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Background: The prevalence of immunoglobulin A nephropathy (IgAN) seems

to be higher in patients with type 1 diabetes mellitus (T1DM) than that in the

general population. However, whether there exists a causal relationship

between T1DM and IgAN remains unknown.

Methods: This study conducted a standard two-sample Mendelian

randomization (MR) analysis to assess the causal inference by four MR

methods, and the inverse variance-weighted (IVW) approach was selected as

the primary method. To further test the independent causal effect of T1DM on

IgAN, multivariable MR (MVMR) analysis was undertaken. Sensitivity analyses

incorporating multiple complementary MR methods were applied to evaluate

how strong the association was and identify potential pleiotropy.

Results: MR analyses utilized 81 single-nucleotide polymorphisms (SNPs) for

T1DM. The evidence supports a significant causal relationship between T1DM

and increased risk of IgAN [odds ratio (OR): 1.39, 95% confidence interval (CI):

1.10–1.74 for IVW, p < 0.05]. The association still exists after adjusting for

triglyceride (TG), fasting insulin (FI), fasting blood glucose (FBG), homeostasis

model assessment of beta-cell function (HOMA-B) and insulin resistance

(HOMA-IR), and glycated hemoglobin (HbA1c). MVMR analysis indicated that

the effect of T1DM on IgAN vanished upon accounting for low-density

lipoprotein cholesterol (LDL-c; OR: 0.97, 95% CI: 0.90–1.05, p > 0.05).

Conclusions: This MR study provided evidence that T1DM may be a risk factor

for the onset of IgAN, which might be driven by LDL-c. Lipid-lowering

strategies targeting LDL-c should be enhanced in patients with T1DM to

prevent IgAN.

KEYWORDS

Mendelian randomization, causal relationship, non-diabetic renal disease, type 1
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Introduction

Type 1 diabetes mellitus (T1DM), also known as

autoimmune diabetes, is characterized by irreversible islet

beta-cell destruction. According to prior research, T1DM is a

major factor contributing to diabetic nephropathy (DN), and it

also carries a significant risk of developing additional renal

comorbidities. These past few years, the accurate and early

diagnosis of non-diabetic renal disease (NDRD) has aroused

widespread concern in clinical practice (1). In addition to being

the most prevalent type of primary glomerulonephritis,

immunoglobulin A nephropathy (IgAN) is also regarded as a

major form of NDRD, especially among young adults, and

responsible for the global burden of chronic kidney disease

(CKD) and renal failure (2–4). Additionally, the prevalence of

IgAN is still increasing, whereas the geographic distribution

differs greatly (5). IgAN presented a significant prevalence in

European countries, especially in France (52.7% for primary

glomerular disease (PGD)), Germany (50.7%), United Kingdom

(39.0%), and Czechia (37 .4%) (6–10) . Hence , the

findings regarding the pathogenesis of IgAN and its risk

factors may offer a crucial and original concept for the

prevention and treatment of NDRD, particularly in places with

a high prevalence.

To the best of our knowledge, past epidemiological studies

have already supported an underlying correlation between

T1DM and IgAN. A meta-analysis of 48 studies, including

4,876 patients who suffered from DM, has shown that IgAN

(3%–59%) is one of the most common NDRD types for

patients with diabetes (11). However, the participants

enrolled in these studies had either T1DM or T2DM at

baseline; whether there is a direct causal relationship between

T1DM and IgAN is still a mystery. Furthermore, most of the
Frontiers in Endocrinology 02
existing small-sample single-centered studies are limited in

assessing the potential comorbid confounders, necessitating

further investigation into the precise association between

T1DM and IgAN.

