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Osteoarthritis (OA) is the most common chronic joint disease characterized, for which
there are no available therapies being able to modify the progression of OA and prevent
long-term disability. Critical roles of G-protein coupled receptors (GPCRs) have been
established in OA cartilage degeneration, subchondral bone sclerosis and chronic pain. In
this review, we describe the pathophysiological processes targeted by GPCRs in OA,
along with related preclinical model and/or clinical trial data. We review examples of
GPCRs which may offer attractive therapeutic strategies for OA, including receptors for
cannabinoids, hormones, prostaglandins, fatty acids, adenosines, chemokines, and
discuss the main challenges for developing these therapies.
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INTRODUCTION

Osteoarthritis (OA) is the most common degenerative joint disease and one of the leading causes of
chronic disability in elderly (1). As a joint degenerative disease, it is characterized by chronic pain,
restricted mobility and loss of joint function, increasingly causing a substantial financial burden to
society and decreasing quality of life for patients (2). Although OA was primarily thought to be
driven by cartilage metabolism disorders, other pathological processes including osteophyte
formation, imbalanced subchondral bone remodeling and synovial inflammation are found to
form a vicious cycle that contributes to OA progression (Figure 1) (3, 4).

Multiple cells, including chondrocytes, osteocytes, osteoclasts, osteoblasts, endothelial cells and
sensory neurons, all contribute to this progression (5–7). Early during the cycle, changes first occur
in cartilage, including the disruption of chondrocytes pericellular matrix and increased metabolic
activity of chondrocytes. As the disease progresses, microscopic cracks are observed in the
superficial zone of the articular cartilage, and subchondral bone plate becomes thinner and more
porous. With further disease progression, erosion of extracellular matrix (ECM) and increased
senescent chondrocytes lead to the development of deep fissures. In the subchondral
microenvironment, in response to abnormal mechanical loading and pro-inflammatory
mediators, osteocytes upregulate the ratio of RANKL/OPG and osteoclasts are activated resulting
in bone resorption and active angiogenesis. In late-stage OA, cartilage chondrocyte death is evident
and calcified cartilage expands into the superficial zone of articular cartilage. In addition to the
development of subchondral bone cysts, growing sensory innervation and vascular invasion from
subchondral bone into cartilage, and osteophyte formation also occur.
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FIGURE 1 | Vicious cycle during OA progression. During the osteoarthritis process, the imbalance between the anabolic activities and catabolic activities of cartilage
ECM-degrading enzymes (aggrecanases and matrix metalloproteinases) leads to further extracellular matrix degradation. Products from matrix degradation act on
the synovium to induce inflammation and the release of pro-inflammatory mediators (cytokines, chemokines, etc.) that feedback on chondrocyte and cause cartilage
breakdown. This process also promotes phenotypic alterations of chondrocytes and leads to chondrocytes hypertrophy and senescence. In the subchondral bone,
osteoclasts are activated in response to abnormal mechanical loading and pro-inflammatory mediators, resulting in bone resorption and release of osteoclast-derived
mediators which regulate sensory innervation and vascular invasion into the osteochondral junction. This process also correlates with OA pain. Abnormal bone
remodeling is then followed by increased bone formation, leading to subchondral bone sclerosis. The homeostatic imbalance of the osteochondral unit increases
cartilage susceptibility to disruption and contributes to OA pathological processes.

Wang et al. GPCRs in Osteoarthritis
Patients with OA experience pain and disability, for which
there are predominantly palliative options, such as pain
management with analgesics/anti-inflammatory medication
and intra-articular injections of corticosteroids (8–10). No
current pharmacological therapy is able to exhibit convincing
disease-modifying efficacy and prevent long-term disability.
Developments in the understanding of OA pathophysiology
have enabled the identification of a variety of potential
therapeutic targets involved in OA pain, synovial inflammation
or structure alteration. Emerging putative disease-modifying OA
drugs (DMOADs) hold promise for OA management by
regulating cartilage anabolic or catabolic processes,
subchondral bone remodeling or synovial inflammation (6,
11). However, the clinical benefit of OA treatments is
uncertain as most clinical trials of DMOADs fail to rescue the
pathophysiological changes in OA, in addition to the challenges
caused by the long follow-up period of clinical trials in
Frontiers in Endocrinology | www.frontiersin.org 2
developing DMOADs. Therefore, novel OA management
strategies are urgently needed.

G protein-coupled receptors (GPCRs), receptors with seven
transmembrane domains, comprise the largest and most diverse
family of integral membrane proteins that participate in different
physiological processes, such as neurotransmission, hormone
release, heart contractility and immune responses (12). Based
on structural similarities, GPCRs are divided into 6 major
families. Only four families are present in humans, including
class A (rhodopsinlike) family, class B (secretin) family, class C
(metabotropic glutamate-like) and class F (frizzled/smoothened)
family. Among them, class A is the largest family with
approximately 670 receptors (13, 14). GPCRs couple
extracellular stimuli to intracellular responses via two main
signal transduction mechanisms: heterotrimeric G proteins-
dependent and -independent. G proteins are heterotrimeric
guanine nucleotide binding proteins that consist of Ga, Gb
January 2022 | Volume 12 | Article 808835
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and Gg subunits (15, 16). The coupling specificity and
downstream regulation of GPCRs are largely driven by Ga
-subunits, which are classified as Gs, Gi/o, Gq and G12/13

according to their functions. Gb and Gg subunits form a
constitutive heterodimer that binds reversibly to the Ga
subunit. After activation of GPCRs, Gbg subunits are released
to trigger the activation of downstream effect signaling pathways.
These free subunits are competent to interact with the
downstream enzymes or channels to drive second messenger
generation and modulate cell physiology (17, 18). Once G
proteins are released, the protein kinase family of G-protein
coupled receptor kinases (GRKs) phosphorylate the intracellular
region, after which the phosphorylated GPCRs recruit b-
arrestins. This leads to the desensitization and internalization
of GPCRs, thereby playing the role of “closing” signal, as a
negative feedback of G protein-dependent GPCR signaling. In
addition, MAPK and PI3K/Akt signals can be activated by b-
arrestins or the Gq pathway, indicating that there is potential
crosstalk between heterotrimeric G protein-dependent and
independent signaling pathways (19, 20).

