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Therapeutic applications
of transcutaneous auricular
vagus nerve stimulation with
potential for application in
neurodevelopmental or other
pediatric disorders
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Ministry of Education, Center for Information in Medicine, University of Electronic Science and
Technology of China, Chengdu, China, 2Institute of Electronic and Information Engineering of
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Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) as a

newly developed technique involves stimulating the cutaneous receptive field

formed by the auricular branch of the vagus nerve in the outer ear, with

resulting activation of vagal connections to central and peripheral nervous

systems. Increasing evidence indicates that maladaptive neural plasticity may

underlie the pathology of several pediatric neurodevelopmental and

psychiatric disorders, such as autism spectrum disorder, attention deficit

hyperactivity disorder, disruptive behavioral disorder and stress-related

disorder. Vagal stimulation may therefore provide a useful intervention for

treating maladaptive neural plasticity. In the current review we summarize the

current literature primarily on therapeutic use in adults and discuss the

prospects of applying taVNS as a therapeutic intervention in specific pediatric

neurodevelopmental and other psychiatric disorders. Furthermore, we also

briefly discuss factors that would help optimize taVNS protocols in future

clinical applications. We conclude from these initial findings that taVNS may be

a promising alternative treatment for pediatric disorders which do not respond

to other interventions.

KEYWORDS
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1 Introduction

Neural plasticity is a key mechanism involved in childhood

brain development which both regulates and optimizes the

function of neural circuitry controlling cognition and behavior.

It can also help the brain to recover from injury (1–3).

Maladaptive neuroplasticity may underlie the pathology of

neurodevelopmental and other psychiatric disorders, such as

autism spectrum disorder (ASD), anxiety, and depression (4, 5).

Non-invasive brain stimulation (NIBS) techniques are

increasingly used to promote neurological or psychiatric

rehabilitation by modulating neural plasticity (6). In the last

two decades, transcutaneous auricular vagus nerve stimulation

(taVNS) has in particular attracted attention in clinical

applications since Ventureyra (7) first proposed it as a non-

invasive alternative to vagal nerve stimulation (VNS) for

treatment of epilepsy (7). To date, taVNS has been used to

help alleviate symptoms not only of epilepsy but also splanchnic

diseases (e.g., heart failure) (8), stroke (9, 10) and tinnitus (11,

12) as well as some psychiatric disorders (e.g., major depressive

disorder (MDD) (13–15). Increasing evidence from animal

studies and clinical trials primarily in adult humans suggest

that the therapeutic effects of invasive and noninvasive VNS may

stem from its role in modulating maladaptive brain plasticity

(10, 15–18). This may particularly be particular relevance in the

case in developing child and adolescent brains given evidence

from brain imaging that they are more highly plastic relative to

adults (2, 19–21). Indeed, children and adolescents show

accelerated neural plasticity compared to adults after brain

stimulation (22).

There is a high prevalence of ASD (around 1%), attention-

deficit/hyperactivity disorder (ADHD, 4%), disruptive

behavioral disorder (DBD, 6.1%), obsessive-compulsive

disorder (OCD, between 2% ~ 4%), depression and anxiety-

related disorders (around 5%) in pediatric populations

worldwide (23–26). Furthermore, overlapping clinical

behavioral manifestations across these disorders and comorbid

conditions are often reported (27–29). For example, social

dysfunction is often seen in ASD, ADHD and obsessive-

compulsive disorder (OCD) (30–32). Impulsivity and

inattention are not only reported in ADHD, but also ASD and

DBD (33, 34). The high frequency of comorbidities could be a

result of shared pathophysiology and associated mechanisms.

Importantly,, taVNS has been shown to have modulatory effects

on cortical and subcortical brain regions that are associated with

the neuropathology of these disorders and to help regulate some

social-emotional functions that are impaired in them (35–39).

These findings support the use of taVNS as a promising non-

pharmaceutical treatment to mitigate symptoms of

these disorders.

Currently, behavioral training is the most commonly used

intervention technique for the aforementioned intractable
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neurodevelopmental and other psychiatric disorders that are

prevalent during childhood/adolescence (40). For instance,

language and social skill training are commonly used for

children with ASD (41, 42). Additionally, cognitive behavioral

therapy is frequently adopted as a treatment for depression (43).

