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Background: Leptin, mainly secreted by fat cells, plays a core role in the regulation of
appetite and body weight, and has been proposed as a mediator of metabolic
programming. During pregnancy leptin is also secreted by the placenta, as well as
being a key regulatory cytokine for the development, homeostatic regulation and nutrient
transport within the placenta. South Asians have a high burden of type 2 diabetes, partly
attributed to a “thin-fat-phenotype”.

Objective: Our aim was to investigate how maternal ethnicity, adiposity and glucose- and
lipid/cholesterol levels in pregnancy are related to placental leptin gene (LEP) DNAmethylation.

Methods: We performed DNA methylation analyses of 13 placental LEP CpG sites in 40
ethnic Europeans and 40 ethnic South Asians participating in the STORK-Groruddalen cohort.

Results: South Asian ethnicity and gestational diabetes (GDM) were associated with
higher placental LEP methylation. The largest ethnic difference was found for CpG11
[5.8% (95% CI: 2.4, 9.2), p<0.001], and the strongest associations with GDM was seen
for CpG5 [5.2% (1.4, 9.0), p=0.008]. Higher maternal LDL-cholesterol was associated
with lower placental LEP methylation, in particular for CpG11 [-3.6% (-5.5, -1.4) per one
mmol/L increase in LDL, p<0.001]. After adjustments, including for nutritional factors
involved in the one-carbon-metabolism cycle (vitamin D, B12 and folate levels), ethnic
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differences in placental LEPmethylation were strongly attenuated, while associations with
glucose and LDL-cholesterol persisted.

Conclusions: Maternal glucose and lipid metabolism is related to placental LEP
methylation, whilst metabolic and nutritional factors largely explain a higher methylation
level among ethnic South Asians.
Keywords: Leptin, placenta, methylation, cholesterol, ethnicity, gestational diabetes
BACKGROUND

During normal pregnancy, physiological changes in maternal
body composition and glucose and lipid metabolism occur to
ensure appropriate supply of nutrients to the growing fetus (1).
After an initial small decrease in insulin resistance, fasting
glucose and lipid levels in early pregnancy, there is a
progressive increase in insulin resistance, triglycerides, high-
density lipoprotein (HDL) cholesterol and low-density
lipoprotein (LDL) cholesterol as pregnancy progress (2).
Glucose is the major nutrient required for fetal growth and is
primarily sourced from the maternal circulation and transported
across placenta by facilitated diffusion (1). Triglycerides are
hydrolysed by lipases on the maternal side of the placental
syncytiotrophoblast, and free fatty acids are released and taken
up by the placenta. Cholesterol is important for placental and
fetal growth and maturation and necessary for steroid hormone
synthesis, including estrogen. Cholesterol is probably mainly
delivered to the placenta by LDL-cholesterol, taken up by
endocytosis (3).

Leptin is a peptide hormone central for energy homeostasis. It
is secreted mainly by the adipose tissue, regulating energy
balance by inhibiting hunger (4). During pregnancy leptin is
also secreted from the placenta, and the maternal circulating
leptin levels increase substantially with increasing gestation (5, 6).
Within the placenta leptin has physiological effects on
placenta development including angiogenesis, growth and
immunomodulation, and there is support for it’s role in the
regulation of placental nutrient transport (e.g. glucose and
amino-acids), by up-regulating specific placental nutrient
transporter isoforms (5, 7). Expression of the leptin gene (LEP)
is regulated in parts by epigenetic mechanisms. Several CpG
islands are found in the LEP promoter region and methylation in
these regions will affect the LEP expression (7–11).

Across the life span, ethnic South Asians have a high burden
of type 2 diabetes and are diagnosed at a younger age and at a
lower BMI than ethnic Europeans (12, 13). The increased risk is
thought to be partly explained by South Asians being smaller and
thinner at birth, but with relatively more adiposity, a phenotype
that persists throughout life (14). This “thin-fat-phenotype” has
been partly related to “the double burden of malnutrition”,
defined as the simultaneous manifestat ion of both
undernutrition (primarily micronutrient deficiencies) and
overnutrition (increased adiposity, hyperlipidemia and
hyperglycemia), also during pregnancy (15). It is likely that the
placenta plays an important role for these relationships.
n.org 2
Studies of maternal obesity and diabetes have reported
inconsistent findings of methylation or gene expression in
placental tissue (16, 17). Most studies exploring epigenetic
mechanisms in placenta have been performed in Caucasian
populations, and some suggest that maternal obesity and
hyperglycemia are associated with hyper-methylation and hypo-
expression of the LEP gene in placenta (8, 10, 17). Few studies
have examined relations with maternal lipid concentrations or
micronutrient levels. Leptin has been proposed as a mediator of
metabolic programming. Given the differences in body
composition, as well as different exposures to socioeconomic
and nutritional factors across the life course, studying relations
between maternal adiposity, glucose and lipid metabolism and
placental LEP methylation in ethnic South Asian and European
mothers living in Europe could thus shed light on mechanisms
involved in developmental programming of metabolic diseases.

We therefore investigated the relationships of maternal
ethnicity (European vs. South Asian), adiposity, hyperglycemia
and lipid levels with placental DNA methylation in LEP, also
taking nutritional factors into account, in a well characterized
Norwegian cohort of pregnant women.
MATERIALS AND METHODS

Population and Design
Data are from a population-based cohort study of 823
presumably healthy pregnant women attending the Child
Health Clinics in three city districts in Groruddalen, Oslo,
Norway, for primary antenatal care from May 2008 to May
2010. The study design has been presented in detail elsewhere
(18). The women were included at <20 weeks’ gestation
(Mean=15, standard deviation (s.d.)=3) and reexamined at
28 ± 2 weeks’ gestation. All women were given oral and
written information about the Stork Groruddalen project when
attending the Child Health Clinics for antenatal care and invited
to participate. The women who chose to participate gave
informed written consent at inclusion, on behalf of themselves
and their offspring.

