and BPF exhibited obesogenic effects on human
adipose-derived mesenchymal stromal stem cells (hADSC) in a
dose dependent manner ranging from 0.01 to 25 mM (130).
Pregnant F0 C57BL6/J mouse dams were exposed to a human-
equivalent dose of BPS (1.5 mg/kg bw/day) throughout
pregnancy and lactation. F1 pups were fed a high fat diet
(HFD) over the next 15 weeks. Body weight was monitored
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weekly and body fat measured at euthanasia. Similar analyses
were performed on the F2 and F3 generation offspring (131).
Findings revealed interesting sex-dependent multigenerational
effects, with multigenerational obesogenic effects found in both
males and females, yet transgenerational effects only found in
females, indicating that BPS is a likely sex-dependent obesogen.
More discussion about differing effects on male and females can
be found under sexual dimorphisms. Interestingly, BPA, BPS,
and BPF have all been linked to a downregulation of the gene
encoding micro RNA 26 (miR-26a) from in vitro studies. MiR-
26a and miR-26b were shown to be key genetic regulators of the
adipocyte browning process (132, 133). Both miR-26a and b are
Frontiers in Endocrinology | www.frontiersin.org 8
critical for adipogenesis and promote cellular pathways involving
energy expenditure, mitochondrial formation, and the
upregulation of uncoupling protein-1 (UCP-1) perhaps the key
protein in thermogenesis (133).
DICHLORODIPHENYLTRICHLOROETHANE
AND
DICHLORODIPHENYLDICHLOROETHYLENE

Dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyl-
dichloroethylene (DDE) are two widespread organochlorine
TABLE 3 | Chemical obesogens and their effects on thermogenic fat and adipose tissue.

Chemical Source/Use Proposed Mechanism Effects References

Bisphenols (A, F, S) Chemical used to make
polycarbonate plastics
and epoxy resins. Found
in the lining of food
packaging.

Acts as an estrogen
receptor agonist androgen,
receptor antagonist

Shifts mesenchymal stem cell commitment and
differentiation towards adipogenesis

(111, 112)

Dichlorodiphenyltrichloroethane
(DDT) &
dichlorodiphenyldichloroethylene
(DDE)

Found in pesticides. DDE
is a metabolite of DDT.

Acts as an estrogen
receptor agonist, androgen
receptor antagonist.

Induces a loss of BAT thermogenesis and affects the SNS
that innervates BAT and WAT.

(77, 111,
113)

Silver nanoparticles (AgNPs) Bactericides, found in
fabric of athletic clothing
to reduce odor.

Elevates the reactive
oxidative species (ROS)
levels within beige
adipocytes and activates
the MAPK-ERK signaling
pathway.

Inhibits beige adipocyte differentiation, adipocyte
thermogenesis, and mitochondrial functioning.

(114)

Arsenic Polluted ground water Lowers the expression of
PPARg, UCP1 and PGC1.
Activates Estrogen
Receptor

Inhibits the differentiation of BAT. (115, 116)

Arsenite A form of arsenic found
in polluted water

Reduces UCP1 expression,
accumulates in BAT, and
suppresses Sestrin2
phosphorylation by ULK1.
Activates Estrogen
Receptor

Reduces BAT differentiation, decrease mitochondrial
functioning, and lowers thermogenesis in BAT

(116–118)

Cadmium (Cd) Released through the
burning of fossil fuels.
Used in electroplating,
battery production,
fertilizers.

Alters the gene expression
of MCP-1 in WAT.
Acts as an estrogen
receptor agonist.

Elicits pro-inflammatory and carcinogenic effects. Causes
damage to the kidneys, liver, lung, pancreas, testis,
placenta, and bone. Causes metabolic disease including
obesity and diabetes.

(119, 120)

Dechlorane Plus (DP) Flame retardant Downregulates UCP1
expression in BAT.
Activates PPARg pathway
as an agonist.

Shifts BAT functioning towards that of WAT in a process
termed “whitening” of brown adipocytes. Causes cells to be
more prone to death, disrupts mitochondrial functioning,
activates an inflammatory response by the accumulating
macrophages around dead cells within WAT.

(121, 122)

Tetrabromobisphenol A (TBBPA)
and analogs (TBBPA-MAE,
TBBPA-MDBPE, TBBPA-BAE,
AND TBBPA-BDBPE)

Flame retardant; found in
plastic, and electrical
equipment.

PPARg and glucocorticoid
receptor (GR) agonist

Causes adipogenesis. Increases lipid droplets in in hMSCs
that differentiate into osteoblasts.

(123–125)

Dibutyl phthalate (DBP) Found in plastic products
including toothbrushes
and food wrappers.
Found in common
household items are
scented.

Estrogen receptor and
PPARg activator
Activates CAR, PXR,
PPARa, -b, and -g).

Causes insulin resistance, increase in WAT, and
endoplasmic reticulum stress.

(5, 126)

b-Cypermethrin (bCYP) Used in insecticides Promotes adipogenesis in stem cells. Increases ROS within
cells by binding to the mitochondrial respiration chain
complex 1.

(127)
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compounds that have been shown to affect thermogenic BAT
and WAT in mouse models (134). DDT is a pesticide that is now
banned in the United States, however, it remains in use in other
parts of the world as a mechanism to control the spread of
malaria (113). Both are known to collect in adipose tissue due to
their lipophilicity. DDT and its metabolites such as DDE
bioaccumulate up the food chain. DDT and DDE act as
nuclear estrogen receptor agonists (DDT), androgen receptor
antagonist (DDE), and can also bind to certain GPCRs, which
can cause alter estrogen signaling (111). DDT has been shown in
mouse models to affect the sympathetic nervous system that
innervates both BAT and WAT. The sympathetic nervous
system controls thermogenesis in brown fat and is needed for
the beiging of WAT (77, 135). Dual administration of DDT and
DDE or single treatment with DDE induced a loss of
thermogenic abilities in BAT in adult female mice by reducing
their BAT sympathetic innervation and regulation (77).
DECHLORANE PLUS

