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PTH1R Actions on Bone Using the
cAMP/Protein Kinase A Pathway
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Department of Medicine, St Vincent’s Institute of Medical Research, St Vincent’s Health, University of Melbourne,
Fitzroy, VIC, Australia

After the initial signaling action of parathyroid hormone (PTH) on bone was shown to be
activation of adenylyl cyclase, its target was found to be cells of the osteoblast lineage, to
the exclusion of osteoclasts and their precursors. This led to the view that the osteoblast
lineage regulated osteoclast formation, a proposal that was established when the
molecular mechanisms of osteoclast formation were discovered. This is in addition to
the effect of PTH1Rv signaling throughout the osteoblast differentiation process to favour
the formation of bone-forming osteoblasts. Initial signaling in the PTH target cells through
cAMP and protein kinase A (PKA) activation is extremely rapid, and marked by an
amplification process in which the later event, PKA activation, precedes cAMP
accumulation in time and is achieved at lower concentrations. All of this is consistent
with the existence of “spare receptors”, as is the case with several other peptide
hormones. PTH-related protein (PTHrP), that was discovered as a cancer product,
shares structural similarity with PTH in the amino-terminal domain that allows the
hormone, PTH, and the autocrine/paracrine agent, PTHrP, to share actions upon a
common G protein coupled receptor, PTH1R, through which they activate adenylyl
cyclase with equivalent potencies. Studies of ligand-receptor kinetics have revealed that
the PTH/PTH1R ligand-receptor complex, after initial binding and adenylyl cyclase
activation at the plasma membrane, is translocated to the endosome, where adenylyl
cyclase activation persists for a further short period. This behavior of the PTH1R
resembles that of a number of hormones and other agonists that undergo such
endosomal translocation. It remains to be determined whether and to what extent the
cellular effects through the PTH1R might be influenced when endosomal is added to
plasma membrane activation.
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INTRODUCTION

The adenylyl cyclase (AC) complex is an essential component of information transfer to the interior
of cells. Under the influence of specific receptor-related events it catalyses the formation of cAMP, a
process that is regulated by either stimulatory or inhibitory guanine nucleotides (1). A wide range of
intracellular processes are influenced by cAMP, mainly through activation of cAMP-dependent
protein kinase (PKA) (2). In this manuscript the initial actions of parathyroid hormone (PTH) on
n.org January 2022 | Volume 12 | Article 8332211
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cAMP through the PTH1 receptor (PTH1R), a G protein-
coupled receptor (GPCR), will be considered, with the aim of
relating these to later events in target cells. Early work describing
the effects and attempting to determine molecular mechanisms
will be discussed, as well as the conclusions from those studies
and their how they fit into modern concepts developed as a result
of new methods of studying the trafficking and actions of
proteins in cells.
PTH ACTIONS ON THE CELLS OF BONE

Soon after discovery of the importance of cAMP in signal
transduction, the stimulation of adenylyl cyclase (AC) and
generation of cyclic AMP (cAMP) in response to parathyroid
hormone (PTH) were demonstrated in vitro in rat bone (3) and
in kidney (4). Direct effect of a parathyroid - derived substance
on bone had been shown when pieces of parietal bone
transplanted to the cranial cavity of mice, together with
parathyroid tissue, underwent resorption on the side towards
the parathyroid (5). When ultimately PTH was purified and
active peptides synthesized, ample evidence was obtained from
organ culture that PTH stimulates bone resorption (6, 7).
Together with the bone resorptive effect of dibutyryl cAMP in
vitro (8), these and other findings pointed to a role of cAMP in
mediating the resorptive action of PTH on bone. For example,
both PTH and prostaglandins increased cAMP production in
osteoblastic cel ls , and exogenous cAMP analogues,
phosphodiesterase inhibitors and cholera toxin reproduced the
resorbing actions of each of these (9, 10).