The women were eligible if they were: (1) living in one of the
three city districts, (2) would give birth at the study hospitals,
(3) in gestational week < 20, (4) not suffering from diseases
necessitating intensive hospital follow-up during pregnancy,
(5) not already included in the study with a previous
pregnancy lasting > 22 weeks, (6) could communicate (orally)
in Norwegian or one of the other eight languages, and (7) were
December 2021 | Volume 12 | Article 809916
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able to provide informed written consent. Overall participation
rate was 74% and the study cohort was representative for women
attending the Child Health Clinics with respect to ethnicity and
age, and fairly representative with respect to parity. Questionnaire
data (through interview) and fasting blood samples were collected
at both visits by specially trained study midwifes, supported by a
professional interpreter and translated material when needed. At
birth the weight of the baby was measured on calibrated
electronic scales and umbilical cord serum was collected and
frozen directly on -80°C.

Maternal Factors
The participants’ ethnic origin was defined by her country of
birth. If the participant’s mother was born outside Europe or
North America, country of origin was defined by the
participant’s mother’s country of birth (18). All women with
non-European ancestry were either born or had mothers born
outside Europe.

Maternal height was measured at enrollment to the nearest
0.1 cm with a fixed stadiometer (18). Body weight and estimated
body fat were measured with a bioelectrical impedance analysis
(BIA) scale (Tanita-BC 418 MA, Tanita Corporation, Tokyo,
Japan) at both visits with light clothing and without shoes. Pre-
pregnant body mass index (BMI, weight (kg)/height (m)2) was
calculated using pre-pregnant weight (self-reported at inclusion),
to the nearest kg, and measured height.

Parity was categorized as “primiparous” or “parous” (at
least one previous pregnancy lasting more than 22 weeks).
Maternal age was recorded in years at enrolment. Maternal
present socioeconomic position was a score derived from
a principal components analysis (PCA) of 11 different
demographic variables (19). The variables contributing most to
the score, were individual level data about education,
occupational class and employment status, and household
variables as own or renting tenure and rooms per person in
the household. This score was normally distributed (mean=0,
median=0.1, SD=1 range:-2.91 to 2.59). Maternal childhood
socioeconomic position was derived from a separate PCA of
three sociodemographic variables (family occupational class
(highest of mother and father), rooms per person in household
and family ownership of car, all referring to maternal age of 10
years), and was also normally distributed.

Biochemical Analyses
A standard 75 g oral glucose tolerance test (OGTT) was
performed at Visit 2 at 28 ± 2 weeks’ gestation. Women were
diagnosed with gestational diabetes (GDM) according to the
criteria recommended by the World Health Organization
(WHO) between 1999-2013 (fasting plasma glucose >7 mmol/L
or 2-hour glucose >7.8nmol/L) and given life style advise or
specialist follow-up according to guidelines. However, for the
present study we have defined GDM by the WHO 2013 criteria
(fasting glucose ≥5.1 mmol/l or 2-h glucose ≥8.5 mmol/l) (20).

Fasting triglycerides, HDL- and total cholesterol (all
measured in mmol/L) were analysed in serum, consecutively at
each study visit, with a colorimetric method (Vitros 5.1 FS, Ortho
clinical diagnostic at the routine laboratory at Akershus
Frontiers in Endocrinology | www.frontiersin.org 3
University Hospital). Serum 25-OH vitamin D was analysed by
competitive RIA (Dia-Sorin) at the Hormone Laboratory, Oslo
University Hospital. LDL-cholesterol was calculated using
Friedewald`s formula (21) as follows: LDL-cholesterol = total
cholesterol – HDL-cholesterol – (0.45 x triglycerides) mmol/L,
which correlate well with directly measured LDL both early and
late in pregnancy (r=0.97) (22). No women used lipid-lowering
agents at any visit. Maternal and umbilical cord S-leptin (pg/ml)
was analyzed in 2012 from biobanked (-80°C) material with the
Luminex xMAP technology (Millipore Corporation, Billerica,
MA, USA) at the Hormone Laboratory, Oslo University
Hospital. Serum vitamin B12 and folate were measured from
biobanked material in 2016, using electrochemiluminescence
(ECLIA) assays, Roche, at Medical Biochemistry, Oslo
University Hospital.

Placental Macroscopic Examinations
and Processing
Placentas were refrigerated immediately after birth. The next
working day placentas were macroscopically examined by a
placental pathologist according to a standardized protocol,
including weight before and after removal of membranes and
cord, length (largest diameter), width (smallest diameter),
thickness (central) and description of pathological changes.
Further, section samples from the umbilical cord, membranes
and two cross sections from macroscopic normal looking
placental tissue in the central part of the disc, cross sections
from pathological looking tissue and additional sections from the
maternal plate, were taken. Tissue sections were fixed in buffered
formalin and routinely processed and paraffin embedded (FFPE).
For this study, FFPE tissue from the cross-sections of central
normal looking placenta were used.

Placental Tissue Sample Preparation
DNA and RNA were purified using the Allprep DNA/RNA FFPE
Kit (Qiagen, Hilden, Germany) according to manufacturer’s
instructions. In the present study only DNA was further
analyzed. DNA quantity was obtained using Qubit™ dsDNA
HS Assay Kit (Invitrogen,Thermo Fisher Scientific, Waltham,
MA, USA). Samples were stored at -20°C until further processed.
Bisulfite conversion was performed using the EpiTect Fast DNA
Bisulfite Kit (Qiagen) according to manufacturer’s instructions.
In total, 500 ng of DNA was bisulfite converted for subsequent
pyrosequencing analyses, with exception of samples where
purified DNA concentrations were less than 20 ng/µl, where
300 ng of DNA was used.