GPCRs are important targets for drug discovery largely owing
to the wide range of physiological and pathophysiological
processes in which GPCR targeting can have a major impact.
To date, approximately 500 approved drugs target GPCRs, which
accounts for almost 30% of all drugs approved by FDA (14, 19).
Although most GPCR-targeted drugs are for metabolic diseases,
cancers, neurodegenerative diseases and others (21–23), it has
Frontiers in Endocrinology | www.frontiersin.org 3
been reported that several different types of GPCRs are
important for regulating OA symptoms including cartilage
degeneration, subchondral bone sclerosis and chronic pain
(Figure 2). In this review, we’ll review current understanding
of these GPCRs ’ physiological roles and mechanistic
involvements in OA, and discuss emerging therapeutic targets
that show promise in preclinical models of OA and/or in
clinical trials.
CANNABINOID RECEPTORS

Over the past decade, the endocannabinoid system has emerged
as a potential target for OA therapy with evidence of its
involvement in carti lage destruction and OA pain.
Cannabinoids target cannabinoid receptors 1 and 2 (CB1 and
CB2), two GPCRs originally identified as classical cannabinoid
receptors (24, 25). Both cannabinoid receptors have been
suggested to be expressed in arthritis tissues including OA
cartilage, subchondral bone and synovial tissue (26–28). It has
been extensively demonstrated that natural cannabinoids have
anti-inflammatory properties and can protect cartilage from
degradation during OA (26, 29, 30). ACEA, a CB1 agonist,
suppresses interleukin 1 beta (IL-1b)-induced senescence in
human primary chondrocytes (31). In a surgical mouse model
of OA, the CB2 receptor has been shown to regulate
susceptibility to OA. The study revealed that genetic ablation
FIGURE 2 | The role of GPCRs in osteoarthritis. In an osteoarthritic joint, GPCRs are expressed in different tissues and cell types. Various types of GPCRs mediate
and regulate OA symptoms including cartilage degeneration, subchondral bone remodeling and OA pain.
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of CB2 aggravated OA pathogenesis compared to wild-type OA
mice (32). Additionally, CB2 depleted chondrocytes produced
less proteoglycans in vitro. Moreover, HU-308 (CB2 agonist) and
WIN55212-2 (synthetic cannabinoids) prevented cartilage
degradation, while WIN55212-2 was also found to inhibit the
activity of an aggrecanase, a disintegrin and metalloproteinase
with thrombospondin motifs-4 (ADAMTS-4) (31). These studies
suggest that the endocannabinoid system protects against
cartilage degradation.

Furthermore, endocannabinoids and their receptors have
been reported in osteoblasts, osteoclasts and osteocytes (33–
35). CB1 regulates bone growth during skeletal development,
while CB2 plays an important role in maintaining the balance
between bone resorption and bone formation (36, 37). Knockout
of CB2 led to accelerated age-related osteoporosis in mice, while
CB1 knockout mice expressed less nuclear factor kappa B ligand
(RANKL), suggesting their possible roles in bone remodeling
processes during OA (38, 39). CB1 and CB2 receptors are located
in synovial tissue where they are expressed on nerve endings that
innervate the knee (38, 40). In a monoiodoacetate (MIA) model,
an OA model that intra-articular injection of sodium
monoiodoacetate induces chondrocyte cell death in the
articular cartilage, OA pain and articular structural changes
(41, 42), agonists of CB1 (ACEA) and CB2 (JWH133 and A-
796260) all decreased pain behavior or subchondral bone
degeneration (43–45). However, current clinical trials targeting
the endocannabinoid system in OA gave inconclusive results. A
randomized clinical trial in OA patients of PF-04457845, a
potent FAAH (fatty acid amide hydrolase with a prominent
role in the hydrolysis of endocannabinoids) inhibitor, indicated
no significant difference in analgesia compared to placebo
(NCT00981357) (46). In another on-going phase II study
(NCT03098563), patients with knee OA are being treated with
combinations of cannabinoids, benzodiazepines, and opioids for
evaluating changes in pain ratings and sensitivity but no results
have been published yet.

CHEMOKINES AND RECEPTORS

Chemokines and their G protein-coupled receptors control the
migratory patterns, positioning and cellular interactions of
immune cells, and also induce the recruitment of immune cells
into the organs. High levels of chemokines have been observed in
rheumatoid arthritis (RA), systemic lupus erythematosus (SLE)
and idiopathic inflammatory myopathies (IIM), which are
systemic autoimmune disorders (47, 48). Many studies have
also found that chemokine system is involved in the process of
OA. In this section, we summarize the pathogenic functions of
chemokines and their receptors in OA, and discuss their
potentials as therapeutic targets.