It was noted that the initial actions of PTH were indeed on the
osteoblast lineage, from which bone is formed, without any
evidence of direct action on osteoclasts, that are derived from
hemopoietic precursors and are responsible for the resorption of
bone. Nevertheless the stimulation of osteoclastic resorption by
PTH in vitro and in vivo was beyond doubt. Studies in isolated
bone cell populations and in osteosarcoma cells that are
phenotypically osteoblastic, showed repeatedly that as well as
PTH, the best characterized bone resorbing factors (e.g.
prostaglandins. IL-6, IL-1. 1,25-dihydroxyvitamin D3), had
receptors and/or direct responses in osteoblastic cells. This lack
of direct action on osteoclasts by analogs of PTH and several
prostaglandins and their metabolites (11–13) continued to be
noted when it became possible to study freshly isolated
osteoclasts in vitro (14). These findings provided the basis for
the hypothesis that cells of the osteoblast lineage might be the
first point of action of the bone resorbing hormones (12, 15, 16),
and that the stimulation of osteoblast lineage cells results in
activities that increase the number and activity of osteoclasts (17)

Evidence in support of this hypothesis was gathered over the
next several years. First to be established was that bone resorbing
agents stimulate resorption by a mechanism that required the
presence of osteoblastic cells that made contact with the osteoclast
precursors (14, 18, 19). Most importantly, the formation of
osteoclasts under the influence of bone resorbing agents was
also shown to require contact between osteoblast lineage cells
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and hemopoietic precursors of osteoclasts. This was achieved
using a simple experimental design, of growing osteoblast-rich
cells from mice together with osteoclast precursors from bone
marrow or spleen either together on the same surface or separated
by a cell-impermeable filter (20). The introduction of the filter
blocked osteoclast formation (20).

The understanding of cell communication processes revealed
by this work over several years, together with the methods that
were developed, led to the discovery of osteoprotegerin (OPG), a
soluble member of the TNF receptor superfamily expressed by the
Tnfrsf11b gene, revealing it as a powerful inhibitor of osteoclast
formation expressed by osteoblasts (21, 22). This provided the
means of identifying and cloning of the TNF ligand family
member, Receptor Activator of Nuclear Factor kB Ligand
(RANKL) (Tnfsf11) (23, 24) that is the essential mediator of
osteoclast formation and activity, and production of which is
increased by activation of the PTH1R (25, 26). RANKL binds to its
receptor RANK (Tnfsrf11a), on osteoclast precursors, thereby
initiating signaling essential for osteoclast differentiation. The
decoy receptor, OPG, has an essential physiological role as a
paracrine inhibitor of osteoclast formation, produced by the
osteoblasts and binding RANKL to limit its activation of
osteoclast formation. Thus it was established and confirmed that
the cAMP/PKA signaling pathway mediated the resorptive action
of PTH through stimulation of RANKL production via the
PTH1R in appropriate cells in the osteoblast lineage (27).

Subsequently it emerged that cAMP/PKA signaling was also
the major regulatory pathway mediating the anabolic action of
PTH. It had been shown many years earlier by Selye (27) and
Albright (28) that in contrast to its resorptive effect, when PTH
was given by daily injection to animals it had an anabolic effect
on the skeleton. These observations were eventually revived in a
study in human subjects (29) that foreshadowed the double-
blind clinical trial that led to approval for osteoporosis therapy in
several countries of PTH (1–34) (teriparatide) for the treatment
of osteoporosis (30). Approvals were also obtained somewhat
later for clinical use of PTH (1–84) and for an analog of PTH
(abaloparatide) (31).

Several lines of evidence suggested that cAMP/PKA signaling
was also central to this anabolic effect (e.g (32, 33). Analogs of
PTH with restricted signaling capacities were used to indicate
that the dominant pathway for the PTH anabolic effect through
its receptor is cAMP/PKA signaling (34). The anabolic skeletal
effect through PTH1R signaling requires that the agonist be
delivered intermittently (usually daily), reaching a peak in the
circulation within an hour and declining to baseline within 3
hours (35–37). Thus, while short daily exposure to PTH1R
stimulation favours an anabolic effect on bone cells that entails
osteoblast differentiation and bone formation, when PTH1R
stimulation is maintained by infusion, high dose, or by rapidly
repeated injections, this results in osteoclast formation and bone
resorption. Thus the production of cAMP through activation of
the PTH1R in cells of the osteoblast lineage results in specific
outcomes in two different cell lineages. One is a direct effect to
favour osteoblast differentiation, beginning early and acting
throughout the mesenchymal osteoblast lineage, the other is an
January 2022 | Volume 12 | Article 833221
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indirect effect on the hemopoietic lineage mediated
predominantly by increased production of RANKL and
decreased production of OPG in osteoblast lineage cells that
are near to hemopoietic precursors of osteoclasts (Figure 1).
EARLY EVENTS IN cAMP AND PROTEIN
KINASE A ACTIVATION IN OSTEOBLASTS

The realization that control of cAMP early in the cell response in
the osteoblast lineage is a key event in both the resorptive and the
anabolic response of PTH required detailed analysis of these
early events in cell activation.