The polychlorinated flame retardant, Dechlorane Plus (DP), is
now known to impair BAT functioning and metabolic processes.
DP has been found in humans in levels from 0.1 mg/kg to 1000
mg/kg, most concerningly in breast milk and umbilical cord
serum (121). DP is a known PPARg agonist, however, recent
studies have shown that DP may also act via other pathways. DP
exposure in vitro has shown an upregulation of adipogenic
markers in the presence of a PPARg antagonist, suggesting
there could be an alternate pathway that DP may be acting on,
independent of PPARg (121). DP disrupted the function of BAT
by down-regulating the expression of UCP1 mRNA, increasing
lipid accumulation and disrupting mitochondrial functioning
(121). These data were interpreted to indicate that BAT had been
“whitened” (121). The whitening of BAT caused the affected cells
to become more prone to cell death and activated an
inflammatory response via the accumulation of macrophages
around the dead cells within WAT (122). DP treatment led to
WAT hypertrophy and dysfunction, in part by the inhibition of
insulin signaling.
DIBUTYL PHTHALATE

Dibutyl phthalate (DBP) is a plasticizer found in plastic products
such as toothbrushes, food wrappers, and in common household
items as a fragrance-enhancing additive. DBP is a known EDC
and obesogen that can affect fat accumulation and metabolic
processes. DBP activates multiple receptors including the
estrogen receptor, constitutive androstane receptor (CAR), the
pregnane X receptor (PXR), and peroxisome proliferator-
activated receptor subtypes (PPARa, -b, and -g), which
regulate the expression of genes encoding metabolic enzymes
(126). Pregnant mouse dams were exposed to DBP from the 12th
day of gestation to one week after birth. 4- to 5-month-old mice
from the DBP group exhibited higher body weight, lower
Frontiers in Endocrinology | www.frontiersin.org 9
expression of UCP1, insulin insensitivity, greater endoplasmic
reticulum stress, and levels of inguinal and epididymal WAT that
were twice as high as controls (136). DBP exposure caused
insulin resistance, suggesting the presence of a pre-diabetic
condition which is often a comorbidity in obese individuals.
Lower UCP1 levels impair the production of heat by
thermogenic tissues and increased endoplasmic reticulum
stress, greatly affecting mitochondrial function (136). Offspring
of DBP-treated mice also showed significantly higher levels of
binding immunoglobulin protein (Bip), and CCAAT/enhancer-
binding protein homologous protein (Chop), which are two
markers of ER stress that were associated with lower UCP1
levels. Offspring of DBP-treated mice appeared to be obesity
prone via the inhibition of UCP1 caused by ER stress in adipose
tissue after protein extraction and western blot analysis revealed
that Bip and Chop were increased compared to controls (136).
TETRABROMOBISPHENOLS

Brominated chemicals such as TBBPA are used in the production
of plastics and electronics to reduce flammability as a safety
precaution. However, TBBPA, along with its structural analogues
TBBPA-MAE, TBBPA-MDBPE, TBBPA-BAE, AND TBBPA-
BDBPE were shown to promote adipogenesis in 3T3-L1 cells
by activating PPARg and glucocorticoid receptors (137, 138),
with TBBPA-MAE, and TBBPA-MDBPE acting as stronger
promoters of adipogenesis than TBBPA itself (123). hMSCs
were exposed to a mixture of TBBPA and TCDD (2,3,7,8-
Tetrachlorodibenzo-p-dioxin) to mimic a more realistic
scenario of chemical mixtures found in the natural
environment. It was found that TBBPA alone predisposed
hMSCs to differentiate into adipocytes and increased levels of
PPARg mRNA. In contrast, when TCDD was administered
alone, it inhibited the differentiation process and PPARg
mRNA expression. However, when dually administered,
TBBPA overrode TCDD’s inhibitory properties (124).
Interestingly, TBBPA also increased the number of lipid
droplets in hMSCs that differentiated into osteoblasts. While
lipids in the bone marrow are an essential component of bone
health, too many lipids can result in the impairment of stem and
progenitor cell function (124, 125).
b-CYPERMETHRIN

b-Cypermethrin (bCYP) is a widely used pyrethroid, a class of
chemicals commonly used as insecticides. Like other pyrethroids
(synthetic relatives of the naturally occurring pesticide
pyrethrin), bCYP is an EDC and has been found in humans.
High concentrations of bCYP (concentrations of 25, 50, and 100
mM) promoted adipogenesis in 3T3-L1 cells (127).
Mechanistically, b-CYP acts on 3T3-L1 by increasing the
reactive oxygen species within cells via binding to the
mitochondrial respiration chain complex 1. This disruption in
the complex reduces the mitochondrial membrane potential,
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which is required for the browning of WAT, increased
autophagy, and the miR-34a mediated polarization of
macrophages to M2 cells. While He et al. reported a bCYP
mediated downregulation of intracellular and extracellular miR-
34a in 3T3-L1 cells, upregulation and increased expression of
miR-34a has also been linked to obesity (139). The upregulation
of miR-34 decreased SIRT1 expression, reduced NAMPT
expression which in turn decreased NAD+ levels, which are
crucial to cellular health, redox reactions, metabolism, and the
browning of WAT (140, 141). NAMPT is important for the
synthesis of NAD+ and is known to decrease in aging and
obesity, leading to lower levels of NAD+ (139). Notably, an
increase in NAD+ was also found in 3T3-L1 murine
preadipocytes that differentiated into adipocytes after in vitro
exposure to the obesogen, monoethylhexyl phthalate (142). It
will be interesting to fully understand the role of miR-34a in
obesity and how this is affected by pyrethroid expression.
METALS

Heavy metals have been found to play a role in the disruption of
the metabolic system including WAT, beige, and BAT
imbalances. Cadmium (Cd) is a highly toxic heavy metal that
can pollute water and food sources from burning fossil fuels and
Cd is also present in tobacco and tobacco smoke [reviewed in
(119)]. Cd is carcinogenic and proinflammatory, affecting
multiple organs. Cd is a likely EDC that affects obesity and
metabolism by altering adipose tissue through epigenetic
changes [reviewed in 119]. In vitro exposure to cadmium
altered the expression of MCP-1 (monocyte chemoattractant
protein-1) in WAT, a chemokine for macrophage recruitment
that plays a role in obesity and WAT inflammation [reviewed in
(119, 120)]. Cd can bind to the estrogen receptor and it is also
thought to bind to the androgen receptor, however, the exact
mechanism through how Cd acts is unknown [reviewed
in (119)].