Pyrosequencing
DNA methylation analyses of LEP and 13 CpG sites were
performed as described by Bekkering et al. (23) The CpG
annotation is also according to Bekkering et al. and the CpG
site locations relative to LEP transcription start site (TSS) and
nucleotide position are given in Table 1. Briefly, the PCR and
sequencing primers were ordered using PyroMark Custom Assay
(Qiagen). PCR amplification of the bisulfite converted DNA was
performed using the PyroMark PCR Kit (Qiagen) and 1µl
December 2021 | Volume 12 | Article 809916

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Sletner et al. Placental Leptin Gene Methylation
bisulfite template, and cycling conditions as described in the
PyroMark PCR Kit protocol.

Pyrosequencing was performed using the PyroMarkQ48
Autoprep (Qiagen) according to manufacturer’s instructions.
All reactions were conducted in duplicates and for each
sequencing run three controls, non-template (RNase-free
water), unmethylated DNA and methylated DNA, were
included. The two latter from the EpiTect PCR Control DNA
Set (Qiagen). All duplicates were restricted to a minimum
difference in % methylation of < 5%. If the criteria were not
met the samples were re-run. The mean percentage DNA
methylation was used per sample. The sequencing data for all
13 CpG sites in LEP were quality control checked by the
PyroMarkQ48 Autoprep software and the percentage of DNA
methylation were calculated. For samples where CpG site(s) did
not pass quality control, analyses were repeated until satisfactory
results were obtained. Two samples were excluded as they
repeatedly failed quality control.

Statistical Methods
Descriptives are given as mean (SD), median (IQR) and n (%) as
appropriate. We examined the correlation between the
methylation of the different CpGs using scatterplots and the
Pearson’s correlation coefficient. Univariate linear regression
analyses were first used to explore associations of maternal
factors, placental characteristics and circulating leptin with LEP
methylation (CpG 1-13). Based on these results we further
performed multivariate general linear model analyses to
explore the independent effects of the maternal factors of most
interest according to our aim (ethnicity, GDM, LDL-cholesterol
and fat mass) onLEP methylation, adjusting for clinically
important covariates; age, parity, socioeconomic status and
height. In a final model we also adjusted for maternal vitamin
B12, folate and 25-OH vitamin D levels. We assessed potential
interactions with ethnicity by examining scatterplots and by
performing our analyses stratified by ethnic group; first
univariate and then in the fully adjusted models. We also
entered interaction terms between ethnicity*GDM or
ethnicity*LDL-cholesterol, one by one into the fully adjusted
models. In sensitivity analyses we replaced “total fat mass at
enrollment” as the measure of maternal adiposity with either
Frontiers in Endocrinology | www.frontiersin.org 4
pre-pregnant BMI, total fat mass at 28 weeks’ gestation or
maternal sum of skinfolds, with similar results.

A priori, we planned to draw conclusions based on effect
estimates and their CIs, rather than statistical tests using an
arbitrary P-value cut-off. Nevertheless, in tables p-values <0.05
are written in bold and in figures the point estimates are marked
with * reflecting the precision of the estimate (* when p<0.05
but >0.01, ** when p ≤ 0.01 but >0.001 and *** when p<0.001).
All P-values given are uncorrected for multiple testing, i.e. we did
not take into account the number of CpG sites tested (N=13).
RESULTS

Sample Characteristics
Eligible for the present study were ethnic Western European and
South Asian mothers participating in the STORK-Groruddalen
cohort, with singleton pregnancies, gestational age ≥35 weeks
and a valid weight at birth, a macroscopic placenta examination
performed, and data regarding GDM from an oral glucose
tolerance test (OGTT), offered to all study participants (Figure
S1, Flow chart). From these we randomly chose 80 placentas, 40
European (36 with Norwegian and 4 with other Western
European background) and 40 South Asian (26 with Pakistani
and 14 with Sri Lankan or Indian background), with similar
numbers of boys and girls in both groups.

Characteristics of the study participants are presented in
Table 2. South Asian mothers were slightly younger, had a
lower early life and present socioeconomic position and were
shorter. They also had lower levels of vitamin B12, folate and 25-
OH vitamin D in early pregnancy. Mean body fat did not differ
significantly, while 2-hour glucose levels from the OGTT at 28
weeks’ gestation was slightly higher and LDL-cholesterol was
lower in the South Asians. Differences between the two ethnic
groups reflected the differences previously reported in the total
cohort (n=823) (6, 19, 20). +(Waage,et. al. submitted) South Asian
mothers also had smaller placentas, represented by a lower
weight and smaller length and width, but a similar thickness,
and birthweight of the offspring was lower (Table 2).

Associations Between Maternal Factors
and Placental LEP Methylation
The mean LEP methylation level in the placental tissue differed
considerably between the 13 LEP CpGs, ranging between 8%
(CpG3) and 63% (CpG11) (Table S1). The methylation of the
different CpGs were highly correlated with each other (Pearson’s
correlation coefficient >0.8), except for CpG11, which was less
correlated with CpG 1, 2, 3, 4, 7, 9 and 10, and for CpG5, which
was less correlated with CpG 2 and 3 (correlation coefficients
between 0.5-0.7) (data not shown). For all CpGs, the mean
placental methylation level was numerically higher in South
Asians than in Europeans, and the differences were significant
for 10 out of 13 CpGs (Figure 1 and Tables S2A–E). The largest
difference was observed for CpG11 (mean difference: 5.8% (95%
CI: 2.4, 9.2), p<0.001), followed by CpG5 (5.0% (1.3,
8.8), p=0.01).
TABLE 1 | The CpG site location relative to LEP transcription start site (TSS) and
nucleotide position.