Intensive behavioral therapies may successfully improve behavioral

outcomes in patients with these disorders by promoting adaptive

plasticity in dysregulated neural circuitry (44, 45). However, these

behavioral interventions are lengthy and time consuming, and a

proportion of children fail to benefit. On the other hand, taVNS as

a non-invasive technique has been recently reported to improve

clinical outcomes in some intractable disorders, such as major

depression disorder and post-traumatic stress disorder (46–49). In

sum, these may suggest taVNS as a potential adjunctive non-

invasive technique to help increase the benefit of

behavioral interventions.

Here in the current review, we have therefore summarized

current preliminary evidence for the effects of taVNS on

different clinical behavioral manifestations targeting pediatric

neurodevelopmental and other psychiatric disorders, including

ASD, ADHD, OCD, DBD, depression and anxiety-related

disorders and also briefly illustrate the underlying mechanisms

of taVNS effects from the perspective of anatomical and

neuroendocrine aspects of vagus nerve stimulation. In

addition, we briefly discuss feasibility issues and several factors

and that would help optimize taVNS protocols to improve

therapeutic effects when applied in clinical situations in

the future.
2 Anatomical and neuroendocrine
mechanisms of action

The vagus nerve is the tenth cranial nerve that starts at the

level of the brainstem and establishes a mutual connection

between the brain and major body organs (Figure 1A).

Afferent fibers of the vagus nerve send sensory (visceral and

somatic) impulses to the vagal nuclei connections, the nucleus of

the solitary tract (NST) and spinal nucleus of the trigeminal

nerve (SNT), located in the medulla. Components of sensory

information are further relayed to higher order brain regions

(e.g. hippocampus, amygdala, thalamus and neocortex), thereby

allowing the vagus nerve to modulate activity in widespread

subcortical and cortical brain areas (50, 51). Thus, signals

generated in the vagus nerve have the potential to affect a

broad range of brain functions (see Figure 1B, for more

detailed information regarding the physiology of the vagus

nerve see (52)).

Interest in artificial VNS for therapeutic purpose has

increased given the crucial role that the vagus plays in

determining brain-body interactions. Evidence from animal

models and clinical studies has demonstrated a potential for
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invasive VNS in modulating neural and physiological changes

contributing to a number of chronic diseases (53, 54). Therefore,

a large variety of disorders, such as epilepsy, migraine,

inflammation maladaptive and metabolic syndrome are

possible potential targets for VNS therapy (55). Anatomical

evidence from humans and other animal species indicates that

the tragus, concha, and cymba concha in the external auditory

canal are the only places in the body with a cutaneous afferent

vagus nerve distribution, making non-invasive transcutaneous

stimulation of the vagus nerve possible (51, 56) (Figure 1C).

A number of brain imaging studies have shown that taVNS

modulates brain function primarily by its direct afferent

projections to specific brain structures, including the

brainstem and other higher order relays of vagal afferents

(visceral and somatic), such as the amygdala, hypothalamus

and prefrontal cortex (50, 51, 57). Although the pathways by

which taVNS exerts its various effects are still poorly understood,

its potential for regulation of neurotransmission and promoting

neu rop l a s t i c i t y i s impo r t a n t i n t h e con t e x t o f

neurodevelopmental and other psychiatric disorders. For

instance, treatment effects of taVNS on stroke and tinnitus via

its modulatory role in motor and sensory neural plasticity have

been increasingly reported (9–12). Moreover, taVNS is also
Frontiers in Endocrinology 03
associated with the release of noradrenaline in the brain, as

well as the inhibitory transmitter GABA, which potentially leads

to VNS-mediated seizure reduction and antidepressant effects

(58). Additionally, VNS inhibits excitatory glutamate release

(59) and also increases the release of neurotrophic factors as well

as stimulating cellular proliferation and neurogenesis in the

brain, which correlate not only with antidepressant effects but

also neuronal plasticity, memory, learning and cognitive

processes (60).
3 Potential taVNS effects on
clinical symptoms

Currently, taVNS has already been approved in Europe as a

treatment for epilepsy and depression in 2020, for chronic pain

in 2012 and for anxiety in 2019,and was also approved by the US

Food and Drug Administration (FDA) for therapeutic use in

depression and anxiety in 2006 (61, 62). Further, studies in

healthy populations have demonstrated that taVNS can enhance

cognitive performance (58) and brain-body functions (52),

suggesting its potential therapeutic role in a number of

disorders. We have therefore summarized the reported effects
A

B

C

FIGURE 1

The brain and body projections of vagus nerve. (A) Illustration of the connection between brain and major body organs via the vagus nerve.
(B) Areas of the brain involved in the afferent vagal pathway. Nucleus tractus solitarius (NTS), hypothalamus (Hyp), amygdala (amy), hippocampus
(Hippo), cingulate cortex (Cing), orbital frontal cortex (OFC), and prefrontal cortex (PFC). (C) Distribution of the vagus nerve in the external ear.
Created with BioRender.com.
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of taVNS on specific clinical symptoms in the following sections