Silver nanoparticles (AgNPs) have also become interesting as
a potential EDC and obesogen. AgNPs are widely used as
bactericides, and commonly found in the fabric of athletic
clothing to eliminate odor. An exploration of the in vivo and
in vitro role of silver nanoparticles in thermogenic beige
adipocyte differentiation revealed that AgNP inhibited beige
adipocyte differentiation, adipocyte thermogenesis, and
mitochondrial functioning. AgNP elevated ROS levels within
beige adipocytes and activated the MAPK-ERK signaling
pathway which is involved in adipogenesis (114).

Arsenic is a metalloid that is widely found in the environment
in soil, sediment, and water sources. Currently, more than 200
million people worldwide are exposed to drinking water
containing dangerous levels of arsenic (143). Arsenic has been
shown to affect adipogenesis in in vivo mouse models, as well as
specifically target BAT (115). Arsenic exposure inhibited the
differentiation of BAT and lowered expression of PPARg, UCP1
and PGC1a, which are defining features of brown adipocytes
(115). Arsenite, similarly reduced BAT differentiation, decreased
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mitochondrial functioning, and lowered thermogenesis in BAT
by reducing UCP1 expression (117). Arsenite accumulates in
BAT and suppressed Sestrin2 phosphorylation by ULK1, which
under normal conditions, promotes the antioxidant effects of
Sestrin2 against ROS that form within the cells (117, 118). Mice
exposed to 300 mg/L of arsenite in drinking water for 9 weeks
showed significant increases in inguinal WAT mass, lower
thermogenic abilities when exposed to cold temperature,
decreased beiging of WAT, and lowered expression of genes
involved in regulating thermogenesis and metabolic
functions (143).
SEXUAL DIMORPHISMS

Multigenerational, transgenerational, and cohort based
longitudinal studies offer a valuable platform to explore sex-
dependent effects of EDCs and obesogens on males and females
from birth into later life. Both human and mouse models have
revealed obesogenic related differences in males and females,
predisposing one or the other to an increased risk of overweight/
obesity. A recent study found that BPA exhibited sex-dependent
effects on mouse fetuses when given a low dose of 2.5
micrograms/kg/day. These mice showed changes in hepatic
processes, including inflammatory effects and alterations in
proteins involved in cholesterol and fatty acid functioning in
females only (144). Human cohort studies revealed that prenatal
BPA exposure increased the risk of obesity in young girls, but not
in boys. A study done in rural East China showed that urinary
BPA concentrations were linked to increased adiposity measures
in girls at 7 years of age (145). Similarly, a study involving 585
high school aged students from Spain found that BPA
disproportionately affected females over males, with an
association between dietary BPA exposure and overweight/
obesity in females (146).

The BPA analog BPS demonstrated sexually dimorphic effects
after exposing female F0 mouse dams to an environmentally
relevant dose of BPS in their drinking water during gestation
through post-natal day 21, followed by a high fat diet fed to all
offspring. F1 male mice became overweight, while F1 females
developed dyslipidemia. The F2 generation showed increases in
body weight and fat mass for both sexes, however, this generation
was impacted the greatest in terms of sexual dimorphisms.
Notably, F2 females showed a 35% increase in body weight
over their counterpart males. Cholesterol levels, blood glucose
levels, and circulating triglycerides were higher in males while
non-esterified fatty acids were higher in females. Both sexes
showed a downregulation in genes involved in lipogenesis,
however, only F2 females downregulated genes involved in
lipolysis. The F3 generation showed striking sexual
dimorphism in that increased visceral adipose tissue mass only
occurred in females, as did the upregulation of genes involved in
lipogenesis (131).

When TBT (50 nM) was given to pregnant F0 mouse dams
from conception throughout lactation via their drinking water,
greater transgenerational and sex-dependent effects were
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observed in F4 male offspring (147). TBT was found to have
largely male dependent transgenerational effects in the F3-F4
group, significantly increasing their body weight, fat storage, and
creating changes in the male metabolome (147, 148). F4 Males
developed a “thrifty phenotype” and had a reduced ability to
mobilize fat storage after overnight fasting. Male mice that were
exposed to TBT and later a high fat diet showed an increase in
body fat that persisted even after the mice were returned to a
normal chow (148).

Sex-dependent and adipocyte related epigenetic effects were
observed in F3 offspring of F0 rats exposed to DDT via
intraperitoneal injection during pregnancy (149). This study
compared DMRs between vehicle control rats, lean rats
exposed to atrazine, and DDT exposed rats. Adipocytes
isolated from gonadal fat pads were used to identify unique
DNA methylation regions between the three groups. Different
DMRs were observed between males and females in the F3
generation of DDT exposed rats, indicating sex-dependent
obesogenic effects in regions associated with obesity, T2D, and
metabolic syndrome. A human longitudinal study revealed
striking differences in 12-year-old males and females from a
birth cohort study. Data from 240 children, who were exposed to
DDT and its metabolite, DDE, in utero, were collected from the
Center for the Health Assessment of Mothers and Children of
Salinas (CHAMACOS). Maternal environmental DDT and DDE
exposure was determined by collecting maternal serum during
pregnancy. Data analysis was consistent with previous DDT and
DDE studies, and revealed that in utero exposure increased
obesity related measures for males only, indicating a sex-
specific effect and risk for obesity in human males and not
females (150).