CpG Location relative to TSS GRCh38.p7 CpG nucleotide position

CpG1 -127 chr7:128.241.151
CpG2 -123 chr7:128.241.155
CpG3 -118 chr7:128.241.160
CpG4 -115 chr7:128.241.163
CpG5 -100 chr7:128.241.178
CpG6 -95 chr7:128.241.183
CpG7 -85 chr7:128.241.193
CpG8 -74 chr7:128.241.204
CpG9 -71 chr7:128.241.207
CpG10 -62 chr7:128.241.216
CpG11 -51 chr7:128.241.227
CpG12 -38 chr7:128.241.240
CpG13 -33 chr7:128.241.245
December 2021 | Volume 12 | Article 809916
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Measures of placental size (weight, length, width or
thickness) were not consistently associated with LEP
methylation (Tables S2A–E). We also found no associations
with any of the measures of maternal adiposity (total fat mass at
enrollment, pre-pregnant BMI, total fat mass at 28 weeks’
gestation or maternal sum of skinfolds), or with circulating
s-leptin in maternal nor umbilical cord venous blood (Tables
S2A–E), in any of the two ethnic groups (data not shown).
Frontiers in Endocrinology | www.frontiersin.org 5
In univariate analyses GDM was associated with higher
placental LEP methylation, with higher levels for 8 out of 13
CpGs (Tables S2A–E). The strongest association was seen for
CpG5 (5.2% (1.4, 9.0), p=0.008, Table S2B), followed by CpG12
(4.6 (1.6, 7.5), p=0.003, Table S2D). However, while univariate
nominal associations with GDM were observed for 11 out of 13
CpGs in South Asians, only smaller, non-significant trends were
seen in Europeans (Table 3). Exploration of scatteplots and
TABLE 2 | Maternal and placental characteristics.

n Total sample n Western European n South Asian p

Maternal characteristics
Gestational week at enrollment 80 15.0 (3.3) 40 14.0 (2.2) 40 16.0 (3.8) 0.007
Gestational week at OGTTa 80 28.2 (1.1) 40 28.2 (1.3) 40 28.2 (0.9) 0.8
Age (years), mean (sd) 80 29.5 (4.6) 40 30.7 (4.5) 40 28.3 (4.3) 0.02
Parity (number of previous births) 80 40 40 0.2
Nullipara 30 (37%) 16 (40%) 14 (35%)
Para 1 36 (45%) 20 (50%) 16 (40%)
Para 2+ 14 (18%) 4 (10%) 10 (25%)
Born in Norway 80 40 (50%) 40 36 (90%) 40 4 (10%) <0.001
Childhood socioeconomic scoreb 79 0.02 (1.0) 40 0.72 (0.77) 39 -0.60 (0.67) <0.001
Present socioeconomic scorec 80 0.2 (0.8) 40 0.5 (0.7) 40 -0.2 (0.8) 0.001
Any smoking at OGTT 80 0 40 0 40 0 –

Height (cm) 80 164.7 (5.8) 40 168.0 (5.4) 40 161.3 (4.0) <0.001
Prepregnant BMI (kg/m2) 78 24.1 (3.9) 39 24.7 (3.7) 39 23.5 (4.0) 0.2
Total fat mass (kg) at enrollmentd 80 23.2 (8.4) 40 24.2 (8.5) 40 22.1 (8.2) 0.3
Sum of skinfolds (mm) at enrollmente 73 72.2 (19.6) 36 69.3 (20.5) 37 75.0 (18.5) 0.2
Nutritional factors (at enrollment)
Vitamin B12 (pmol/L) 79 247 (86) 39 268 (93) 40 227 (76) 0.03
Folate (nmol/L) 79 23.7 (10.9) 39 28.6 (9.6) 40 18.9 (10.0) <0.001
25OH-Vitamin D (nmol/L) 79 50.8 (27.7) 39 70.0 (22.7) 40 32.1 (17.4) <0.001
Glucose measures (at OGTT)
Gestational diabetesf 80 34 (43%) 40 15 (38%) 40 19 (48%) 0.4
Fasting glucose (mmol/L) 80 4.9 (0.6) 40 4.9 (0.6) 40 5.0 (0.5) 0.4
2-hour plasma glucose (mmol/L) 79 6.1 (1.4) 40 5.7 (1.2) 39 6.4 (1.5) 0.02
Lipids (at OGTT)
Fasting HDL (mmol/L) 79 1.9 (0.4) 39 2.0 (0.5) 40 1.8 (0.4) 0.2
Fasting LDL (mmol/L) 78 3.5 (0.9) 39 3.9 (0.8) 39 3.2 (0.9) 0.001
Fasting Triglycerides (mmol/L) 79 2.0 (0.8) 39 2.0 (0.8) 40 2.0 (0.7) 0.8
Placental characteristics
Weight (g) excl. cord and membr. 80 495 (115) 40 520 (116) 40 469 (110) 0.04
Thickness (cm) 77 2.5 (0.5) 38 2.6 (0.5) 39 2.6 (0.5) 0.9
The larger diameter (cm) 79 18.5 (2.1) 39 19.1 (2.3) 40 18.0 (1.8) 0.02
The smaller diameter (cm) 79 16.6 (2.0) 39 17.0 (1.8) 40 16.1 (2.0) 0.03
Morphological changes 80 14 (18%) 40 5 (13%)g 40 9 (23%)h –