CXC motif chemokine ligand 12 (CXCL12), also known as
SDF-1, is recognized as a homeostatic cytokine. SDF-1 and its
receptor C-X-C motif chemokine receptor 4 (CXCR4) and
CXCR7 play multiple regulatory roles. SDF-1 is involved in the
regulation of cartilage tissue homeostasis and can also regulate
chondrocyte proliferation, survival, differentiation (49–51).
Frontiers in Endocrinology | www.frontiersin.org 4
SDF-1 was shown to negatively regulate mesenchymal stem
cell (MSC) chondrogenesis, but the effects of SDF-1 on
chondrocyte proliferation and death varied in different studies.
CXCR4 and CXCR7, both expressed by chondrocytes, regulate
homeostatic and pathological processes during the progression
of OA. The upregulated CXCL12/CXCR7 signaling aggravated
joint destruction in mice. SDF-1/CXCR4 induced chondrocyte
hypertrophy during endochondral bone formation, and the
induction of hypertrophic chondrocyte markers, including
Runt-related transcription factor 2 (RUNX2), Collagen type X
(COLX), and matrix metalloproteinase 13 (MMP13) in
chondrocytes, required the presence and interaction of both
SDF-1 and CXCR4 (52). During ECM degradation in OA,
SDF-1/CXCR4-mediated upregulation of aggrecanase occurred
via activation of the nuclear factor-kB (NF-kB), mitogen-
activated protein kinase (MAPK), and Wnt/b-catenin in
chondrocytes (53). Moreover, SDF-1/CXCR4 regulates the
crosstalk between subchondral bone and articular cartilage in
OA pathogenesis (54). Subchondral bone deterioration and
excessive bone resorption were aggravated by increased SDF-1
in anterior cruciate ligament-transection (ACLT) mice. SDF-1
from subchondral bone binds to CXCR4 in chondrocytes and
induces articular cartilage degradation by promoting shift of
TGF-b receptor 1 (TbRI) signal transduction from activin
receptor-like kinase 5 (ALK5) to ALK1. The impact of TGF-b
on cartilage is anabolic through ALK5 while catabolic through
ALK1 (55, 56). Indeed, AMD3100, a specific inhibitor of SDF-1/
CXCR4 axis, attenuated OA by stabilizing subchondral bone
microarchitecture and protecting the integrity of cartilage. In
addition, studies have demonstrated that TN14003, another
antagonist of CXCR4, was more effective in inhibiting release
of matrix-degrading enzymes, such as MMP3, MMP9 and
MMP13, and in preventing collagen type II (COL2a1) and
aggrecan (ACAN) degradation (57, 58). Mechanistically,
FGFR3 inhibits CXCR7 expression and CXCL12-dependent
macrophage chemotaxis through regulating the NF-kB
pathways. FGFR3 deficiency in myeloid cells results in more
severe joint destruction and synovitis in the destabilization of the
medial meniscus (DMM)-induced mouse OA model and in
aging mice, whilst blocking CXCR7 in FGFR3 deficiency mice
relieved joint destruction of age-related/DMM-induced arthritis
(59). Thus, SDF-1 (as CXCL12) plays an important role in the
development of OA and further preclinical and clinical studies
are warranted to investigate the feasibility of therapeutically
targeting SDF-1/CXCR4/CXCR7 signaling to treat OA.

Other CXCRs may also be involved in the development of
OA. For example, even though CXCR2-/- mice do not
spontaneously develop arthritis, the blockade of CXCR1/2
signaling led to decreased ECM production and increased
chondrocyte apoptosis. These pathological changes result in
the loss of phenotypic stability in chondrocytes and promote
OA-like phenotypic alternations (60, 61). CXCR3 protein level
was also significantly increased in OA patients while knockdown
of CXCR3 receptor attenuated chondrocyte apoptosis induced by
sodium nitroprusside (62). In the collagenase-induced
osteoarthritis (CIOA) model, neutrophils and NK cells were
January 2022 | Volume 12 | Article 808835
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showed to be increased in the synovium as disease-promoting
immune cells. The CXCL10/CXCR3 axis promoted the
accumulation of NK cells and macrophages in the OA joint,
whereas CXCR3-/- mice failed to develop CIOA (63).

C-C chemokine receptor type 5 (CCR5), the receptor for C-C
motif chemokine ligand 4 (CCL4) and CCL5, is expressed in
normal chondrocytes but at elevated levels in OA chondrocytes.
Cartilage degeneration was markedly reduced in CCR5-/- mice
affected by post-traumatic OA, while mild changes appeared in
osteophyte formation and synovitis compared to wild-types (64).
These phenotypes suggest that CCR5 plays a selective role in
joint damage.

In the bone microenvironment, CCL2, a key regulator mainly
expressed by osteoblasts, promotes subsequent recruitment and
migration of mononuclear cells via binding to CCR2 (65).
Additionally, CCL2 stimulation enhanced the apoptosis of OA
chondrocytes while intra-articular injection of CCL2 in mouse
knees induced cartilage degradation (66). This result suggests
that CCL2/CCR2 axis is involved in cartilage destruction.
Further studies showed that CCR2+ macrophages were
abundant in OA synovium and in association with articular
cartilage tissues. Receded OA pathogenesis is accompanied with
lessened local macrophage numbers in CCR2- knockout mice.
Pharmacological intervention by RS-504393, a CCR2 antagonist,
effectively diminished OA disease progression in part by
reducing synovial macrophage accumulation (67). In
conclusion, disruption of CCL2/CCR2 signaling contributes to
reduced macrophage accumulation, synovitis and cartilage
breakdown in murine OA models.