It was considered that the major, if not the only, mechanism of
cAMP action in mammalian cells was through stimulation of
cAMP – dependent protein kinase A (PKA). We therefore
focussed on this connection by studying PTH action on
osteoblast-rich cultures from newborn rat calvaria and on clonal
rat osteogenic sarcoma cells that expressed many phenotypic
features of osteoblasts. Both PTH and prostaglandins acted on
their individual receptors to promote AC activity and increase
cAMP formation dose-dependently in these cells (38–41). Each
agonist at low concentrations rapidly activated total PKA
activity (Figure 2A).

A notable feature seen with both PTH and PGE2 was that PKA
activation was a much more sensitive response than that of total
cell cAMP concentration (43). Activation of PKA was rapid,
reaching maximum within 30 to 60 secs, with readily
demonstrable activation taking place even before increases in
total cell cAMP could be detected (42, 43). This is shown for
PTH in osteogenic sarcoma cells and mouse calvarial osteoblasts
(Figure 2A), with very similar data obtained with prostaglandin E2
(43). The data implied that only a fraction of the total amount of
cAMP that can be generated by hormone stimulation is necessary
to activate the protein kinase. The rapid PKA activation took place
Frontiers in Endocrinology | www.frontiersin.org 3
at extremely low total cell cAMP and reached its peak at agonist
concentrations less than those required for maximum cAMP
(Figure 2B). Specificity of the PKA effect was shown by its
complete inhibition when the protein kinase inhibitor peptide
(PKI) (44) was included in the cell isolation and incubation
buffer (Figure 2B).

This data was similar to that obtained consistently with other
hormones, including the steroidogenic hormones, human chorionic
gonadotrophin (hCG) and luteinizing hormone (LH), in ovary and
testis (45–47) and adrenocorticotrophin (ACTH) in adrenal (48). In
the case of testis Leydig cells, for example (49), the cell-specific
response of testosterone to LH increases at hormone concentrations
that cause no measurable increase in cAMP, whereas the activation
of PKA by LH is very closely linked to the changes in testosterone
(Figure 3). In experiments in Leydig and adrenal cells (46) and in
freshly isolated bone cells (50), cAMP occupancy of binding sites
was measured in relation to total cellular cAMP generated in
response to LH, adrenocorticotrophic hormone (ACTH) and
PTH respectively. As cellular cAMP increased with hormone
treatment, so too cAMP binding site occupancy increased. When
the latter reached maximum, reflecting full activation through the
PKA pathway, total cell cAMP continued to increase. These results
suggest that physiological regulation of bone cell metabolism may
require only modest changes in cAMP concentration, and that more
cAMP is generated than is required for known specific molecular
actions. For that reason, measurements of total cell cAMPmight not
be a reliable indicator of cell activity taking place in response to
GPCR stimulation.

The conclusion from the work of these several authors was
that the dissociation between cAMP and agonist response is
striking and consistent, and likely to be due to extremely small
changes in cAMP that transmit signals arising from activation of
the receptor complex in target cells (46). With the hormone-
responsive steroidogenic tissues a signaling response (steroid
production) takes place relatively soon after receptor interaction
FIGURE 1 | cAMP/PKA/CREB regulation in the osteoblast lineage through PTH1R results in directions along two main pathways. These can be direct effects on
osteoblast differentiation and activity throughout the osteoblast lineage leading to increased bone formation, and indirect effects on osteoclast formation from
precursors and their activity, mediated by RANKL production (see text).
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and activation of PKA. On the other hand, signaling read – outs
in the case of PTH1R activation of the osteoblast lineage are seen
much later, and intermediate steps of regulated gene expression
are poorly defined. This was the case when these studies on
activation of PKA were carried out (43, 51, 52), and it remains
so today.
Frontiers in Endocrinology | www.frontiersin.org 4
This is relevant to the actions through the cAMP pathway
that are summarized in Figure 1. The direct action through
PTH1R to promote osteoblast differentiation and increase bone
formation requires activation of many genes. The indirect effect
to promote osteoclast formation requires specific actions on
RANKL and OPG expression in cells of the osteoblast lineage
FIGURE 2 | Total cellular cAMP (in red) and activation of PKA (in black) in UMR106 osteogenic sarcoma cells and primary mouse calvarial cells. (A) dose-responsive
effects of PTH after 60 seconds. (B) Activation of PKA by PTH (1–34) in relation to cAMP generation at 60 seconds, and specific inhibition of phosphorylation by
heat-stable protein kinase inhibitor (PKI) (from (42) with permission).
FIGURE 3 | Leydig cells; effect of treatment with luteinizing hormone on PKA activity after 20 mins, cAMP and testosterone after 2 hours (from (49) with permission).
January 2022 | Volume 12 | Article 833221
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that are located close to hemopoietic precursors. Whether the
anabolic and resorptive pathways can be dissociated by altering
early events in cAMP/PKA activation through PTH1R is yet to
be established.
SPARE RECEPTORS