Participants and data from the Hamamatsu Birth Cohort for
Mothers and Children study were used to identify potential sex-
specific prenatal exposure effects of perfluoroalkyl substances.
Umbilical cord serum was measured for perfluorooctane
sulfonate (PFOS) and PFOA concentration levels. BMI
repeated measurements were taken from the children at ages 1,
4, 10, 18, 24, 32, 40, 50, and 66 months. The results indicated a
significant difference in the BMI and body weight of girls.
Prenatal exposure was linked to a lower birthweight in the
girls, yet this effect was reversed as they aged, resulting in
increased BMI and body weight as they reached 5 years of
age (151).
THE MICROBIOME AND OBESITY

The gut microbiota is predominantly composed of bacteria from
the phyla Bacteroidetes, Firmicutes, and Actinobacteria, which
secrete enzymes that degrade dietary fiber (152). Individual
differences in dietary habits can alter the diversity of microbial
species within the intestinal tract (153–155). Moreover, the
microbiome was found to differ markedly between normal
weight and obese individuals. The obese microbiome was
characterized by the predominance of Bacteroidetes over
Firmicutes in the gut (155). Remarkably, transplant of the gut
microbiome from obese mice to germ-free mice transferred the
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obese phenotype and microbiome and was characterized by a
greater capacity to harvest energy (155). The gut microbiome is an
important factor in energy harvest as it is a unique “organ” with
microbial symbionts which help metabolize dietary
polysaccharides and promote fat storage (156). Different
individuals may share similar microbial genes which adapt to
the unique metabolic needs of that individual, but have different
bacteria lineages (157). Adult twins were observed to have similar
bacterial communities than unrelated individuals, but there is no
single bacterial phenotype, or “core” human gut microbiome
defined by a set of microbial organismal lineages, shared by
unrelated individuals. When samples of humanized mice (i.e.
mice that received fecal microbiota transplantation of human
feces) were fed the Western diet, they showed increased adiposity;
a trait is transmissible via microbiota transplantation (158).
THE ROLE OF EDCs IN THE GUT
MICROBIOME

EDCs have been implicated in disease states such as insulin
resistance, glucose intolerance, type 2 diabetes, and obesity (159),
breast and prostate cancer (160, 161), as well as reproductive
development disorders (162). In addition to their direct effects on
physiology, exposure to EDCs, such as BPA, disturbs gut microbial
composition (163). This may lead to changes in host lipid
metabolism, among other effects (163). It was proposed that
environmental obesogens could cause gut dysbiosis which might
lead to inflammation and insulin resistance (164). The gut employs
a multilayered mucus structure to maintain distance between the
gut epithelial cells and the gut microbiota as a protective
mechanism (165). EDCs could increase the permeability of the
small intestine, increasing the likelihood that bacterial pathogens
will enter the body’s circulation and target other organs (166). Food
additives, such as artificial sweeteners (167, 168), and contaminants
such as pesticide residues (169) can interfere with the gut
microbiota and gut barrier function which could lead to
intestinal, metabolic, and autoimmune disorders. Notably, obesity
and T2Dwere found to be associated with intestinal dysbiosis (170)
and gut barrier disruption (171). A list of potential and known
obesogenic chemicals and how they affect the gut microbiome is
presented in Table 4.
ARTIFICIAL SWEETENERS

Non-nutritive sweeteners (NNS) are widely consumed dietary
additives that could act as obesogens, impairing the growth of gut
flora and inducing glucose intolerance (175). NNSs such as
acesulfame potassium (Ace-K), saccharin, and sucralose
induced bacteriostatic effects, which changed the composition
of the gut microbiome (176) and induced glucose intolerance by
promoting gut dysbiosis (177). Consumption of the NNS
sucralose (a chlorinated derivative of sucrose) decreased the
relative abundance of Clostridium, which converts primary bile
acids into secondary bile acids (178). Both sucralose and Ace-K
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decreased the abundance of Akkermansia muciniphila (179),
which is correlated with increased lipid metabolism and
decreased inflammation (197). Sucralose may also affect taste
receptors, thereby increasing the secretion of incretins glucose-
dependent insulinotropic polypeptide (GIP) and GIP-1, leading
to weight gain, hyperglycemia, hyperleptinemia, and
hyperinsulinemia (180). Ace-K appears to have gender-specific
effects as it decreased functional genes involved in energy
metabolism in female mice but increased their expression in
male mice (175). Ace-K also significantly increased the synthesis
of lipopolysaccharide (LPS) genes, which may increase
inflammation (175). Notwithstanding these results, the
obesogenic properties of artificial sweeteners are highly
disputed and future studies aimed at testing the links between
artificial sweeteners, gut dysbiosis, and obesity will be required.
FRUCTOSE CONSUMPTION

The first scientist to put fructose on the table as a cause for
obesity was Dr. Robert Lustig in the early 2000’s. Fructose was
found to cause changes in liver metabolism and energy signaling,
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creating a feedback loop in which insulin resistance and
overeating occurs (198). Fructose is found in many processed
food and beverages and is an obesogen known to cause glucose
intolerance and insulin resistance (198). Consequently, it has
been found that fructose restriction results in increased glucose
tolerance and decreased insulin levels (199). On the other hand,
fructose consumption causes hepatic de novo lipogenesis (DNL),
which is dependent on the metabolism of fructose to acetate by
the gut microbiota (200). The depletion of microbiota suppresses
the conversion of fructose into hepatic acetyl CoA and fatty acids.
It is proposed that there is a dual mechanism for fructose DNL:
hepatic fructose metabolism promotes DNL transcriptionally
while microbial acetate fuels DNL. Additionally, male mice fed
a high-fat, high fructose diet (HFrD) demonstrated increased
exp r e s s i on o f inflammato ry cy tok in e s monocy t e
chemoattractant protein -1 (MCP-1_, toll-like receptor 4
(TLR4), interleukin-1 beta (IL-1b), and tumor necrosis factor
alpha (TNF-a), which were associated with glucose intolerance
and lipid accumulation (201). Fructose may cause gut dysbiosis
and the upregulation of genes important for fat transport and
storage such as CD36, fatty acid synthase (FAS), and sterol
regulatory element-binding protein 1 (SREBP1), leading to
TABLE 4 | Chemical obesogens and their effects on the microbiome.