Birth characteristics
Gestational age (days) 80 282 (10) 40 283 (10) 40 279 (10) 0.1
Birthweight (g) 80 3413 (550) 40 3583 (541) 40 3242 (511) 0.005
Serum leptin
S-leptin (pg/ml) at enrollment 80 1411 (912, 1998) 40 1116 (802, 1752) 40 1727 (1213, 2137) 0.07
S-leptin (pg/ml) at OGTT 78 1925 (1158, 3055) 40 1708 (970, 2457) 38 2225 (1380, 3089) 0.2
Umbilical cord S-leptin (pg/ml) 72 1980 (1056, 3463) 37 1982 (879, 3078) 35 1945 (1148, 4023) 0.7
D
ecember 2
021 | Volume 12 | Article
Numbers are mean (sd), n (%) or median (IQR) as appropriate. Differences between the two ethnic groups were assesses using Pearson Chi-Square tests or t-tests, as appropriate.
P-values for such possible differences are given in the right column. Significant differences are marked in bold.
aOGTT = Oral glucose tolerance test performed at 28 ± 2 weeks’ gestation (glucose measured fasting and 2 hours after drinking 75g glucose; to diagnose gestational diabetes)
GDM classified by WHO 2013 criteria = Fasting glucose ≥ 5.1 mmol/L or 2-hour glucose ≥ 8.5 mmol/L.
bScore extracted form a Principal Components Analyses of 3 demographic variables reflecting maternal socioeconomic status at age 10 years. Mean=0, median=0.1, SD=1 range:-2.91 to
2.59).
cScore extracted form a Principal Components Analyses of 11 demographic variables reflecting maternal socioeconomic status at enrolment.
dMeasured with a bioelectrical impedance analysis (BIA) scale (Tanita-BC 418 MA).
eSum of suprailiac, triceps and subscapular skinfolds, measured by Holtain T/W Caliper 0-48mm (Holtain Ltd., Crymych; UK).
fAs defined by the WHO 2013 criteria (fasting glucose ≥5.1 mmol/l or 2-h glucose ≥8.5 mmol/l).
gTwo placentas with signs of chorioamnionitis, three placentas with small infarctions (<5% of volume).
hOne placenta with signs of chorioamnionitis, six placentas with small infarctions (five < 5% of volume, one 25% of volume), one placenta with signs of vilitis.
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univariate analyses did not indicate similar differential effects of
LDL-cholesterol in the two ethnic groups.

Regarding maternal lipids, higher fasting LDL-cholesterol levels
at 28 weeks’ gestation was associated with lower placental LEP
methylation in 12 out of 13 CpGs (Tables S2A–E). The strongest
association was seen for CpG11, where one mmol/L increase in
LDL-cholesterol was associated with 3.6% (-5.5, -1.4) lower
methylation (p<0.001, Table S2D), followed by CpG5 (-3.2%
(-5.3, -1.2, p=0.003), Table S2B). HDL-cholesterol was not
consistently associated with LEP methylation, although nominally
negatively associated with CpG11methylation (p=0.03). For fasting
triglycerides, we observed no significant associations with DNA
methylation for any of the 13 CpG sites in LEP.

Using multivariate linear models we further examined the
independent effects of ethnicity and metabolic factors on
Frontiers in Endocrinology | www.frontiersin.org 6
placental LEP methylation. As the strongest associations with
ethnicity were found for CpG11, 5 and 13, results from
multivariate are shown for these three CpGs in Tables 4A–C.
However, similar results are shown for all CpGs in Table S3. As
described above, South Asian ethnic origin and GDM were
positively and LDL-cholesterol negatively associated with the
LEP methylation level in univariate analyses. After mutual
adjustments, and adjustments for maternal age, height, early
life socioeconomic position and parity, GDM and LDL-
cholesterol remained significantly associated with the
methylation level, while the effect estimate for ethnicity was
attenuated and no longer significant (Table 4, Model 1). When
further adjusting for maternal vitamin D, B12 and folate status,
the association with ethnicity disappeared (Table 4, Model 2),
the association with GDM was somewhat attenuated and only
FIGURE 1 | Mean placental LEP methylation (95% CI) in ethnic European and South Asian women.
TABLE 3 | Mean % placental LEP methylation (95% CI) of CpG 1-13 in ethnic European and South Asian women with and without GDM.