The findings that no detectable changes in cAMP are taking place
with low concentrations of agonist that nevertheless increase
PKA and steroidogenesis, are consistent with the concept of
“spare receptors”. This was introduced as early as 1956 in studies
of muscle contractility responses and mathematical analysis of
existing receptor data (53). It showed that only a small fraction of
receptors needed to be occupied by agonist to elicit a maximum
response. It was postulated that a given ligand can exert
maximum biological effect while occupying only a small
number of available receptors.

Although the concept of maximum effect being achieved
without occupying all relevant receptors was at odds with earlier
views of receptor occupancy proposed and held since the 1930’s,
that the more receptors are activated the higher the response (54),
it came to be widely accepted and applied in theory and practice to
actions of drugs and of agonists for GPCRs (55). These included
LH (46, 49, 56), glucagon (57), adenosine (58) and others (59).
Such an effect has its counterpart for later events in spare capacity;
for example hormones can generate cAMP levels greater than
required for protein kinase activation, as reviewed above in the
cases of PTH1R activation of osteoblastic cells (Figure 2) and LH
receptor activation of testicular Leydig cells (49).
SPATIAL ORGANIZATION OF
MOLECULAR EVENTS

These aspects of early events in cAMP/PKA activation raised the
possibility that the outcomes were dependent upon spatial
organization and compartmentalization of components of the
cAMP/PKA signaling system within cells that result in
amplification of the signal. The concept developed that the
isoenzymes I and II of PKA might be differentially regulated. It
was thought that type II isoenzyme of PKA was involved in
differentiation and growth inhibition, and type I with cell growth
(60–63). An early suggestion was that membrane-associated and
cytosolic protein kinases of cerebral cortex constituted subclasses
of PKA isoenzyme II (64). This would provide the first level at
which the general response of cAMP elevation might be
channeled into specific pathways, and would provide a possible
explanation for the fact that different hormones acting via cAMP
might trigger different chains of metabolic events within the
same cell.

Development of chromatographic methods of separating and
analysing the individual isoenzymes led to identification that PKA
isoenzymes could be individually and independently activated by
isoproterenol and PGE in guinea pig and rat heart (65, 66).
Modification of this approach to assess acute hormonal activation
of each isoenzyme in cells in culture revealed that selective
Frontiers in Endocrinology | www.frontiersin.org 5
isoenzyme activation of individual isoenzymes I and II can occur
in osteoblasts and osteosarcoma cells in response to PTH (43, 67), as
well as in human breast cancer cells T47D andMCF7 in response to
calcitonin and PGE2 (68). The cells were intact when treated but
needed to be disrupted for assays, with appropriate controls.
Nevertheless the mechanism of selective activation was proposed
to require compartmentalization of components of the cAMP
response system, even though at that stage it was not possible to
assess compartmentalization directly (52).

These findings, together with increasing awareness of how the
components of the cAMP/PKA signaling system interact, all
suggested that what was likely to be important in post-receptor
activation through the GPCR was where the cAMP was generated
in relation to subsequent steps, and that total cell levels of cAMP
might not reflect pharmacologic or physiologic actions.