Chemical Source/Use Proposed Mechanism Effects References

Fructose Fruits, vegetables, and a
natural sweetener in foods
and beverages.

Decrease the expression of tight junction proteins, leading
to increased intestinal permeability.

Increased intestinal permeability may allow
endotoxins to diffuse through, causing
chronic inflammation.

(172–174)

Artificial
sweeteners or
Non-Nutritive
Sweeteners
(NNS)

Sugar substitutes such as
acesulfame potassium
(Ace-K), saccharin, and
sucralose, to name a few.

Decreased the relative abundance of Clostridium. Both
sucralose and Ace-K decreased the abundance of
Akkermansia muciniphila. Ace-K increased the synthesis of
lipopolysaccharide (LPS) genes and may affect taste
receptors.

NNS induced bacteriostatic effects and
gut dysbiosis, leading glucose intolerance.
Ace-K increased secretion of incretins,
leading to weight gain. Increased LPS
synthesis lead to inflammation.

(175–180)

Carbendazim
(CBZ)

Agricultural fungicide and
industrial preservative.

Changes in SCFA’s (short chain fatty acids) and resulted in
decreased triglyceride levels. Decreased the abundance of
Bacteroidetes and Verrucomicrobia and increased
abundance of Actinobacteria.

Increased lipid absorption and
inflammation which led to increased lipid
stored as fat.

(181)

Chlorpyrifos
(CPF)

Pesticide used on fruits and
vegetables.

Chlorpyrifos causes microbial dysbiosis, causing in increase
in Streptococcus, Ruminiclostridium, and Parasutterella and
decrease in Romboutsia, Turicibacter, and Clostridium.
Increased gut permeability due to decreased the expression
of mRNA tight junction proteins.

Broken integrity of the gut barrier led to
lipopolysaccharide entry and inflammation.

(165, 182–
185)

Cadmium Heavy metal ubiquitous in
water, air, tobacco smoke,
and plastics.

Low dose cadmium decreases diversity in early-life
protective bacteria such as Lactobacillus, predisposing
individuals to fat accumulation and obesity. Carbohydrate
metabolizing bacteria such as Bifidobacterium and
Prevotella are reduced.

Low-dose cadmium exposure caused
increased fat accumulation and decreased
bacterial diversity, especially in males.

(186, 187)

Bisphenol A
(BPA)

Chemical used to make
polycarbonate plastics and
epoxy resins, including
lining of food packaging.

Increased abundance of Proteobacteria and decreased the
abundance of Bifidobacterium.

Acts in a sex-dependent manner, inducing
pro-inflammation of gut microbiota
primarily in females.

(170, 188,
189)

Polychlorinated
Biphenyls
(PCBs)

Ubiquitous chemical
pollutants persistent in
seafood and poultry due to
their usage in dielectric and
coolant fluids in the past.

Increased gut permeability, leading to increase the passage
of pathogens and inflammation. Increased membrane
disruptions in insulin-metabolizing murine fecal bacterium,
thereby decreasing its fermentative ability.

Increased inflammation may lead to
dysregulation of insulin signaling.
Membrane disruptions in bacteria may
cause gut dysbiosis.

(190–192)

Microplastic Environmental pollutants
commonly found in coastal
oceans and terrestrial
environments and includes
BPA and phthalates.

Decreased mucus secretion leading to increased pathogen
entry. Led to decrease of Verrumicrobia,
Alphaproteobacteria, and Oscillospira and increase in
Parabacteroidetes, Prevotella, Dehalobacterium, and
Bifidobacterium.

May modify the gut microbiota and induce
hepatic lipid disorder, particularly in male
mice.

(193–196)
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hepatic steatosis (202). This may be a possible contributor to
fatty liver disease (201). Exposure of rats to high-fat and sucrose
(HFS) resulted in animals with 51% fat mass and 24% lean mass
compared with 40% fat mass and 48% lean mass in the high-fat
and fructose (HFF) diet group (203). Thus, while both types of
diets increased fat mass, the HFS elicited substantially more fat
mass than did the HFF diet. In addition to body fat mass
composition, compared to the HFF group, the HFS group
showed higher metabolic dysregulation and glucose
intolerance, greater levels of liposaccharides and insulin, an
increase in ROS as well as in markers for ROS, and an increase
in lipid synthesis transcription factor, Srebp-1 (203). The
comparison between fructose and sucrose indicate that the
type of carbohydrate can have different effects, and that a HFS
diet created more negative results than did a HFF diet. At the
species level, there was a significant decrease in the abundance of
Coprococcus eutactus in the HFS and HFF groups and an increase
in abundance of Lactobacillus reuteri and Bacteroides fragilis in
the HFF group. These two species have been associated with
compromised integrity of the intestinal epithelium (203).
Dysbiosis in the gut microbiota may also cause increased
production of LPS, which stimulates a systematic inflammatory
response (204) that may lead to insulin resistance and glucose
intolerance (203). Rats fed a high fructose diet for one week
showed reduced gut flora levels, increased inflammatory markers
TNF-a and IFN-g, increased glycation of gut proteins, and the
reduced ability of extracted gut microbiota to grow on non-
glycated proteins, likely causing the reduction in gut microbial
survival (205). Interestingly, the glycation rate of high fructose
fed rats was found to be higher than in diabetic rats (205).