Intriguingly, chemokine receptors are critical regulators of
neurodegenerative conditions and synapse activity, contributing
to pain management. In mice, intra-articular/peripheral tissues
injections of CXC chemokines induced pain-like behaviors (68).
CCL2/CCR2 signaling was upregulated in the joint innervating
dorsal root ganglion. This result was clearly associated with
movement-provoked pain behaviors after disease induction.
Macrophage infiltration and movement-provoked pain
behaviors were not developed in CCR2-null mice. However,
CCR2-null mice had similar severe allodynia and structural
knee joint damage. These results suggested that targeting the
CCL2/CCR2 axis will have clinical benefits for OA pain (69–71).
A placebo-controlled, Phase II trial testing PF-04136309 (the
specific CCR2 antagonist) for OA pain has been completed but
the results are as yet unknown (NCT00689273).

Evidence from pre-clinical studies suggests that the
development of more effective inhibitors of chemokine receptors
has attractive therapeutic potential in treating OA. It should also
be noted that numerous chemokines and their receptors are
involved in OA pathogenesis, thus targeting the relevant
multiple receptors might be needed for therapeutic benefits.
METABOLITE-SENSING GPCRs

The main metabolite-sensing GPCRs bind metabolites derived
from common foodstuffs, including long-chain fatty acids
Frontiers in Endocrinology | www.frontiersin.org 5
(LCFAs), medium-chain fatty acids (MCFAs), short-chain fatty
acids (SCFAs), bile acid, and various others. It has been reported
that free fatty acids (FFAs) contribute to skeletal health, as
increasing the supplementation of long-chain polyunsaturated
fatty acids (LCPUFAs) positively contributes to joint health and
prevents osteoporosis (72–74). LCPUFAs are essential factors to
support cartilage homeostasis. Studies have revealed that long-
chain w-3 fatty acids reduced secretion or expression of
inflammatory cytokines and matrix-degrading enzymes
involved in cartilage degradation, such as collagenases or
aggrecan-degrading enzymes (aggrecanases). SCFAs augmented
systemic bone mass by protecting from bone resorption and
suppressing inflammation in chondrocytes (75, 76). In this
section, we introduce the metabolite-sensing GPCRs involved,
biological relevance between metabolism and osteoarthritis, and
highlight the beneficial effects of nutritional protection.

Five GPCRs, including GPR40, GPR41, GPR43, GPR84 and
GPR120, have been reported to be activated by FFAs. Among
which, GPR40 and GPR120 are receptors for LCFAs, GPR41 and
GPR43 for SCFAs, while GPR84 for MCFA. OA progression in
the knee joint instability-induced OA model was aggravated in
GPR40-/- mice, and GPR40-/- chondrocytes secreted more
inflammatory mediators and decreased anabolism upon IL-1b
treatment (77). In contrast, GW9508, a GPR40 agonist, blocked
degeneration of type II collagen and aggrecan by attenuating the
expression of matrix-degrading enzymes and pro-inflammatory
cytokines in vitro (78). GPR120-/- mice displayed an accelerated
progression of ACLT surgery-induced OA (79). GPR120
agonists, GW9508 and TUG891, prevented IL-1b-induced
reduction of ECM through SRY (sex-determining region Y)-
related HMG (high mobility group) box 9 (SOX9) mediated
expression of collagen II and aggrecan in ATDC5 chondrocytes
(80). In our previous research, we found that MCFAs receptor
GPR84 signaling safeguarded cartilage homeostasis. Activating
GPR84 by 6-OAU (agonist) or lauric acid (natural ligand)
resulted in increased expression of ECM-related genes in
chondrocytes and protected human OA explants against
degeneration (81). SCFAs receptors, such as GPR43, were also
shown to be involved in chondrocyte homeostasis. Butyrate, a
SCFA produced through microbial fermentation in gut,
decreased the inflammatory response in IL-1b-stimulated
chondrocytes, including reduced expression of pro-
inflammatory mediators (cyclooxygenases 2, nitric oxide
synthase 2, IL-6), pro-inflammatory adipokines (lipocalin-2
and nesfatin-1), and adhesion molecule (Vascular cell adhesion
molecule 1 and Intercellular adhesion molecule 1). Importantly,
the anti-inflammatory activities of butyrate were completely
dampened by GPR43 silencing (82).

TGR5, a bile acid-sensing GPCR expressed in cultured
chondrocytes, showed reduced expression in response to IL-
1b/tumor necrosis factor alpha (TNFa)-stimulation in
chondrocytes or OA patient chondrocytes. Furthermore,
activation of TGR5 using the specific synthetic agonist, INT-
777, significantly decreased IL-1b induced senescence and
rescued TNFa-induced decreased expression of ECM-related
genes in SW1353 cell (83, 84).
January 2022 | Volume 12 | Article 808835
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These studies of metabolite-sensing GPCRs provide
intriguing links between the fields of nutrition, metabolism and
OA, which provide insights that nutrient intervention may
become new approaches for OA treatment or prevention. The
main drawback of research in metabolite-sensing GPCRs and
OA is the insufficiency of translational studies using animal
models and related clinical trials.
ADENOSINE RECEPTORS