The information regarding early actions of PTH discussed
above had provided useful working conclusions concerning cell-
based events in activation of the PTH receptor. Other discoveries
that pointed to the possibility of compartmentalization of
molecular events, and all of which applied directly to PTH
action, were those of involvement of a GTP transduction
process in adenylyl cyclase activation (1, 69), of a family of G
proteins coupled to stimulation or inhibition of cyclase, and the
discovery of b - arrestin as a regulator of GPCR internalization
(70). It was quite evident however that resolution of these and
other questions concerning compartmentalization of the cAMP/
PKA signaling system would require development of new
techniques that localized components of the system in the
context of cell structure, and prevented their loss or dispersal
during fixation and/or tissue preparation. Up to that time it had
not been possible because of the soluble nature of some of the
components (v infra).
NEW INSIGHTS FROM THE
IDENTIFICATION OF PTH1R AND PTHrP

Within a few years at the end of the 1980s events developed that
resulted in changes in thinking about the actions of PTH. First,
the factor predominantly responsible for the humoral
hypercalcemia of malignancy was identified. After it was
suspected to be immunochemically similar to PTH, PTH-
related protein (PTHrP) was purified, sequenced and cloned
(71–73). Eight of the first 13 residues were identical to those in
PTH, any remaining identities no more than expected by chance,
and the structural requirements for full activation of adenylyl
cyclase by PTHrP were contained within the first 34 amino acids
(74), as was known to be the case with PTH (Figure 4). Apart
from its cancer role, PTHrP could not be detected in the
circulation postnatally, but was recognized physiologically as a
paracrine factor in several organs, including bone (75, 76).

A second major discovery at about the same time was the
cloning of the PTH receptor (PTH1R) (77), which was shown to
be acted upon in a shared and equivalent manner by the amino-
terminal domains of PTH and PTHrP (74, 77) in activating
adenylyl cyclase activity in target cells. Accordingly, PTHrP
recombinant proteins of 84, 108 and 141 (full length) residues
January 2022 | Volume 12 | Article 833221
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are equipotent on a molar basis with shorter amino-terminal
peptides of either PTHrP or PTH in activating adenylyl cyclase
through PTH1R (78–81). Thus an unusual situation prevailed, of
a circulating hormone and a paracrine factor sharing apparently
equal actions upon a single GPCR.
ENDOSOMAL TRANSFER OF GPCR-
LIGAND COMPLEXES

Identification and cloning of receptors and interacting proteins
facilitated the development of reagents that could be applied
using in situ methods to track protein spatial arrangements in
cells. Before any suggestion of internalization of GPCRs, it had
been shown to take place with the epidermal growth factor
(EGF), a tyrosine kinase receptor. Shortly after EGF ligand
addition, the majority of EGFRs and their downstream
signaling factors were found located on endosomes, not on the
plasma membrane, and it was concluded that EGF signaling
continues from the endosomal site (82, 83). The findings with the
EGF receptor provided a stimulus to look for evidence of GPCR
signaling from within the cell also. When internalization of
GPCRs began to be observed, early thoughts were that the
receptor might engage in ß - arrestin-mediated activation of
the mitogen-activated protein kinase (MAPK) pathway (84), or
be degraded or recycled (85).

The new methods allowed the direct investigation of
molecular events, e.g. genetically encoded fluorescent reporters
that allowed direct visualization of key steps in GPCR action
and cyclic nucleotide signaling, as well as fluorescent – labelled
anti – receptor and anti G protein antibodies, and the facility
of live cell microscopy. Such newly available methods set the
scene to search for GPCR internalization and the fate of any
internalized receptors.

The first published evidence showing definitively that an
adenylyl cyclase – linked GPCR could continue signaling from
Frontiers in Endocrinology | www.frontiersin.org 6
the endosome membrane after internalization of the ligand –
receptor complex came from the study of thyroid stimulating
hormone (TSH) action in the thyroid follicular cell (88).
Transgenic mice were used for this purpose that express a
fluorescent sensor for cAMP that is expressed in virtually all
cells, and in which global expression of the sensor had no effect
on the phenotype of the mice. The TSH receptor internalization
was found to be required to ensure appropriate expression of
responsive genes.