A better approach for investigating this is Mendelian

randomization (MR), in which the causal association between

modifiable exposure and disease outcome can be well evaluated

using single-nucleotide polymorphisms (SNPs) as robust

instrument variables (IVs) (12, 13). Since the genetic

instrument is fixed at conception, this design is less susceptible

to confounding and reverse causality bias. Here, we used two-

sample MR analyses to estimate the probability that T1DM and

IgAN might be primarily related.
Materials and methods

Study design

We performed this study using a conventional two-sample

MR design, assessing the association between T1DM and IgAN,

and Figure 1 provides a summary of the design that is being used

for the current investigation. Firstly, we extracted available

genetic IVs from the T1DM meta-analysis. Secondly, the

summary data comprising all SNPs from the large-scale

genome-wide association study (GWAS) for IgAN were

collected. To evaluate the causal effect, we employed univariate

two-sample MR and various sensitivity analyses. In addition, we

conducted a multivariable MR (MVMR) analysis controlling for

confounding variables. The Strengthening the Reporting of

Observat ional Studies in Epidemiology-Mendel ian

Randomization (STROBE-MR) checklist is presented in

Supplementary Table S1.
FIGURE 1

Diagram of Mendelian randomization framework in this study. IgAN, immunoglobulin A nephropathy; IVW, inverse variance-weighted; MR,
Mendelian randomization; PRESSO, Pleiotropy RESidual Sum and Outlier; SNP, single nucleotide polymorphism; T1DM, type 1 diabetes mellitus.
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The data source for type 1
diabetes mellitus

All identified IVs for T1DM used the data from the latest

and largest GWAS, in which 18,942 T1DM patients and 501,638

control participants of European ancestry from nine cohorts

were enrolled (14). After applying uniform quality control,

Taliun et al. (15) imputed genotypes into the TOPMed

reference panel and tested for the association with T1DM.

Through the meta-analysis, they combined the association

results for 61,947,369 variants and identified 81 SNPs that

reached genome-wide significance [p < 5 × 10−8, linkage

disequilibrium (LD); r2 < 0.001, LD distance >10,000 kb],

including 48 of 59 known loci and 33 loci that have not

previously been reported. A total of 81 SNPs explained 0.04 of

the variance in T1DM. An F-statistic >10 indicates a significant

association between the selected IVs and T1DM (16). For non-

Europeans, summary statistics of T1DM were obtained from a

GWAS that consisted of 1,219 East Asian ancestry cases and

132,032 controls (17). A total of 16 SNPs utilized as IVs must be

strongly linked to T1DM (p < 5 × 10-8). SNPs were filtered by

employing the clumping technique to ensure independence (18).

Palindromic SNPs with a minor allele frequency (MAF) of <0.42

were eliminated.
The data sources for IgA nephropathy

The Medical Research Council (MRC)/Kidney Research

UK National DNA Bank for Glomerulonephritis established

collections in five common glomerular diseases, of which

one is IgAN. The diagnosis was confirmed in all IgAN

patients by direct review of renal biopsy histopathology

reports and clinical IgAN records. Individuals with

evidence of liver disease or Henoch–Schönlein purpura

were excluded. A GWAS meta-analysis encompassing

roughly 5,957 European participants yielded summary-

level information regarding the genetic associations with

IgAN, including 977 cases from the MRC/Kidney Research

UK National DNA Bank and 4,980 controls from the 1958

British Birth Cohort and the UK National Blood Service

(19). To our knowledge, the maximum sample overlapping

rate between exposure data and outcome data is <1%.

Summary data of IgAN were acquired for non-Europeans

from a GWAS that included 71 East Asian ancestry patients

and 175,288 controls (17). All of the data were taken from

previously published studies that were made available to the

public. As a result, neither ethical approval nor patient

consent were needed for the study.
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Statistical analysis

Two-sample MR analyses
There are three important assumptions of conventional MR

analysis. The ideal IVs must satisfy the following: 1) must be

truly associated with T1DM (in this study, defined as the genetic

association with p < 5 × 10-8); 2) not associated with

confounders of the T1DM–IgAN association; 3) should only

be associated with the IgAN through T1DM (20).

Four different methods, namely, inverse variance-weighted

(IVW), MR-Egger, weighted median, and maximum likelihood,

were used in the two-sample MR analysis to evaluate the causal

effects between T1DM and IgAN. Among them, IVW was used

as the primary statistical approach in our study, since it is the

most accurate method for estimating causal effects (21). MR-

Egger may be susceptible to significant impacts of atypical

genetic factors, resulting in inaccurate estimations. However,

the MR-Egger test can provide non-biased estimates even if all

selected IVs are invalid (22). The weighted median estimator

could provide a consistent causal estimate, even when up to 50%

of the information from IVs is nonfunctional. When the IVs are

weak, IVW ignores the true variance of the estimate, whereas

maximum likelihood provides confidence intervals (CIs) that are

accurately assessed (23). The results were shown as odds ratio

(OR) and it’s 95% CI. The statistical power of the MR analysis

was calculated using the mRnd tool (http://cnsgenomics.com/

shiny/mRnd/) (24). The results of power calculations are shown

in Supplementary Table S2. In addition, the causal relationship

between IgAN and T1DM was assessed using reverse MR

analysis by employing data from the European and East Asian

populations described above (17, 19). In order to obtain more

comprehensive results, selected SNPs with a GWAS p-value

cutoff lower than 5 × 10-6 were selected as IVs.