Adenosine is a catabolite of ATP and can act as a physiological
regulator. Adenosine binds and activates four adenosine receptor
subtypes (A1, A2A, A2B, and A3), which are all GPCRs (85, 86).
In bone homeostasis, adenosine receptor-mediated mechanisms
are involved in bone fracture and repair, and response to loading
(87, 88). Articular chondrocytes in humans express primarily A2A
receptor (A2AR) and A2B receptor (A2BR) subtypes (89). When
cartilage has an aging phenotype or cartilage homeostasis is
destroyed, the extracellular ATP will decrease, leading to a
decrease in the content of adenosine. Subsequently, the
reduction of extracellular adenosine concentration increases the
release of chondrocyte-damaging molecules. These molecules
include nitric oxide (NO), prostaglandin E2 (PGE2), MMPs,
ECM fragments, which further contribute to the cartilage
destruction and the pathogenesis of OA (90, 91). Observations
in mice deficient of A2AR and ecto-5′ nucleotidase (an enzyme
that converts extracellular AMP to adenosine) showed consistent
results of developing spontaneous OA. In contrast, intra-articular
injection of adenosine prevented development of OA and restored
the cartilage homeostasis by engaging A2AR in rats (92). This
could be due to the fact that the exogenous adenosine activates
A2AR and regulates the pathogenesis of OA via suppressing the
expression of a variety of pro-inflammatory cytokines, such as NO,
PGE2, IL-1 and TNF. The anti-inflammatory role of A2AR has
indeed been proposed in mouse articular chondrocytes treated
with hyaluronan oligosaccharides or collagen-induced arthritis
(CIA) (93, 94). In addition, studies have shown that A2AR
stimulation enhances mitochondrial metabolism and prevents
mitochondrial injury. Intra-articular injections of a liposomal
A2AR agonist improved the reactive oxygen species (ROS)
burden, proteoglycan catabolism and chondrocyte viability in
knee cartilage of obesity-induced OA mice (95). Moreover,
polydeoxyribonucleotides (PDRNs), deoxyribonucleotide
polymer chains with 50-2000 base pairs in length, can counter
proteoglycan degradation in cartilage explants by decelerating the
activity of MMPs (96) and can also activate A2AR to decrease
cytokine production and reduce cartilage erosion of collagen-
induced arthritis (97). There have been multiple randomized,
double-blind clinical trials comparing the efficacy of intra-
articular polynucleotides and hyaluronic acid injections in
treating knee osteoarthritis. Results suggested that Knee Society
Score total score (KOOS) and pain items were statistically
significantly ameliorated in both polynucleotides- and
hyaluronic acid-supplemented groups, with higher efficacy in the
polynucleotides group. Additionally, polynucleotides led to
Frontiers in Endocrinology | www.frontiersin.org 6
significant symptomatic relief as measured by the KOOS after
only 2 weeks of treatment, while similar improvements with
administration of hyaluronic acid were seen after 18 weeks
(98–101).

Other adenosine receptor subtypes have also been suggested
to have potential roles in OA. The A2BR has been associated with
chondrogenic differentiation. A2BR agonists suppressed hMSC
chondrogenic differentiation through downregulating the
expressions of ECM-related genes and cartilaginous
transcription factors, while antagonists of A2BR induced
chondrogenic differentiation of hMSC (102). Ablation of A3R
led to development of OA in aged mice. A3R selective agonists
protected cartilage by downregulating intracellular CaMKII
kinase and RUNX2 transcription factor (103). CF101, a highly
selective, synthetic agonist to the A3R, can induce apoptosis of
inflammatory cells, and prevent cartilage damage and bone
destruction in rat knee osteoarthritis (104). It is worth noting
that excessive adenosine supplement to body is not advisable, as
children lacking adenosine deaminase develop chondrodysplasia,
with plasma adenosine levels increasing to the micromolar level
(105, 106). In summary, the adenosine receptor is an important
homeostatic regulator of cartilage homeostasis, cartilaginous
inflammation and OA progression. Therefore, adenosine
supplement may represent a novel approach for OA treatment.
PROTEASE-ACTIVATED RECEPTOR

Proteinase-activated receptors (PARs) constitute a unique family
of GPCRs that are widely expressed by fibroblast-like cells,
chondrocytes and osteoblasts, immune cells in joints as well as
in sensory neurons. Proteolytic enzymes signaling via PARs have
been implicated in inflammation and pain in RA. For a
comprehensive review, please refer to Oikonomopoulou et al.,
2018 (107). PAR2 was detected in chondrocytes and synovial
tissues from OA patients, while expression of PAR2 in OA
chondrocytes was upregulated by IL-1b/TNFa (108, 109).
Activation of PAR2 in human OA cartilage upregulated
catabolic and pro-inflammatory pathways, resulting in cartilage
degradation (110). PAR2 expression was significantly
upregulated in articular cartilage in OA mice. Several studies
suggested that deletion of PAR2 retarded the OA progression,
cartilage damage, and subchondral bone remodeling
disequilibrium in OA mouse models (111–113). Additionally,
PAR2 has been shown to be expressed in the proliferative/
hypertrophic chondrocytes within osteophytes. PAR2-/- mice
presented less osteophyte formation, no osteosclerosis, and
reduced pain perception in a DMM model. Intra-articular
injection of hPAR2 in PAR2-/- mice restored osteophyte
formation and cartilage damage to the similar level as in wild-
type mice, confirming the pathogenic role of PAR2 in the DMM
model (114). Further studies showed that AZ3451, an antagonist
of PAR2, prevented the IL-1b-induced inflammatory cytokines
release, catabolic gene expression, senescence, and apoptosis in
chondrocytes. Intra-articular injection of AZ3451 ameliorated
cartilage destruction in a rat OA model (115). Therefore, PAR2
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has the potential to orchestrate OA-related pain, cartilage and
bone pathology. It is plausible that, through further preclinical
and/or clinical verification, targeting proteolytic pathways can
bring in benefits to RA or OA patients and reduce joint damage
and inflammation.
PROSTAGLANDIN RECEPTORS