Europe South Asia

non-GDM GDM non-GDM GDM
n = 25 n = 15 p n = 21 n = 19 p

CpG1 11.5 (9.4, 13.6) 12.8 (10.1, 15.5) 0.5 12.6 (10.4, 14.9) 17.3 (14.9, 19.7) 0.007
CpG2 15.5 (13.3, 17.7) 15.9 (13.2, 18.6) 0.8 16.5 (14.2, 18.8) 20.3 (17.8, 22.7) 0.04
CpG3 7.2 (6.1, 8.4) 8.4 (6.9, 9.9) 0.2 8.1 (6.9, 9.4) 9.8 (8.4, 11.3) 0.08
CpG4 12.8 (10.5, 15.0) 14.5 (10.5, 15.0) 0.4 14.3 (11.9, 16.6) 17.8 (15.2, 20.4) 0.04
CpG5 26.0 (22.7, 29.3) 28.7 (24.1, 33.2) 0.4 29.1 (25.8, 32.4) 35.4 (31.7, 39.1) 0.01
CpG6 18.4 (15.5, 21.3) 18.3 (14.9, 21.7) 0.9 20.0 (17.1, 22.9) 25.3 (22.0, 28.6) 0.02
CpG7 11.2 (9.1, 13.3) 12.7 (10.2, 15.2) 0.4 12.4 (10.3, 14.6) 14.9 (12.4, 17.3) 0.1
CpG8 14.1 (11.7, 16.6) 14.7 (11.5, 17.8) 0.8 15.7 (13.1, 18.3) 19.9 (17.1, 22.7) 0.03
CpG9 12.1 (10.1, 14.1) 13.2 (10.5, 15.8) 0.5 13.7 (11.6, 15.8) 17.7 (15.5, 20.0) 0.02
CpG10 11.8 (9.8, 13.8) 12.4 (9.9, 14.9) 0.7 13.7 (11.6, 15.8) 17.8 (15.6, 20.1) 0.01
CpG11 60.7 (57.7, 63.8) 62.9 (59.1, 66.7) 0.4 65.3 (62.1, 68.5) 69.7 (57.7, 63.8) 0.03
CpG12 19.5 (16.9, 22.0) 22.5 (19.2, 25.7) 0.2 21.5 (18.9, 24.1) 27.3 (24.3, 30.3) 0.004
CpG13 20.8 (17.8, 23.9) 21.6 (18.0, 25.2) 0.7 22.9 (20.0, 25.9) 28.4 (25.1, 31.7) 0.02
Decembe
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p-values represents the significance level for the difference between GDM and non-GDM from univariate general linear models (similar to t-tests). Significant differences are written in bold.
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borderline significant while the association with LDL-cholesterol
remained significant. In fully adjusted models higher maternal
folate was associated with higher LEP metylation.

Last, we checked for interactions with ethnicity, by entering
interaction terms ethnicity* GDM or ethnicity*LDL-cholesterol
one by one into the fully adjusted models. No significant
interactions were observed (p>0.3 for all, and >0.7 for CpG5
and CpG11). We also performed multivariate analyses stratified
by ethnic group. Although not significant in all, effect estimates
for GDM, LDL-cholesterol, adiposity and nutritional factors
were similar across the two ethnic groups (data not shown). In
supplementary analyses, exchanging GDM with maternal fasting
or 2-hour glucose as explanatory factors, we found similar results
as when using GDM (Tables S4A–C).
DISCUSSION

As far as we are aware, this is the first study exploring ethnic
differences in placental LEP methylation, and relationships with
both maternal glycaemia, lipid levels and adiposity. We found
Frontiers in Endocrinology | www.frontiersin.org 7
that South Asian ethnic origin and maternal GDM were
associated with higher placental LEP methylation, while higher
LDL-cholesterol was associated with lower LEPmethylation. The
strongest associations with these three maternal factors were
found for CpG11 and CpG5, which are known binding sites for
important transcription factors. Ethnic differences were,
however, strongly attenuated and no longer significant when
adjusting for metabolic factors and vitamin status. In contrast,
measures of placental size, maternal adiposity or circulating
leptin levels were not associated with placental LEP methylation.

Leptin is involved in the regulation of multiple aspects of
maternal metabolic homeostasis (7). Furthermore, leptin has been
shown to also be important for placentation and maternal–fetal
exchange processes (5). We did not find any associations between
maternal or fetal circulating levels of leptin and placental LEP
methylation. Hence, placental LEP methylation seems to be
related to other factors than maternal and offspring leptin levels.

To the best of our knowledge, no other studies have so far
investigated variations in placental LEP methylation across
different ethnic groups. Limited information also exists from
other tissues. A study from US comparing whole blood LEP
TABLE 4 | Associations between maternal factors and placental LEP CpG5, CpG11 and CpG13 methylation.

Table 4a | Associations with CpG5 methylation.

Univariate Model 1 Model 2

b (95% CI) p b (95% CI) p b (95% CI) p
South Asian ethnicity 5.0 (1.3, 8.8) 0.01 2.9 (-3.6, 9.4) 0.4 1.4 (-5.9, 8.7) 0.7
Gestational diabetes 5.2 (1.4, 9.0) 0.008 4.8 (0.6, 8.9) 0.03 4.0 (-0.1, 8.1) 0.05
Fat mass (kg) 0.0 (-0.2, 0.3) 0.9 -0.1 (-0.4, 0.2) 0.6 -0.0 (-0.3, 0.3) 0.9
LDL cholesterol -3.2 (-5.3, -1.2) 0.003 -2.1 (-4.3, 0.2) 0.07 -2.8 (-5.0, -0.6) 0.02
Vitamin B12 -0.01 (-0.04, 0.02) 0.5 -0.02 (-0.05, 0.25) 0.2
Folate -0.00 (-0.19, 0.18) 1 0.26 (0.05, 0.48) 0.02
Vitamin D -0.08 (-0.15, -0.01) 0.02 -0.07 (-0.17, 0.04) 0.2

Table 4b | Associations with CpG11 methylation.

Univariate Model 1 Model 2
b (95% CI) p b (95% CI) p b (95% CI) p

South Asian ethnicity 5.8 (2.4, 9.2) 0.001 3.8 (-1.5, 9.1) 0.2 0.7 (-5.1, 6.5) 0.8
Gestational diabetes 3.8 (0.2, 7.3) 0.04 3.9 (0.2, 7.5) 0.04 2.7 (-0.9, 6.3) 0.1
Fat mass (kg) -0.1 (-0.3, 0.2) 0.6 -0.1 (-0.4, 0.1) 0.4 -0.1 (-0.3, 0.2) 0.6
LDL cholesterol -3.6 (-5.5, -1.8) <0.001 -2.5 (-4.4, -0.5) 0.02 -3.1 (-5.1, -1.2) 0.002
Vitamin B12 -0.01 (-0.04, 0.01) 0.2 -0.02 (-0.04, 0.01) 0.1
Folate -0.07 (-0.24, 0.10) 0.4 0.15 (-0.02, 0.32) 0.09
Vitamin D -0.10 (-0.17, -0.04) 0.001 -0.07 (-0.16, 0.02) 0.1

Table 4c | Associations with CpG13 metylation.