(also see in Table 1).
3.1 Potential taVNS effects on depression

The common features of pediatric depressive disorders are

pervasive sadness, irritability, or anhedonia, along with

impairments in a range of cognitive domains such as episodic
Frontiers in Endocrinology 04
memory, emotion regulation, sustained attention and capacity

for inhibition (98–102). Adolescence is a critical period for the

development of depression, and the worldwide prevalence of any

depressive disorder in this age group is 2.6% (24). However,

around 40% of adolescents with depression do not respond to

current psychotherapy or pharmacotherapy interventions and

more innovative treatments are needed (103).

The effects of VNS on mood were first observed in patients

with epilepsy, and subsequently it was approved for the
TABLE 1 Characteristics of task-related taVNS studies that are included in the review.

Study
(author/
year)

Sample size Study design &
protocol

Age
(years)

Stimulationparameter Symptom Targetdisorder taVNS effects

Colzato
et al., 2018
(63)

taVNS: 40
Sham: 40
F: 50

Between
Acute taVNS

17-33 taVNS: cymba conchae
sham: earlobe
0.5mA, 25Hz, 200-300ms,
30s on 30s off

Depression Depressive
disorders

Divergent thinking ↑

Neuser
et al., 2020
(64)

81 (47 F) Within
Acute taVNS

25.3(3.8) taVNS: cymba conchae
1.28(0.58) mA
sham: earlobe
1.82(0.63) mA 25Hz, 30s on
30s off

Depression Depressive
disorders

Reward seeking ↑

De Smet
et al., 2021
(65)

taVNS: 42
Sham: 41
F: 66

Between
Acute taVNS

21.11(3.10) taVNS: cymba conchae 1.37
(0.81) mA
sham: earlobe
1.89(0.89) mA
25Hz, 250ms,
30s on 30s off

Depression Depressive
disorders

Negative emotion
regulation ↑

Ferstl et al.,
2021 (66)

82 (47 F) Within
Acute taVNS

24.6(3.5) taVNS: cymba conchae
sham: earlobe
25Hz, 30s on 30s off

Depression Depressive
disorders

Mood recovery↑

Steenbergen
et al., 2021
(67)

73 (58 F) Within
Acute taVNS

18-28 taVNS: cymba conchae
sham: earlobe
0.5mA, 25Hz, 200-300ms,
30s on 30s off

Depression Depressive
disorders

Recognition of sadness
↓

Koenig
et al., 2021
(68)

33 (27 F)
adolescents
with major
depressive
disorders

Within
Acute taVNS

14-17 taVNS: concha
sham: earlobe
0.5mA, 1Hz, 250ms,
30s on 30s off

Depression Depressive
disorders

Attention to sad stimuli
↓

Kraus et al.,
2007 (38)

6 (5 F) Within
Acute taVNS

20-37 taVNS: inner tragus
sham: earlobe
8Hz, 20ms

Depression Depressive
disorders

BOLD-signal in limbic
brain areas↓
Subjective well-being ↑

Burger
et al.,2020
(69)
(Study 1)

taVNS: 45
Sham: 49
subclinical, high
trait worrying
sample

Between
Acute taVNS

Not reported taVNS: cymba conchae
sham: earlobe
0.5mA, 25Hz, 250ms,
30s on 30s off

Anxiety and
fear

GAD Attentional engagement
to threat ↓

Burger
et al., 2019
(70)

taVNS: 48
Sham: 49
subclinical, high
trait worrying
sample

Between
Acute taVNS

Not reported taVNS: cymba conchae
sham: earlobe
0.5mA, 25Hz, 250ms,
30s ON 30s off