PGE2, the most abundant prostaglandin in most tissues, is
generated by the initial actions of the cyclooxygenases on
arachidonic acid (116). COX-2-selective non-steroidal anti-
inflammatory drugs (NSAIDs) reduce pain and inflammation,
and are thought to act via inhibiting PGE2 in humans (117, 118).
The cartilage releases a high level of PGE2, a key pro-
inflammatory and joint pain molecule in OA patients. PGE2
binds to four specific G protein-coupled receptors, prostaglandin
E receptor 1-4 (EP1-4). Among them, EP2 and EP4 have been
found to be associated with cartilage repair and OA development.
Early research showed that simultaneous stimulation of EP2 and
EP4 enhanced proteoglycan accumulation and intracellular cyclic
adenosine 3’,5’-monophosphate (cAMP) production during the
differentiation of rat primary chondrocytes (119). The expression
patterns of EP2 and EP4 are different during the commitment of
MSC to chondrogenesis. EP4 expression continuously increases in
this process, while the expression of EP2 increases at the earlier
stage and then decreases (120). Other studies showed that growth-
promoting and apoptosis-protecting genes were upregulated in
human articular chondrocytes treated with EP2 agonists. The
culture of rat femurs showed an increase of proliferating cell
nuclear antigen (PCNA) staining in chondrocytes, suggesting EP2
enhanced the growth in articular cartilage (121). Gelatin hydrogel
containing PLGA microspheres conjugated with ONO-8815Ly, a
selective EP2 agonist, promoted tissue regeneration in a rabbit
chondral and osteochondral defect model (122), whilst intra-
articular injections of EP2 agonist lessened joint pain and
promoted tissue repair of osteochondral defect in rabbits (123).
Furthermore, an EP2 agonist enhanced reconstruction of the
boundary between articular cartilage and subchondral bone,
which is imperative to maintain the articular structure. It is
interesting to note that the regenerated tissue contained both
EP2- and PCNA-positive chondrocytes, indicating that the
cartilage regeneration was executed mainly by EP2-positive cells
(122). The same research team also found that ONO-8815Ly
prevented cartilage degeneration in ACLT and DMM-induced
cartilage traumatic models, which was associated with restraining
the expression of MMP13, a catabolic factor to matrix network
(124). Similarly, another study demonstrated EP2 agonist
downregulated MMP13 mRNA expression via the cAMP-
protein kinase A pathway in osteoarthritis chondrocytes (125).

A previous report suggested that EP4 was upregulated in OA
cartilage. However, effects of EP4 on the cartilage catabolism
during OA progression still remain controversial. EP4 antagonist
(AH23848) prevented PGE2 induced matrix degradation and
MMP13 expression in OA cartilage explants, implicating EP4’s
pivotal role in mediating the PGE2 catabolic effects during OA
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progression (126). To the contrary, another study showed that
PGE2 inhibited IL-1b-induced expression of MMP1 and
MMP13 via EP4 by suppressing MKK4-JNK MAPK-c-JUN
pathway in human chondrocytes (127). Furthermore, the EP4
receptor mediates the PGE2-elicited inflammation and
sensitization of sensory neurons, while EP4 inhibition
contributes to the development of targeted therapies for anti-
inflammatory and analgesic effect in OA (128–131). Grapiprant,
an EP4 antagonist, has been approved for by the FDA treating
OA pain in dogs (132, 133). A multicenter, randomized study
demonstrated that the inhibitor of microsomal prostaglandin E
synthase-1 (LYA) but not the EP4 antagonist (LYB) improved
clinical signs of OA pain in dogs (134). Although there are
animal model studies and clinical applications in effects of EP
receptors in OA, the in vivo functions and molecular
mechanisms of EP receptors in cartilage homeostasis and OA
need further investigation. In particular, there is no relevant
research using gene-level ablation of EPs to verify their functions
in cartilage, while conditional knockout mice should be
considered in order to avoid the lethal consequence of
genome-wide knockout.
HORMONE RECEPTORS

Hormone receptor signal transduction, such as for
norepinephrine (NE) and epinephrine, plays important roles in
articular cartilage homeostasis and OA. In this section, we
summarize the relevant research on hormone receptors
involved in the cartilage system. a2A- and b2-adrenoreceptor
positive chondrocytes were observed in cartilage, with more
evidence in the pre-hypertrophic and hypertrophic cartilage.
Intercepting a2A-adrenoreceptor increased aggrecan
production and decreased MMPs expression in the degraded
temporomandibular joint cartilage of rats (135, 136). NE
reversed IL-1b induced production of IL-8, MMP13, COL2,
and glycosaminoglycans, and decreased proliferation in
chondrocytes. This was achieved via b-adrenoreceptor
signaling. However, NE was also shown to increase
proliferating cells and induce apoptosis via a1- adrenoreceptor
in chondrocytes (137).