Demonstration of internalization of the PTH1R followed
soon after. Prompted by the findings that a PTH structural
analog (M-PTH) could prolong cAMP production in target
cells in vitro and pharmacological effects in vivo (89), studies
of protein - protein interactions and trafficking induced in cells
overexpressing PTH1R showed that PTH (1–34) and PTH1R in
complex were internalized to the endosome where cAMP
production from adenylyl cyclase was maintained (86)
(Figure 5). This resembled the findings of the same
investigators with the vasopressin type 2 receptor, V2R (87).
They showed that this persistent activation of the PTH/PTH1R
complex is terminated by the endosomal retromer complex, a
pentameric complex whose main function is sorting receptors
away from the degradative pathway of maturing endosomes to
the Golgi network (90). Such a central role of the retromer in
terminating the persistent adenylyl cyclase activation by PTH/
PTH1R at the endosome was confirmed by Chan et al. (91), who
also provided a molecular mechanism by showing that sorting
nexin 27 (SNX27) binds to PTH1R and facilitates its interaction
with retromer complex. Genetic depletion of SNX27 or retromer
augmented PTH1R signaling in endosomes.

These discoveries of persistent endosomal signaling via cAMP
of hormonal agonists bound to cognate receptors brought about a
radical change in thinking of the molecular mechanisms operating
in the cAMP signaling pathway, with increasing evidence for
spatial organization of protein – protein interactions within cells
contributing to immediate and later events in target cells. The next
few years saw a progressive increase in the reports of signaling
FIGURE 4 | PTHrP biological domains. The amino-terminal domain of PTHrP acts like PTH upon the PTH1R. Identical residues within PTHrP and PTH are indicated
in red. The other domains of action within PTHrP are indicated.
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through GPCRs that can continue after ligand-receptor
internalization through endocytosis. These included b -
adrenergic agonists (92), pituitary adenylyl cyclase activating
polypeptide (93), sphingosine-1-phosphate (94), calcitonin gene-
related peptide (CGRP) (95), and neurokinin 1 (96).
PERSISTENT ACTIVATION OF ADENYLYL
CYCLASE IN ENDOSOME BY PTH AND
PTHrP PEPTIDES

PTH (1–34) was already established as an approved treatment
for osteoporosis in several countries (30), and PTHrP (1–36)
began to be investigated clinically also because of the shared
actions on PTH1R (97). Although the amino-terminal PTHrP
and PTH peptides were repeatedly found to be equally potent in
activating adenylyl cyclase through PTH1R in target cells (78–
80), evidence was published that they might have distinct early
biological activities upon receptor binding. This arose out of
studies of interactions of truncated forms of PTH and PTHrP
with PTH1R that led to the conclusion that PTHrP (1–36) binds
to receptor, induces a brief increase in total cell cAMP and
rapidly dissociates without receptor internalization (98). In
addition to the binding experiments carried out in membrane
preparations, PTH (1–34) in the intact cell had an effect on total
cell cAMP formation that was prolonged for up to an hour by
inducing PTH1R endocytosis, as a result of which PTH (1–34) –
PTH1R complex continues to promote cAMP production at the
endosomal level beyond the cell membrane activity (86, 87). The
lack of prolonged effect on cAMP production by PTHrP (1–36)
or abaloparatide was considered to be due to reduced
internalization of receptor, and faster recycling possibly caused
by endosomal pH sensitivity (99, 100). Abaloparatide, which had
been developed as a new analog (101) for therapeutic use in
Frontiers in Endocrinology | www.frontiersin.org 7
osteoporosis, is identical to PTHrP in its first 21 residues, but has
8 residues different from PTHrP between 22 and 34, and is
equipotent with PTH peptides in the standard bioassay of total
cell cAMP generation in target cells (79, 100, 102).

An assumption grew in currency that abaloparatide promotes
bone resorption less than PTH (1–34) (teriparatide), based on
claims in clinical studies of greater gain in bone mineral density
and greater increase in circulating bone resorption markers (31).
Those claims have been called into question, based on
interpretation of bone mineral density and bone marker data
(32, 38, 103). It has been postulated repeatedly that these claimed
differences in clinical responses can be explained by different
modes of interaction with PTH1R of PTH (1–34) and
abaloparatide, but no evidence for causal relationship has
been obtained.