It was proposed that one of the mechanisms through which
fructose consumption causes obesity is by increasing intestinal
permeability, leading to lipid accumulation, inflammation, and
metabolic endotoxemia (a type of low-grade inflammation)
(201). Fructose consumption has also been shown to affect the
maternal microbiome during pregnancy, which is thought to
alter the offspring’s gut health as well. The effects of fructose
consumption on the maternal microbiome were tested by feeding
rats 10% fructose via their water from 8 weeks through
pregnancy. It was found that the maternal microbiome was
altered to produce less beneficial bacteria, Lactobacillus and
Bacteroides. Offspring maintained on fructose exposure
showed a decrease in genes responsible for gut barrier function
and a dysregulation of genes responsible for epithelial tight
junction (172), which are diffusion barriers that regulate the
passage of solutes across the epithelia (206). Shorter small
intestines, lower birth weight, and increased fat mass were also
observed, resulting in an overall unhealthy phenotype. In a non-
high-fat diet-induced obesity model, microbiome dysbiosis was
also associated with decreased expression of tight junction
proteins (207). It is thought that the resulting increased gut
permeability might allow endotoxins such as LPS to diffuse
through the tight junctions and interact with host immune
cells to cause chronic inflammation (173). More studies are
needed to establish a direct link between obesogen-induced gut
dysbiosis and intestinal permeability.
Frontiers in Endocrinology | www.frontiersin.org 13
CARBENDAZIM

Carbendazim is a broad-spectrum, benzimidazole fungicide that
is an EDC and an obesogen (181). Mice that were administered
0.1, 0.5, or 5mg/kg body weight per day carbenazim (CBZ) via
their drinking water showed alterations in the gut microbiota
that led to changes in the relative abundance of circulating short
chain fatty acids (SCFAs) (181). Exposure to CBZ decreased the
relative abundance of Bacteroidetes and Verrucomicrobia and
increased the abundance of Actinobacteria, which resulted in
altered levels of SCFAs (181). Microbial dysbiosis in the host
resulted in downstream effects including decreased triglyceride
(TG) synthesis in the liver, increased lipid absorption, and a
multi-tissue inflammatory response (181). To compensate for
the elevated lipid levels, the host reduced lipid synthesis in the
liver and increased lipid storage in fat tissue (181). SCFAs and
the gut microbiota work in conjunction to maintain optimal gut
health, and the metabolite of SCFAs released by gut microbes
play a role in epithelial cell health and intestinal barrier function.
G-protein coupled receptors Gpr41 and Gpr43 have been
discovered to work with SCFAs to mediate processes involved
in host metabolism and intestinal epithelial functioning and
health (181). Altered levels of SCFAs further change the
expression of intestinal Gpr41 and Gpr43 as well as
downregulates genes involved in host immune function (181).
Taken together, these data are consistent with a model in which
CBZ exposure caused gut dysbiosis that led to increased
absorption of TG, leading to inflammation, hyperlipidemia,
and increased fat storage. However, it is also possible that gut
dysbiosis occurred in parallel with CBZ-altered lipid metabolism
rather than causing it (181). The effects of CBZ have also been
assessed in adult zebrafish who were exposed to 0, 30, and 100
mg/L of CBZ for 21 days (208). CBZ exposure altered the gut
microbiota of the zebrafish, significantly decreasing phylum
levels of Firmicutes, Bacteroidetes, Actinobacteria, a-
Proteobacteria, g-Proteobacteria and Verrucomicrobia (208).
CHLORPYRIFOS

Chlorpyrifos (CPF) is a pesticide that is widely used on fruits and
vegetables (182–184). CPF is also an EDC that decreased the levels
of epinephrine, luteinizing hormone (LH), and follicle-stimulating
hormone (FSH) (185), and induced gut microbial dysbiosis at low
doses (209, 210). CPF exposure led to increased relative abundance
of Streptococcus, Ruminiclostridium, and Coriobacteriaceae and
decreased abundance of Romboutsia, Turicibacter, and
Clostridium (185). CPF led to enriched abundance of
Parasutterella in both normal fat diet fed and high fat diet fed
rats; similar to results found after antibiotic treatment (185). CPF
treatment decreased the abundance of SCFA-producing bacteria
such asRomboutsia,Turicibacter, andClostridium and enriched the
pathogenic genus Streptococcus, which can result in an altered gut
barrier (211). Interestingly, the effects of CPF on gut hormones
appear to be age specific, as CPF increases the serum levels of
glucagon-like peptide -1(GLP-1), pancreatic polypeptide (PP),
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peptide YY (PYY), and GIP in the newly weaned 3 week old rats in
comparison toonly stimulating the releaseofPPYandghrelinwhen
CPF is exposedduring adulthood at 8weeks of age up to 28weeks of
age (185). Zebrafish that were exposed to 30, 100, and 300 mg/L of
CPF for 21 days, showed higher levels of oxidative stress coupled
with the decrease of microbial diversity within the gut (74).
Specifically, levels of g-Proteobacteria showed a significant
decrease in the gut microbiota, along with significant changes in
25 other types of genus level bacteria within the gut (74).

One of the proposed mechanisms through which CPF may
cause obesity is by interfering with the gut microbiota and
increasing gut permeability (185). CPF may increase gut
permeability by reducing the expression of tight junction
proteins (165). It was proposed that CPF breaks the integrity
of the gut barrier by decreasing expression of mRNA encoding
tight junction proteins which may lead to LPS entry and low-
grade inflammation (165). Thus, the imbalance of microbiota,
coupled with increased gut permeability, causes an increase in
LPS and leads to inflammation (165), which are characteristics of
obesity and diabetes. However, the mechanism(s) through which
chlorpyrifos acts to modulate the microbiome and promote
obesity are areas which needs further investigation.
CADMIUM