The calcitonin receptor was identified in bovine articular
cartilage (138). KBP, an agonist of amylin and calcitonin
receptors, counteracted DMM induced cartilage erosion,
degradation biomarkers and pain behavior in rats (139).
Nerves containing the calcitonin gene-related peptide (CGRP)
have been implicated in a number of pain scenarios. The CGRP
release has been observed in the joints of OA rodents, as
perivascular sensory and sympathetic nerve fibers innervate the
osteochondral junction in osteoarthritic knees (140–142).
Innervation of CGRP+ neurons in subchondral bone was
significantly augmented after OA induction, whilst blockade of
CGRP+ sensory fibers innervating in the subchondral bone
reduced OA pain (143, 144). In addition, antagonizing the
CGRP receptor ablated mechanosensitivity of joint nociceptors
in MIA and DMM OA rats (145).
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The parathyroid hormone (PTH)/parathyroid hormone-
related protein (PTH/PTHrP) receptors are well known for
their biologic actions in controlling mineral homeostasis, bone
development, and bone remodeling (146–148). Additionally,
activation of the PTH/PTHrP receptor slowed the chondrocyte
proliferation and delayed chondrocyte hypertrophy (149, 150),
although other studies showed that PTHR1 is upregulated in OA
cartilage (149, 151). Importantly, teriparatide (recombinant
human PTH), an FDA-approved treatment for osteoporosis,
has been shown to decelerate cartilage degeneration and
induce matrix regeneration in post-traumatic osteoarthritis
mice (152). Currently, a randomized clinical trial attempting to
evaluate teriparatide as a chondroregenerative therapy for OA is
ongoing (NCT03072147). This could present a new promising
clinical application for the drug by re-purposing it for
OA treatment.

Several other hormone receptors were also detected to be
expressed in the cartilage tissue or chondrocytes, which may
indicate novel targets. For instance, follicle stimulating hormone
receptor (FSHR) was detected in mouse chondrocytes and
human cartilage tissue (153). Oxytocin receptor (OTR) was
expressed in human primary chondrocytes, and significantly
reduced in OA chondrocytes (154). Angiotensin II receptor
(ATIIR) affected the proliferation and apoptosis of
chondrocytes under oxygen-glucose deprivation (155).
Activation of melanocortin receptor MCR1 and MCR3
downregulated IL-1b, IL-6 and IL-8 release, MMPs expression
and inhibited cell death in chondrocytes (156). MCR1-deficient
mice developed a more severe OA pathology of cartilage
degradation (157). Glucagon-like peptide-1 (GLP-1) is an
incretin hormone that activates GLP-1R to regulate glucose
and energy homeostasis. Exendin-4, a GLP-1R agonist,
alleviated chondrocyte apoptosis and ECM degradation in ACL
rats (158). Endothelin receptors ETA and ETB were also
expressed in rat chondrocytes (159).
OTHER GPCRs IN OA

There are also some other GPCRs involved in OA which may
represent potential targets and will be briefly summarized in this
paragraph. The calcium-sensing receptor (CaSR), senses changes
in serum Ca2+ in parathyroid glands to regulate PTH. It has been
established that knocking out CaSR in chondrocyte prevented
matrix degradation in the cartilage of OA mice (160). Frizzled
class receptor 4 (FZD4) was shown to be involved in the
pathogenesis of temporomandibular joint osteoarthritis, when
mediated by miR-101a-3p (161). It has been shown that
activation of Kappa opioid receptor (KOR) by chemical agonist
U-50,488H inhibited inflammation in arthritic conditions, and
KOR-/- mice exhibited accelerated cartilage degeneration in
cartilage and subchondral bone defects compared with WT
mice (162, 163). Extensive studies have indicated that
inflammatory diseases decreased the pH of the cartilage
environment (164–166). Acid sensing plays an essential role
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for maintaining cell function through acid sensing ion channels
or proton-activated GPCR (167, 168). The proton-activated
GPR4 regulates OA pathogenesis via modulating CXCL12/
CXCR7 signaling, and inhibition of GPR4 with NE52-QQ57
ameliorates OA development in both mouse models and human
articular cartilage explants (169).
G PROTEIN-COUPLED RECEPTOR
KINASE IN OA

There are seven G protein-coupled receptor kinase (GRKs)
subtypes, relevant to the role in GPCR phosphorylation and
desensitization, and also phosphorylation of a number of
intracellular signaling proteins. Studies demonstrated that
GRK5 regulated cartilage degradation in OA progression via
NF-kB signaling. Intra-articular injection of amlexanox (a
selective GRK5 inhibitor and a candidate for OA treatment)
protected mouse cartilage against cartilage degradation and
reduced the expression of catabolic factors in DMM-induced
OA mice (170). Cartilage-specific GRK2 deletion promoted
matrix regeneration and prevented OA progression.
Furthermore, the GRK2-inhibiting antidepressant paroxetine
decelerated OA progression in DMM mice (171). As a
clinically used antidepressant with known pharmacological
profiles and safety record, paroxetine offers a promising
therapeutic strategy for OA that can be easily translated from
bench side to clinics.
PERSPECTIVES AND CONCLUSIONS

Evidence from preclinical models of OA and/or clinical trials
have highlighted multiple GPCRs as novel therapeutic targets in
OA treatment, and showed promising efficacy in managing OA
pain and structural progression (Table 1). For instance, the
prominent role in multiple arthritis has rendered the adenosine
receptor as a promising target for therapeutic intervention.
Particularly, results of clinical trials with polynucleotides in
OA patients have been encouraging. Interestingly, the fate of
MSCs towards chondrogenesis and osteogenesis can be
significantly mediated by adenosines via ecto-5′-nucleotidase/
CD73 through activation of A2AR and A2BR receptors,
differentially and respectively (172, 173). With this strategy,
MSCs for cartilage and bone repair in damaged parts can be
adjusted by regulating the activity of A2AR/A2BR at different
stages of joint repair. Metabolite-sensing GPCRs could be an
interesting target for OA prevention and treatment, but
preclinical animal studies and clinical trials are lacking at
this time.

In addition to identifying promising drugs for OA
management, a well-integrated drug platform incorporating
nanocarriers and tissue engineering could provide additional
benefits in the treatment of OA. Nanocarriers with a
chondrocyte-specific aptamer have been widely used for
January 2022 | Volume 12 | Article 808835

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Wang et al. GPCRs in Osteoarthritis
TABLE 1 | GPCRs relevant to OA.