Sensitivity univariable MR analyses
We used first-order IVWs and MR-Egger to generate

Cochran’s Q test to check for heterogeneity, which represents

a possible violation of modeling assumptions (25). This study

used the MR-Egger regression intercept examination to estimate

the potential pleiotropy between exposure and outcome (26). A

p-value <0.05 represented the existence of pleiotropy. Once

heterogeneity or horizontal pleiotropy was noteworthy, we

used MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO)

to remove outlier SNPs (24). Moreover, we conducted the

“leave-one-out” test to determine whether a single SNP had a

significant independent effect on MR estimates. Autoimmune

diseases share common genetic loci in the HLA, and this could

lead to pleiotropic bias (27). Hence, we excluded the SNPs from

the HLA complex and repeated the MR analysis.
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Multivariable two-sample MR analyses
Previous clinical studies have demonstrated that glycolipid

metabolic traits show a certain degree of correlation with

T1DM and IgAN (28–33). We added summary GWAS data

on these confounders and chose MVMR to assess the direct

effect of T1DM while accounting for the effect of these

metabolic traits. All of the summary data utilized in the

study are publicly available, and the detailed information is

presented in Table 1.

All analyses were carried out with the packages

“TwoSampleMR” (34), “MR-PRESSO” (24), and “MVMR”

(35) of R (version 4.2.0). All presented p was two-sided, and

statistical significance was set at the 5% level.
Results

The characteristics of SNP and
participants for analyses

Table 2 presents the characteristics of the populations

included in the GWAS data on exposure and outcome. A total

of 81 SNPs were chosen as IVs for T1DM in the primary

analysis. The F-statistic ranges from 43 to 249, reflecting a

strong instrument strength for T1DM. The summary of the

identified SNPs in the MR analysis is presented in

Supplementary Table S3.
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Associations between type 1 diabetes
mellitus and IgA nephropathy

Univariable and multivariable MR analyses
In the main univariable analyses, we identified a significant

causal relationship between exposure and outcome (p < 0.05

across four MR methods), which referred to a causal association

between T1DM and increased IgAN risk (OR: 1.39, 95% CI:

1.10–1.74 for IVW; OR: 1.53, 95% CI: 1.10–2.12 for weighted

median; OR: 1.39, 95% CI: 1.13–1.71 for maximum likelihood)

(Table 3). Similarly, T1DM was associated with an increased

IgAN risk in the MVMR analyses with statistical power [i.e., OR:

1.37, 95% CI: 1.08–1.74, adjusted for triglyceride (TG); OR: 1.38,

95% CI: 1.13–1.71, adjusted for fasting insulin (FI); OR: 1.42,

95% CI: 1.14–1.77, adjusted for fasting blood glucose (FBG); OR:

1.42, 95% CI: 1.15–1.76, adjusted for homeostasis model

assessment of beta-cell function (HOMA-B); OR: 1.39, 95%

CI: 1.12–1.72, adjusted for HOMA of insulin resistance

(HOMA-IR); OR: 1.39, 95% CI: 1.12–1.73, adjusted for

glycated hemoglobin (HbA1c)] (Table 3). However, no similar

trend was shown in low-density lipoprotein cholesterol (LDL-c;

OR: 0.97, 95% CI: 0.90–1.05). In East Asian participants, the MR

methods did not show that genetically determined T1DM was

associated with IgAN (all p > 0.05, Supplementary Table S4). In

addition, the reverse MR analysis did not demonstrate that a

genetic predisposition to IgAN was associated with T1DM

(Supplementary Table S5).
TABLE 1 Description of genome-wide association study used for each confounder.

Exposure Access address (PMID or URL) Sample size Population Sex Release year

Triglycerides 24097068 96,598 Europeans Female and male 2013

LDL-c 32203549 440,546 Europeans Female and male 2020

Fasting insulin 34059833 151,013 Europeans Female and male 2021

Fasting blood glucose 22581228 58,074 Europeans Female and male 2012

HOMA-B 20081858 36,466 Europeans Female and male 2011

HOMA-IR 20081858 37,037 Europeans Female and male 2011

HbA1c 20858683 46,368 Europeans Female and male 2010
LDL-c, low-density lipoprotein cholesterol; HOMA-B, homeostasis model assessment of beta-cell function; HOMA-IR, homeostasis model assessment of insulin resistance; HbA1c,
glycated hemoglobin.
TABLE 2 Characteristics of type 1 diabetes mellitus and IgA nephropathy.