Cadmium is a heavy metal to which humans are readily exposed
because it is ubiquitous inwater, air, tobacco smoke, aswell as plastics
(186, 187). Exposure to cadmium during early life is especially
detrimental since the gut microbiota is just being established (212).
Cadmium decreases overall diversity in the gut microbiota,
particularly in populations such as Lactobacillus, which are known
to be protective early in life (213). This can reset the metabolic
programming throughout life, leading to fat accumulation and
obesity-related metabolic diseases (187). Low-dose cadmium
exposure reduces the abundance of Bifidobacterium and Prevotella,
which metabolize carbohydrates such as oligosaccharides and
polysaccharides respectively (187, 214, 215). Interestingly, early life
cadmium exposure elicited slightly more adiposity in males than in
females (187, 212). However, the use of mostly male mice in
metabolic studies of cadmium exposure (187) and metabolic
variations between genders could contribute to these differences;
thus,more research in this area is necessary (173).When three-week-
old rats were administered cadmium at 0.1, 0.25, 1, or 4 mg/kg for
eight weeks, changes of gut microbiota were observed (216). Mice in
the 4 mg/kg group showed significant decreases in the beneficial
genus Prevotellaceae_NK3B31_group, Prevotella_9, and
Lachnoclostridium, and increases in Escherichia_Shigella, which
increases oxidative stress and inflammation (216).
BISPHENOLS

BPA is a chemical obesogen that is ubiquitous in the
environment. BPA is used for making polycarbonate plastics
and epoxy resins including those that line food packaging, as well
Frontiers in Endocrinology | www.frontiersin.org 14
as in thermal papers (170, 217). BPA is an EDC that may cause
gut dysbiosis, metabolic disorders, and eventually lead to T2D
(170, 188). Oral exposure to BPA dissolved in water in mice
showed an increased the abundance of bacterial phylum
Proteobacteria and a decrease in phylum Tenericutes (188).
The increase in Proteobacteria, which is a microbial marker of
dysbiosis, was caused by the induction of Epsilon proteobacteria
(188). The increase of Epsilon proteobacteria was due to the
increase of Helicobacteraceae which is associated with
inflammatory bowel disease (218). Exposure to BPA caused a
decrease in Bifidobacterium, which may be significant as some
strains are known to have anti-inflammatory properties in
intestinal epithelial cells (170, 219). Interestingly, the effects of
BPA may be sex dependent as it induced a shift towards more
pro-inflammatory gut microbiota in adult female mice and anti-
inflammatory microbiota in adult male mice (189). Females
injected with the antibiotic vancomycin did not experience
BPA-induced gut dysbiosis, which suggests that gram-positive
bacteria may not be a causal mechanism (189). BPA decreased
the production of immunoglobulin A (IgA) which plays a key
role in gut barrier integrity and gut homeostasis, leading to gut
dysbiosis (170). Overall, the BPA microbiome had a similar
species profile to one shaped by a high-fat and high-sucrose diet
(188). These were linked to inflammatory bowel disease,
metabolic disorders, and colorectal cancer (166). When 200
Crohn’s Disease (CD) patients were studied to assess the
relationship between EDCs and CD, higher levels of BPA were
found in patients with active CD compared to those in remission
(220). In both remission and active CD groups, BPA was found
to alter inflammatory responses in patients with gut barrier
disruption and in those who tested positive for bacterial DNA
in their blood (220). Taken together, it is evident that BPA could
be playing an active role in the pathology of CD by disrupting the
gut microbiome.

More recently, it has been shown that Bisphenol S (BPS) and
Bisphenol F (BPF), which are BPA alternatives, cause microbial
dysbiosis and are inversely related to developmental toxicity and
estrogenic activity (221). Zebrafish that were exposed to BPF,
BPS, or a combination of both chemicals at 1, 10, 100, or 1000
mg/L showed oxidative stress and intestinal inflammation as well
as changes in their gut microbiome (222). Exposure to BPS and
BPF, both separately and in conjunction, were found to increase
pathogenic bacteria in the intestinal tract of the zebrafish,
including the genus Flavobacterium, Pseudomonas, and
Stenotrophomonas (222). In addition to direct action on the
microbiome, exposure to EDCs such as BPA might affect
the brain by disrupting the neural programming through the
microbiome-gut-brain axis (223).
POLYCHLORINATED BIPHENYLS

PCBs (polychlorinated biphenyls) are ubiquitous environmental
pollutants, and at environmentally relevant doses, may alter the
abundance and diversity of the gut microbiome (224). PCBs may
cause gut inflammation, which are implicated in metabolic
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diseases such as diabetes, through gut dysbiosis (190). Exposure
to PCBs causes abdominal fat accumulation and obese
individuals may be more vulnerable to PCB exposure than lean
individuals (225). Male mice that were administered PCB via oral
gavage had an increase in Clostridiales and decrease in
Bifidobacterium, Lactobacillus, Ruminococcus, and Oscillospira
in comparison to the controls. Decreases in Bifidobacterium and
Lactobacillus are significant as these are probiotics that may
reduce body weight, fat mass (226), and decrease endotoxemia
(173). When exposed to a high dose of PCBs, there was an
increase in Prevotella (227) which is associated with insulin
resistance (228) and intestinal inflammation at mucosal sites
(229), although Prevotella has been associated with beneficial
health effects in another study (215). Additionally, when adult
female mice were exposed to low-dose PCBs, there was an
increase in A. muciniphila (227).

It is possible that PCB exposure may lead to obesity by
disrupting the epithelial integrity and increasing gut
permeability, rendering it vulnerable to pathogens in the gut
mucosa (191). This may lead to high levels of inflammation,
which is known to lead to dysregulation of insulin signaling, GLP-
1 secretion from the intestine (190), and interfere with
adipogenesis through the aryl hydrocarbon receptor (AhR)
(230). Additionally, PCB exposure induced membrane
disruptions in insulin-metabolizing murine fecal bacterium,
decreasing its fermentative ability (192). Bacterial membrane
disruptions were characterized by leakage of intracellular
potassium, which is a central intracellular cation in bacterial
cells (192). Therefore, bacterial membrane disruption may be a
possible mechanism by which PCB exposure could cause gut
dysbiosis (192). Recent studies have shown that PBC exposure
induced deviations in the gut microbiome of mice, which further
promoted non-alcoholic fatty liver disease in the animals. The
obesity inducing receptor, PXR, and anti-obesity nuclear receptor,
CAR, were knocked out in mice to assess the relationship between
the receptors and the effects of PCB on metabolic functioning and
the regulation of gut microbiome (231). It was previously shown
that the PBCmixture, Aroclor1260, exacerbated NAFLD inmouse
models via the activation of RXR and CAR pathways. It should be
noted that mixtures of chemicals pose a challenge when studying
the hormonal effects of individual chemicals, and conclusions
cannot always be drawn from the effects of an individual chemical
if it is a part of a mixture. Aroclor1260 was chosen as the test PCB
mixture due to its relevance to human exposure, its resistance to
metabolism, and its ability to bioaccumulate. PCB was further
used to explore the role of PXR and CAR in relation to changes in
the gut microbiome in diet induced obese mice and to determine
what role PCR and CAR play in the gut-liver axis in relation to the
gut microbiome. Both CAR and RXR knockout groups showed
altered microbiome diversity, leading to greater hepatic and
intestinal inflammation, dysregulations in energy metabolism,
and nonalcoholic steatohepatitis. KO mice also showed a
decrease in microbes related to lower inflammation levels and
an increase in microbes related to inflammation, indicating that
CAR and RXR may have a protective effect on the gut-liver-axis
via the gut microbiome (231).
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MICROPLASTIC