GPCR Cellular function Pathogenic function in OA Clinical trials Agonists/
antagonist

Refs

Cannabinoid receptors
CB1 Suppress chondrocyte senescence Inhibit OA pain NCT00981357 ACEA (26–46)

Decrease subchondral bone degeneration NCT03098563 HU-308
WIN55212-2

CB2 Promote chondrocyte proteoglycans Prevent cartilage degradation A-796260
JWH133
PF-
04457845

Chemokines and receptors
CXCR4 Induce chondrocyte hypertrophy Induce cartilage degradation AMD3100 (49–59)

TN14003
CXCR7 Enhance macrophage chemotaxis Aggravate joint destruction
CXCR1/2 Increase ECM production (60, 61)

Decrease chondrocyte apoptosis
CXCR3 Increase chondrocyte apoptosis Aggravate cartilage damage (62, 63)

Promote immune cells inflammatory response Increase synovitis
Increase osteophyte formation

CCR5 Maintain the inflammatory process Induce cartilage degeneration (65)
CCR2 Enhance chondrocyte apoptosis Aggravate cartilage degradation NCT00689273 RS-504393 (66–71)

Macrophage infiltration Increase synovitis PF-
04136309Increase OA pain

Metabolite-Sensing GPCRs*
GPR40 Reduce chondrocyte inflammatory Reduce chondral calcification GW9508 (77, 78)

Inhibit chondrocyte catabolism Reduce osteophyte formation
Reduce subchondral bone sclerosis

GPR120 Protect ECM production Prevent cartilage degradation TUG891 (79, 80)
Reduce synovitis GW9508
Reduce subchondral bone structural
change

GPR84 Increase ECM production Prevent cartilage degradation 6-OAU (81)
Inhibit chondrocyte catabolism Reduce osteophyte formation

Reduce subchondral bone sclerosis
GPR43 Decrease chondrocyte inflammatory (82)
TGR5 Decrease chondrocyte senescence INT-777 (83, 84)

Protect ECM production
Adenosine receptors*
A2AR Suppress chondrocyte inflammatory Prevent cartilage degradation PDRNs (89–101)

Enhance mitochondrial metabolism Reduce synovitis
Suppress chondrocyte catabolism Reduce subchondral bone structural

change
A2BR Suppress chondrogenic differentiation (102)
A3R Induce inflammatory cells apoptosis Prevent cartilage degeneration CF101 (103, 104)

Prevent bone destruction
Protease-activated receptor
PAR2 Promote chondrocyte apoptosis Aggravate cartilage damage AZ3451 (108–115)

Promote chondrocyte senescence Increase subchondral bone remodeling
Promote chondrocyte inflammatory Increase osteophytes formation
Promote chondrocyte catabolism Promote OA pain

Prostaglandin receptors
EP2 Enhance chondrocyte differentiation Increase cartilage regeneration ONO-8815Ly (119–125)

Protect chondrocyte apoptosis Lessen Joint pain
Prevent cartilage degeneration

EP4 Chondrocyte catabolism Matrix degradation AH23848 (126–133)
Inflammation Synovitis Grapiprant

OA pain
Hormone receptors
a2A-adreno-
receptor

Decrease chondrocyte metabolism Prevent cartilage degeneration (135, 136)
Inhibit chondrocyte inflammatory Prevent subchondral bone loss

b-adreno-receptor Protect chondrocyte proliferation (137)
Inhibit chondrocyte catabolism
Protect ECM production

PTH/PTHrP receptor Slow chondrocyte proliferation Decelerate cartilage degeneration NCT03072147 teriparatide (149–152)

(Continued)
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sustained delivery in cartilage tissue, providing improved
targeting specificity and pharmacokinetic profile (174–176).
Tissue engineering can lead to the construction of a ‘native’
microenvironment to deliver drug/growth factors, maintain
ECM deposition and support mechanical properties as naïve
cartilage (177, 178). This integration may form new approaches
to the prevention and treatment of OA.

On paper, many of the pathways can be selectively and
potently targeted, offering exciting opportunities for OA
management. However, it should be noted that complex
pathogenic mechanisms of OA limit clinical applications for
OA patients. Thus, future research should be directed towards
elucidating how these different pathways interact to that drive
structural progression or OA pain. Moreover, heterogeneity in
clinical presentation and histopathology can make it difficult to
elucidate OA pathophysiological changes. In a study published
last year, OA patients were classified into four distinct
osteoarthritis subtypes with a knee joint tissue transcriptome
atlas: a glycosaminoglycan metabolic disorder subtype (C1), a
collagen metabolic disorder subtype (C2), an activated sensory
neuron subtype (C3), and an inflammation subtype (C4) (179).
This provides a new paradigm for precision medicine in the
diagnosis and treatment of OA, although they may contradict
traditional OA diagnosis by clinical and radiographic
presentation. Hence, research that defines meaningful OA
Frontiers in Endocrinology | www.frontiersin.org 10
phenotypes will be critical in determining optimal treatment
strategy, and should be prioritized.

In this review, we have described the pathophysiological processes
targetedbyGPCRs inOA,alongwith relatedpreclinicalmodels and/or
clinical trials data, and discussed the main challenges and
developments for these potential therapies. Further studies are
warranted to confirm the translatable symptomatic and long-term
benefits of candidate drugs. Meanwhile, expanding the knowledge of
the pathophysiological roles of agonists, antagonists or autoantibodies
forGPCRswill shed light on the biology of these receptors andprovide
new insights for potential therapeutic approaches.
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