Exposure Data source
SNP/

F-statistic
Cases/

Controls
Sample
size Population

Type 1
diabetes mellitus Meta-analysis 81/43.35

18,942/
501,638 520,580 European

Outcome Consortium PMID
Cases/

Controls
Sample
size Population

IgA nephropathy Medical Research Council/Kidney Research UK National DNA Bank/1958 British Birth
Cohort and UK Blood Service

20595679 977/4,980 5,957 European
f
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Sensitivity analysis
Additionally, we conducted several sensitivity analyses to

determine potential heterogeneity and horizontal pleiotropy

(Table 3). Neither the Cochran’s Q test nor the MR-Egger

regression analysis detected heterogeneity and horizontal

pleiotropy in the primary analysis (MR-Egger Ph = 0.19, IVW

Ph = 0.20, Pintercept = 0.47). We obtained consistent estimates

after removing three SNPs (rs2395471, rs12665124, and

rs2523679) from the human leukocyte antigen (HLA) complex

(Supplementary Table S6). Moreover, the MR-PRESSO data did

not reveal any outlier SNP. Four methods were used to evaluate

the results of the MR analysis, and the scatter plot was generated

(Figure 2A). In the leave-one-out analysis, we discovered that no

single SNP drove the overall effect of T1DM on IgAN

(Figure 2B). Figure 2C illustrated a relatively symmetrical
Frontiers in Endocrinology 05
distribution of variant effects for IgAN, indicating an absence

of directional pleiotropy.
Discussion

Our work utilized the large-scale GWAS data to investigate the

effect of genetically predicted T1DM on IgAN risk within the MR

framework and provided evidence supporting the causal effects of

T1DM on IgAN, independently of a wide range of potential

confounders, including TG, FI, FBG, HOMA-B, HOMA-IR, and

HbA1c. However, MVMR analysis indicated the effect of T1DM

on IgAN that vanished upon accounting for LDL-c.

DN, a devastating complication in diabetic patients, is

regarded as the leading cause of end-stage renal disease
TABLE 3 Univariable and multivariable two-sample Mendelian randomization estimations showing the effect of type 1 diabetes mellitus on the
risk of IgA nephropathy.

Method OR (95% CI) p-value Q-statistics Ph Egger intercept Pintercept

MR-Egger 1.20 (0.77-1.88) 4.21E-01 35.47 1.89E-01 0.026 4.68E-01

Weighted median 1.53 (1.10-2.12) 1.22E-02

Inverse variance-weighted 1.39 (1.10-1.74) 4.40E-03 36.13 2.04E-01

Maximum likelihood 1.39 (1.13-1.71) 1.88E-03

MR-PRESSO - -

Triglycerides adjusted 1.37 (1.08-1.74) 8.66E-03

LDL-c adjusted 0.97 (0.90-1.05) 4.48E-01

Fasting insulin adjusted 1.38 (1.13-1.71) 5.08E-03

Fasting blood glucose adjusted 1.42 (1.14-1.77) 3.60E-03

HOMA-B adjusted 1.42 (1.15-1.76) 2.90E-03

HOMA-IR adjusted 1.39 (1.12-1.72) 5.12E-03

HbA1c adjusted 1.39 (1.12-1.73) 5.55E-03
fron
MR-PRESSO, Mendelian randomization-Pleiotropy RESidual Sum and Outlier; LDL-c, low-density lipoprotein cholesterol; HOMA-B, homeostasis model assessment of beta-cell function;
HOMA-IR, homeostasis model assessment of insulin resistance; HbA1c, glycated hemoglobin.
B CA

FIGURE 2

Scatter plot (A), leave-one-out test (B), and funnel plot (C) for genetically determined type 1 diabetes mellitus on IgA nephropathy risk. MR,
Mendelian randomization.
tiersin.org

https://doi.org/10.3389/fendo.2022.1000627
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Deng et al. 10.3389/fendo.2022.1000627
worldwide for a long time (36). However, previous studies have

shown that long-term administration of insulin to people with

T1DM can cause kidney damage via a number of signal

pathways, including the protein kinase B-mechanistic target of

rapamycin kinase C1 (Akt-mTORC1) pathway, which makes the

spectrum of renal disease among these patients complex (37).