These views of differences in modes of interaction with
receptor might need reconsideration in light of a further study
of signaling events with peptide engagement of PTH1R. In
comparing actions of PTH (1–34) and abaloparatide in an
osteocyte cell line, a number of assays were used that showed
that PTH (1–34) and abaloparatide were indistinguishable in
their early receptor-related effects (102). They induced
intracellular calcium equally and were equipotent in a standard
cAMP response assay with full phosphodiesterase inhibition, as
has been shown many times (100, 104). When PTH (1–34) and
abaloparatide were each labelled with a fluorophore and tracked
after 10 nM treatment of PTH1R +ve cells, both were effectively
internalized, and they had indistinguishable dose-responsive
effects on internalization of a fluorescent-labeled PTH1R. Since
b - arrestin recruitment was known to be required for endosomal
GPCR signaling this was examined, and abaloparatide and PTH
(1–34) induced b - arrestin clustering to the same extent and
clearly more than a negative control. Although PKA pathway
activation was not measured directly, the PKA pathway was
assessed by using a degenerate phospho – specific antibody to
FIGURE 5 | PTH activation of cAMP/PKA pathway through PTH1R, and translocation of ligand-receptor to endosome(based on work of (86, 87), figure modified
from (37) with permission) (see text for details).
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detect outcome of PKA activity. This revealed no difference in
phosphorylation of substrates between the two ligands, PTH (1–
34) and abaloparatide. Further, PTH (1–34), abaloparatide and
M-PTH showed comparable effects on salt inducible kinase
(SIK2) phosphorylation, substrate dephosphorylation and
downstream gene expression (102). All of these findings suggest
equivalent signaling effects of PTH (1–34) and abaloparatide.

The authors of this study (102) indicated that their findings of
no subtle differences between PTH (1–34) and abaloparatide in
early actions that have been previously reported (98–100) might
relate to limitations in design and sensitivity of assays. They also
consider the possibility that the differences noted by others in
clinical studies might be related to pharmacokinetic or other
factors (102). The questions nevertheless remain (i) whether
there are consistent differences in action between PTH on the
one hand and either abaloparatide or the N-terminal domain of
PTHrP on the other, and (ii) whether significant differences in
pharmacological effects exist between PTH and abaloparatide
(103). Thus although the endosomal transfer of PTH/PTH1R
complex resulting in persistent endosomal cAMP generation is
now well established (Figure 5), the results of Sato et al. (102) call
for reappraisal of the comparisons that have been made between
the molecular events in response to PTH (1–34) and those in
response to abaloparatide. A similarly reappraised comparison of
PTH (1–34) and PTHrP (1–36) action would also be helpful.

Despite these similar actions of PTH (1–34) and
abaloparatide, it has nevertheless been shown in another study
that it is possible to modify PTH structurally to separate plasma
membrane from endosomal activation. An analog of PTH
prepared by epimerization of residue 7 (PTH7d) behaved as a
biased agonist, eliciting cAMP production at the plasma
membrane but not at the endosome (103). In in vivo studies in
which bone formation was not measured, PTH7d treatment had
no effect on 1-hydroxylation of vitamin D, whereas a long acting
PTH peptide that shows endosomal transfer and persistent
cAMP effect much greater than PTH (1–34) (89), substantially
increased vitamin D 1-hydroxylation and the amount of bone
assessed by microcomputed tomography (103). This further
supports a biological role for endosomal PTH action, but
unfortunately whether this might contribute to either an
anabolic or a resorptive effect of PTH was not addressed. Such
differences from PTH (1–34) in pharmacological response would
need to be shown with PTHrP (1–36) and abaloparatide if any
differences in signaling are sufficient to influence later tissue
outcomes. The question of whether small changes in duration of
cAMP elevation through endosome-translocated PTH1R
complex can influence later, major consequences of PTH1R
activation, has not been investigated.

As described above, there is compelling evidence that
prolongation of activation of PTH1R, e.g. by repeated or high
dose injection or infusion, results in conversion of an anabolic to
a resorptive response (35, 36, 104). On present evidence the same
cannot be said of the changed dynamics in total cell cAMP levels
that can accompany endosomal translocation of the PTH/
PTH1R complex (86, 98), or that have been ascribed to
treatment of cells with abaloparatide (100).
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PHARMACOLOGIC SIGNIFICANCE OF
PERSISTENT ENDOSOMAL
GENERATION OF cAMP

Specific, later phenotypic responses in cells have been related
directly to continued endosomal signaling in the cases of several
GPCRs. These include b - adrenergic agonists (92), TSH (105),
pituitary adenylyl cyclase activating peptide (93), calcitonin gene-
related peptide (95) and neurokinin -1 (96). This has yet to be done
with the PTH1R. Most attention has been focussed upon PTH and
PTHrP peptides used therapeutically, and findings do not
necessarily relate to physiology. This is an important distinction,
since PTH, a circulating hormone, shares actions upon a common
receptor, PTH1R, with the paracrine/autocrine agent, PTHrP.