Microplastics, which can range from nanometers to larger than
five millimeters, are environmental pollutants commonly found
in coastal oceans and terrestrial environments (193). They are
particularly dangerous as they can persist in the marine
ecosystem, rendering them difficult to remove (193). Moreover,
many microplastics contain obesogens such as BPA (194) and
phalates (195). Although there is a paucity of information
regarding microplastics and their effects on the microbiome, a
recent study showed that polystyrene microplastic may modify
the gut microbiota and induce hepatic lipid disorder in male
mice (196). Polystyrene microplastics caused decreased mucus
secretion (196), which may allow pathogens to penetrate the
intestinal mucosa. The relative abundance of Verrucomicrobia,
Alphaproteobacteria, and Oscillospira decreased whereas the
abundance of Parabacteroidetes, Prevotella, Dehalobacterium,
and Bifidobacterium increased (196). While polystyrene
microplastics were found to have a direct effect on the
populations of various gut microbiota, it was also observed to
disrupt lipid metabolism on a molecular level by altering the
expression of key genes related to hepatic lipogenesis. Levels of
PPARgmRNA were found to decrease, while the mRNA levels of
PPARa mRNA and fatty acid synthase (Fas), increased (196).
PPARa is largely responsible for b-oxidation (196), and PPARg
is known to play key roles in adipocyte differentiation, lipid
metabolism (232) and the storage and mobilization of lipids
(233). It was proposed that polystyrene microplastics may cause
gut dysbiosis and affect lipid metabolism in the liver through an
indirect and unknown pathway related to the gut microbiota,
although the mechanism remains unclear (196). More studies are
necessary to validate whether microplastics lead to hepatic lipid
metabolism disorder, and whether the effects are dependent or
independent to the populations of gut microbiota.
CONCLUSION

The study of obesogenic compounds is still in its early stages.
However, the field has already shed ample light on factors that
could contribute to the obesity pandemic beyond the energy
balance paradigm. Metabolic disease has demanded increasing
attention as the prevalence of worldwide obesity and related
morbidities continues to rise (1). Thus far, ~50 obesogens have
been recognized [reviewed in (30)], but more research must be
done to discover those that remain unidentified and to test other
candidate obesogens, in vivo. Reliable and replicable
standardized detection assays and high throughput screening
methods are needed to identify the remaining obesogens in the
environment quickly and efficiently. The mechanisms of action
through which known obesogens function by are still not well
understood. In vitro studies (42) and in vivo studies (49) of TBT
put the PPARg and RXR pathways on the map as the major
pathways of adipogenesis. Several obesogens have been found to
function through the activation of this heterodimeric master
regulator of adipogenesis. Other obesogens may function
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through pathways that remain to be identified. A more
comprehensive understanding of obesogenic mechanisms and
the mapping of their functional pathways will be key to
implementing both preventative measures and therapeutic
strategies against metabolic disease.

Current researchon thermogenic fat, its function, and the role of
its disruption in metabolic disease is calling for more attention on
how modulating thermogenesis can be used in the treatment of
metabolic diseases such as T2D and obesity. Increasing the activity
ofbrownadipose tissue andpromoting thebeigingofWATthrough
genetic approaches, pharmacological methods, tissue-specific and
cell type-specific strategies have become promising therapeutic
avenues against obesity [reviewed in (234)]. There is a paucity of
data concerning the role of obesogens and their effect on the
microbiome, and more research is needed on how obesogens
affect the gut. How the microbiome interacts with the gut-brain
axis and how this influences appetite is a new field of research that
may offer novel therapeutic strategies and directions for the
treatment of obesity. The gut microbiota converts dietary
nutrients into metabolites that can regulate appetite via vagal
stimulation or through immune-neuroendocrine mechanisms
(235). It is established that some obesogenic substances effect the
gut microbiome, and when the gut microbiome moves away from
its homeostatic levels, a variety of problems can arise, such as the
dysregulation of orexigenic signals such as insulin and ghrelin
which have effects on appetite and satiation (236). Potential
therapeutics that target the gut microbiome, such as microbiome
transplantation, may become viable future treatments for obesity.
Frontiers in Endocrinology | www.frontiersin.org 16
The study of EDCs offers insights into how normal metabolic
processes can be disrupted, and why the population is becoming
unhealthier, particularly with respect to metabolic disease. As
more MDCs are discovered, and more information is uncovered
about currently used chemicals in industry, strategies to restrict
usage and minimize exposure will become important. Avoidance
of exposure through ingestion, inhalation, and direct contact is a
definitive way to prevent metabolic disruption caused by EDCs
before disease develops. In vivo transgenerational studies, which
were only briefly discussed in this review, revealed epigenomic
reprogramming effects and phenotypical metabolic effects caused
by F0 chemical exposure on offspring into the F4 generation
(147, 237). The existence of such “generational toxicity”
demands further education about exposure prevention and
transparency to keep the public and future generations safe
from the effects of exposure to harmful chemicals.
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