Many diabetic individuals have been found to develop IgAN,

which is primarily characterized by the mesangial deposition of

IgA immune complexes with the possible pathogenesis of

galactose-deficient IgA1 overproduction (3, 38). And the most

prevalent clinical presentations of IgAN, such as asymptomatic

hematuria and progressive kidney disease, are thought to

significantly increase the burden of CKD and renal failure

(39). However, due to the unsystematic kidney biopsy, there is

a relatively high proportion of NDRD represented by IgAN that

has been misdiagnosed as DN, which hinders our ability to fully

understand the association between diabetes and other

renal diseases.

Interestingly, according to a case report in the 1990s, Gans

et al. (40) suggested that the occurrence of IgAN in diabetic

patients had to be more than coincidental because individuals

with T1DM also exhibited a high prevalence of dermatitis

herpetiformis and celiac disease, two autoimmune diseases

involving pathogenic IgA antibodies (41). In addition, current

research indicates that both T1DM and IgAN have a substantial

relationship with HLA (19, 42). Some IgAN susceptibility loci

are also associated with the risk of other autoimmune disorders

such as T1DM (43). Given the foregoing and the obvious defects

in epidemiological studies, such as unknown confounding

factors, measurement error, and reverse causal effects from the

environmental data, we believed that the gene may serve as the

key to understanding the relationship and therefore conducted

the reverse MR analysis to investigate the causal effects between

T1DM and IgAN.

This study provided evidence that T1DM has a causal

relationship with IgAN; however, we failed to find evidence

that IgAN directly causes T1DM, suggesting that it may be

mediated by other pathways. To our knowledge, there is no

study available on the T1DM risk profile in individuals with

IgAN, so there still remains a broad research space for an

investigation into the underlying pathway, which may involve

medication, inflammation, and endocrine alterations.

Furthermore, given the complexity of associations in the HLA

region, a more thorough sequencing may be required to depict a

comprehensive gene picture of autoimmune diseases. In MVMR

analysis, we adjusted for some potential comorbid confounders,

among which LDL-c did not work when considering the causal

role. Even though there is no precise mechanism to explain the

effect of LDL-c on the association of T1DM and IgAN,

numerous clinical studies indicated that the prevalence of

dyslipidemia is high in patients with T1DM (44), and an

unfavorable lipid profile, particularly characterized by high
Frontiers in Endocrinology 06
LDL-c concentrations, may increase the risk of renal diseases

(45). Also, the lipid nephrotoxicity hypothesis has demonstrated

that oxidized LDL-c could enhance macrophage infiltration,

accelerate inflammatory response, and promote glomerular

sclerosis (46, 47). And decreased oxidative resistance of LDL-c

was found to be a hallmark of IgAN (48). Our findings might

spark interest in further investigation and help reveal the

significance of implementing a targeted lipid-lowering strategy

in clinical practice to improve IgAN.

There are multiple strengths in this study. The primary merit

is originality. We implemented a two-sample MR to explore the

underlying relationship between T1DM and IgAN based on the

genetic background, filling a previously unknown research gap.

Additionally, the MR including multiple approaches is scientific

and reasonable, which strengthened the causal inference

between exposure and disease outcome. In addition, a variety

of sensitivity analyses incorporating multiple complementary

MR approaches were implemented to test the robustness of the

association and determine potential bias from pleiotropy.

Moreover, we also accounted for seven potential confounding

variables by reanalyzing GWAS summary data and did not

detect bias.

There are also some limitations of the analysis. The studied

population only includes individuals of European ancestry and

East Asian ancestry, thus, the results in this study cannot be

generalized among populations of other ancestries. Also, there

exists insufficient statistical power in Asians due to the small

number of IgAN cases and the partially overlapping sample

between T1DM and IgAN. Considering that the prevalence of

IgAN exhibits epidemiological variability, more research is

necessitated to identify whether there is a regional or racial

difference. Additionally, there was a risk of false-positive in our

study, which may be caused by the overlapping samples

between exposure and outcome data. However, after

calculation, we obtained a maximum overlapping rate of

<1%, which may not have been sufficient to affect our results.

Moreover, due to the lack of basic research regarding the effect

of T1DM on the onset of IgAN, we were unable to fully adjust

for confounding variables and rule out their effect of them.

Thus, the molecular or cellular mechanism in this area should

be further explored.
Conclusion

This MR study provides genetic evidence in support of the

causal relationship between T1DM and an increased risk of

IgAN, which may be driven by LDL-c. These findings shed new

light on the function of T1DM in IgAN and may have

implications for healthcare professionals seeking to improve

lipid-lowering strategies in patients with T1DM in order to

prevent IgAN.
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