Univariate Model 1 Model 2
b (95% CI) p b (95% CI) p b (95% CI) p

South Asian ethnicity 4.2 (0.9, 7.5) 0.01 4.3 (-0.9, 9.6) 0.1 3.6 (-2.2, 9.5) 0.2
Gestational diabetes 3.4 (0.05, 6.8) 0.04 4.4 (0.8, 8.0) 0.02 3.4 (-0.3, 7.1) 0.07
Fat mass (kg) -0.1 (-0.3, 0.1) 0.3 -0.2 (-0.4, 0.02) 0.07 -0.1 (-0.4, 0.1) 0.4
LDL cholesterol -2.4 (-4.3, -0.6) 0.01 -1.5 (-3.4, 0.5) 0.1 -2.2 (-4.2, -0.3) 0.03
Vitamin B12 -0.01 (-0.04, 0.01) 0.2 -0.02 (-0.04, 0.01) 0.2
Folate 0.03 (-0.13, 0.19) 0.7 0.22 (0.04, 0.40) 0.02
Vitamin D -0.05 (-0.11, 0.01) 0.1 -0.02 (-0.11, 0.07) 0.7
Decembe
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Betas are effect estimates from univariate and multivariate general linear models, adjusting for covariates. Significant effects (p < 0.05) are written in bold.
Model 1: Variables included in the model: ethnicity, age, height, early life socioeconomic position, parity, gestational diabetes, total fat mass and LDL-cholesterol.
Model 2: Variables included in the model: ethnicity, age, height, early life socioeconomic position, parity, gestational diabetes, total fat mass, LDL-cholesterol, vit B12, folate and 25-OH Vit D.
09916

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Sletner et al. Placental Leptin Gene Methylation
methylation in adults and children with Northern European vs
Vietnamese (East Asian) origin showed a lower methylation level
in ethnic Vietnamese participants (24). Interestingly, in line with
our data they also found the largest difference in the CpG-site
that corresponds to our CpG11. However, the relationship to
ethnicity was in the opposite direction compared to our findings
in placentas from South Asian mothers. We can only speculate as
to whether this merely reflects that methylation is tissue-specific,
or whether it could be related to differences between these two
Asian sub-groups.

Consistently, higher DNA methylation levels in South Asians
were observed across all CpG sites investigated in the present
study, suggesting a general hypermethylation of LEP in placentas
of South Asians compared with individuals of European descent.
The mechanistic background remains elusive, but could partly be
due to genetic factors, as genetic variation may partly influence
DNA methylation, e.g. by SNP markers introducing or deleting
CpG sites (25, 26). However, people belonging to different ethnic
groups may also differ on several other environmental factors not
captured by genetic ancestry. For example, changes in the
methylation of LEP have been observed in blood cells in adults
exposed to famine when in-utero (27). In our study, 90% of the
women with South Asian ancestry were born in Pakistan, India
or Sri Lanka, classified as low or middle income countries, and
had a lower socioeconomic position in childhood, compared
with women of European origin. Although we did not find
significant associations with maternal height or early life
socioeconomic position, this could potentially have
induced adaptive effects on regulatory mechanisms within
the placenta.

In our cohort of pregnant women with expected normal
pregnancies, all women were offered screening for GDM, and
the majority hence had a relatively mild GDM (20). Nevertheless,
we found that GDM was associated with higher LEP
methylation. This is in line with some previous studies (17,
28). One study by Lesseur et al., obtaining GDM status from
medical charts, found that placentas from mothers with GDM
had 2.5% higher LEP methylation levels than in mothers not
diagnosed with GDM (28). This effect estimate was slightly
smaller than in our study. In another study by Bouchard et al.
they found that in women with impaired glucose tolerance,
placental leptin gene DNA methylation levels were associated
with maternal 2-h glucose levels. However, this association
depended on the placental site the tissue was sampled from
(10). The different methodology makes direct comparison with
our findings difficult and illustrates the complexity involved in
these relationships.

In contrast to our findings, Lesseur et al. reported an
association between maternal obesity and placental LEP
methylation, and that this was largely mediated through an
effect on GDM (28). Further, a study from France observed
placental hypermethylation and hypoexpression of LEP in
relation with maternal obesity (8), while a study from Spain
did not find any obesity-related changes in placental LEP
expression (29). We found no differences in placental LEP
methylation across various levels of maternal adiposity. These
Frontiers in Endocrinology | www.frontiersin.org 8
findings were similar in the two ethnic groups and across
different measures of adiposity, suggesting that adiposity is not
the primary explanation for the observed associations with
ethnicity and glucose- and lipid metabolism.

We have not been able to find any previous studies exploring
associations between maternal lipid/lipoprotein levels and
placental LEP methylation. A study by Houde et al. did show
that in severely obese non-pregnant adults, LDL-cholesterol
levels were positively associated with LEP methylation levels
both in whole blood and in adipose tissue, suggesting that LDL-
cholesterol might be involved in the epigenetic regulation of
leptin (30). However, the positive associations were, in contrast
to the negative association observed in placental tissue in our
study. LDL-cholesterol is possibly the most important source of
cholesterol for the fetus (3). A recent Norwegian in vivo study
showed that fetal cholesterol uptake was related to the
uteroplacental uptake of cholesterol from LDL-cholesterol,
suggesting that the placenta influences maternal-fetal
cholesterol transfer (31). Some previous studies have indicated
that leptin plays a role in the regulation of placental glucose and
amino-acid transport, by up-regulating specific placental
nutrient transporter isoforms (5). From our finding we could
thus speculate that placental leptin may also be involved in the
regulation of LDL-cholesterol transport in the placenta.