In in vitro studies the only identifiable form of PTHrP released
by osteocytes and capable of activating PTH1R was found to be full
length PTHrP (106). This mechanism for secretion of PTHrP in
those cells of mesenchymal origin is consistent with the evidence
thatmany cells, including those ofmesenchymal origin (osteoblasts
included) secrete proteins by a constitutivemechanism, rather than
the regulated pathway that packages and processes proteins to
daughter peptides before their secretion (107).

Since PTHrP acts in a paracrine manner, effects on PTH1R
activity of brief exposure to PTHrP of varying lengths and to
PTH were studied. Brief exposure to full length PTHrP in several
osteoblastic cell culture systems, followed by washout of the cells,
resulted in activation of adenylyl cyclase that persisted for some
hours after ligand washout. This effect was not seen with shorter
PTHrP peptides or with PTH peptides. This persistent activation
by PTHrP (1–141) was found also with the long acting analog M-
PTH, and in both cases the persistent response following brief
exposure and washing of the cells was associated with prolonged
activation of CRE-luciferase and regulation of osteoblastic genes
that was seen up to 24 hours later (108). Although direct
demonstration of PTHrP/PTH1R translocation was not sought
in this work, the effects of PTHrP were blocked by two
pharmacological inhibitors of endosomal transfer, Dyngo and
Pitstop (108), suggesting that endosomal translocation had taken
place and was required for these effects. Although this falls short
of identifying an end response of an anabolic or resorptive action
through the PTH1R (see Figure 1) in relation to endosomal
activity, it does illustrate that that prolongation of PTH1R-
related action through cAMP/PKA can influence later gene
expression in these target cells. This might be relevant to the
effects on bone seen with in vivo injection of M-PTH (89). Such
stimulation after brief exposure might be a property particularly
suitable for an autocrine/paracrine effector such as PTHrP acting
through PTH1R in bone. After local generation it would be
expected to be exposed briefly to target cells.
CONCLUSION AND SUMMARY

Activation of the PTH1R in osteoblast lineage cells through the
cAMP/PKA signaling pathway results in either of two effects
January 2022 | Volume 12 | Article 833221
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in vivo, promotion of bone formation or of bone resorption. The
formation effect requires action upon several stages of the
osteoblast l ineage to promote gene expression and
differentiation within the lineage. The resorption effect requires
regulation through PTH1R of RANKL and OPG in osteoblast
lineage cells that have close access to hemopoietic precursors of
osteoclasts (as depicted in Figure 1).

The finding that PTH1R can be activated in a manner that
achieves maximum effect without occupying all receptors is
similar to that with other GPCR agonists. It has yet to be shown
with any PTHrP preparations, but the action shared with PTH on
PTH1R makes it likely. Such a mechanism could help compensate
for low molecular numbers, and could provide a target for
development of superagonist compounds (59). For example low
PTH1R receptor numbers might contribute to the findings in cell
tracking experiments that functional PTH1R is expressed earlier in
cells of the osteoblast lineage than previously suspected (109).
Despite low receptor numbers in the early osteoblast precursor
cells, this could present as a pharmacological target to enhance
osteoblast differentiation.

There is much interest in understanding the processes involved in
the distribution of GPCR activation between the plasma membrane
and the endosome, and the significance of this for later events. For
example, chemically distinct ligands of the b - adrenoreceptor can
either be selective for plasma membrane activation only or for
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endosomal activation also. The endosomal activation was found to
be needed for the full repertoire of downstream cAMP/PKA effects
(92). Later work (110, 111) accentuated the functional contribution of
endosomal cAMP production to the phosphorylation patterns in
target cells. If such information could be gained for PTH1R activation
insights from that could indicate new directions in therapeutic
approaches through the PTH1R. Such information could be very
informative in designing new ways of using the PTH1R in
therapeutic approaches.
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