Interestingly, in the study by Houde et al., as in our study, the
strongest associations with LDL cholesterol were found for the
two CpG sites that corresponds to our CpG11 and CpG5. In our
study the strongest relations with ethnicity and GDM were also
seen for CpG11 and CpG5. Methylation of these two CpGs, and
in particular CpG11, were less correlated with the metylation of
other CpGs. These two CpGs are located at binding sites for
known transcription factors (32). CpG5 is located at the binding
site for the specificity protein 1 (SP1), known to be involved in
the LEP gene expression regulation in adipocytes (32, 33),
especially in the induction of leptin by insulin-stimulated
glucose metabolism as reported by Moreno-Aliaga et al. (34)
Further, CpG11 is located at a binding site for CCAAT/enhancer
binding protein-a (CEBPA). The gene coding for CEBPA is
considered a core regulatory gene in the control of adipogenesis
(11). Binding of CEBPA at this site highly activates the
transcription of LEP, and methylation of this site has been
shown to repress transcription of the LEP gene (32, 35). Our
results support that also in placental tissue it is likely that these
sites are subject to regulatory mechanisms and changes in gene
expression affected by maternal glucose metabolism, and thus
could have important functions during pregnancy beyond its
accepted action on maturation of adipocytes for energy storage
(7). However, our findings further suggest that the regulation of
LEP expression in placental tissue differs from blood and
adipose tissue.

In univariate stratified analyses we found that effect estimates
for the association between GDM and placental LEPmethylation
were nominally larger, and only significant for South Asians. We
could speculate that this finding reflect that GDM in South
Asians to a larger extent represent pre-gestational dysglycemia
and hence more “severe” GDM. We had limited statistical power
December 2021 | Volume 12 | Article 809916
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to do formal interaction analyses and to test direct vs. indirect
effects of the different exposures. However, interaction analyses
and stratified analyses in fully adjusted models did not suggest
that the effects of GDM, LDL-cholesterol and nutritional factors
differed between the two ethnic groups. This indicate that the
suggested stronger effect of GDM in South Asians from
univariate analyses are mainly related to differences in
other covariates.

In our study, South Asian mothers had lower levels of vitamin
D, B12 and folate than ethnic European mothers in early
pregnancy. Folate and vitamin B12 are key factors in
generating methionine that represents a major source of S-
adenosylmethionine (SAM), the major methyl-donating
substrate for DNA methylation, and hence strongly influences
DNA methylation levels (36). Also, vitamin D has effects on
genome wide DNA methylation levels and was recently reported
to influence long-chain polyunsaturated fatty acids and oxidative
stress in the placenta via one-carbon metabolism (37). The
relations between nutritional factors and the methylation of
regulatory cytokines in placenta is likely very complicated,
where not only the level of each nutritional factor itself, but also
the combination of different factors may be important (38, 39).
Differences in vitamin levels could also be proxy measures of other
complex life-style factors. Nevertheless, our findings suggest that
nutritional factors may be involved in the regulation of key
placental cytokines also in generally well-nourished multi-ethnic
European populations.

The present study has several strengths. First, we have studied
relationships with LEPmethylation in two distinct ethnic groups,
known to have different metabolic phenotypes, participating in
the same cohort study, ruling out methodological issues to
explain observed ethnic differences. Second, this cohort of
pregnant women were followed from early pregnancy, and we
have an extensive maternal dataset, including information about
early life socioeconomic conditions, lipids/lipoproteins, glucose
data from universal screening of GDM, different measures of
adiposity and micronutrient status, specifically vitamins known
to be involved in the one-carbon metabolism cycle, and more.
Nevertheless, there are also important limitations to the study.
We had a relatively small sample size, which limited our power;
e.g. for interaction analyses and to test direct vs. indirect effects.
Although transversal tissue sections from the central placenta
will mainly consist of tissue from the fetal compartment
(chorionic plate, villi), it could possibly also contain smaller
amounts of tissue of maternal origin (intervillous space and basal
plate). Moreover, even within fetal tissue different cell types may
be present. As methylation is cell-type specific, this could have
implications for our results. However, in our study such
differences between placental samples should occur completely
at random, and would thus not explain the observed associations
with ethnicity or lipid and glucose levels. As we observed similar
patterns of associations with ethnicity, GDM and LDL-
cholesterol across all CpGs, and we consider this study as
exploratory and hypothesis generating, we did not correct the
p-values for multiple testing, i.e. we did not take into account the
number of CpG sites tested (N=13). If we had applied Bonferroni
Frontiers in Endocrinology | www.frontiersin.org 9
correction for association analyses, the study-specific significance
threshold for the analyses would have been lowered to P=0.0038
(0.05/13). Some of the observed associations would hence still
be significant.
CONCLUSIONS

The relationships between maternal factors, placental function
and fetal development are probably mediated through a complex
system likely affected by genomic differences and adaptive
processes. Leptin is considered a key regulatory cytokine
within the placenta. Our findings suggest that maternal glucose
and cholesterol metabolism in pregnancy can alter placental LEP
metylation, in particular at some CpG sites which are known as
binding sites for important transcription factors. Further, our
results indicate that differences in maternal metabolism and
nutritional status between ethnic Europeans and South Asians
could explain most of the ethnic variation in placental LEP
methylation. Understanding the impact of maternal metabolic
and nutritional factors on placental epigenetic marks is
particularly important given the current rise in prevalence of
obesity, GDM and type 2 diabetes, not least in the South Asian
population, and the possible consequences on later-life
disease susceptibility.
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