Anxiety and
fear

GAD
PTSD

Negative thought
intrusions ↓

Burger
et al., 2017
(71)

taVNS: 25
Sham: 26
F: 26

Between
Acute taVNS

20-36 taVNS: cymba conchae
sham: earlobe
0.5mA, 25Hz, 250ms,
30s on 30s off

Anxiety and
fear

Anxiety
PTSD

Extinction of declarative
fear ↑

(Continued)
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TABLE 1 Continued

Study
(author/
year)

Sample size Study design &
protocol

Age
(years)

Stimulationparameter Symptom Targetdisorder taVNS effects

Burger
et al., 2016
(72)

taVNS: 18
Sham: 13
F: 24

Between
Acute taVNS

18-25 taVNS: cymba conchae
sham: earlobe
0.5mA, 25Hz, 250ms,
30s on 30s off

Anxiety and
fear

Anxiety
PTSD

Extinction learning ↑

Szeska et al.,
2020 (73)

80 (57 F)
Fear learning
group:
taVNS: 20
sham: 20
control group:
taVNS: 20
sham: 20

Mixed
Acute taVNS

18-34 taVNS: cymba conchae
2.28(1.13) mA
sham: earlobe
2.53(1.11) mA, 25Hz, 200-
300ms,
30s on 30s off

Anxiety and
fear

Anxiety
PTSD

Inhibition of fear
potentiated startle
responses ↑

Jacobs et al.,
2015 (74)

30 (15 F) Within
Acute taVNS

60.57(2.54) taVNS: inner tragus
sham: earlobe
5.0mA, 8Hz, 200ms

Anxiety and
fear

Anxiety
PTSD

Associated memory
performance ↑

Giraudier
et al., 2020
(75)

60 (46 F) Between
Acute taVNS

23.45(4.87) taVNS: cymba conchae 1.48
(0.59) mA
sham: earlobe
1.31(0.50) mA
25Hz, 200-300ms,
30s on 30s off

Anxiety and
fear

Anxiety
PTSD

Recollection-based
memory↑

Colzato
et al., 2017
(76)

38 (30 F) Within
Acute taVNS

18-26 taVNS: cymba conchae
sham: earlobe
0.5mA,25Hz, 200-300ms,
30s on 30s off

Social
dysfunction

ASD
ADHD
OCD

Recognition of
emotions ↑

Sellaro et al.,
2018 (77)

24 (15 F) Within
Acute taVNS

18-28 taVNS: cymba conchae
sham: earlobe
0.5mA, 25Hz, 200-300ms,
30s on 30s off

Social
dysfunction

ASD
ADHD
OCD

Emotion recognition ↑

Zhu et al.,
2022 (78)

49 (17 F) Within
Acute taVNS

19.88(1.62) taVNS: tragus
0.86(0.04) mA
sham: earlobe
1.49(0.08) mA
25Hz, 500ms,
30s on 30s off

Social
dysfunction

ASD
ADHD
OCD

Visual attention
towards social salient
facial features ↑
Endogenous oxytocin
release ↑

Koenig
et al., 2021
(68)

30 (24 F)
healthy controls

Within
Acute taVNS

14-17 taVNS: concha
sham: earlobe
0.5mA, 1Hz, 250ms,
30s on 30s off

Social
dysfunction

ASD
ADHD
OCD

Emotion recognition ↑

Villani et al.,
2019 (79)

46 (32 F) Within
Acute taVNS

21.2(3.1) taVNS: tragus
1.26(0.23) mA
sham: earlobe
1.18(0.18) mA
25Hz, 250ms

Social
dysfunction

Social dysfunction Interoceptive accuracy
↑

Maraver
et al., 2020
(80)

43 (39 F) Within
Acute taVNS

18-30 taVNS: cymba conchae
sham: earlobe
0.5mA, 25Hz, 200-300ms,
30s on 30s off

Social
dysfunction

ASD
ADHD
OCD

Attention to faces with
a direct gaze ↑

Steenbergen
et al., 2021
(67)

73 (58 F) Within
Acute taVNS

18-28 taVNS: cymba conchae
sham: earlobe
0.5mA, 25Hz, 200-300ms,
30s on 30s off

Social
dysfunction

ASD
ADHD
OCD

Recognition of anger ↑

Ventura-
Bort et al.,
2021 (81)

37 (20 F) Within
Acute taVNS

23.15 taVNS: cymba conchae
1.34 mA
sham: earlobe
1.58 mA
25Hz, 200-300ms

Social
dysfunction

ASD
ADHD
OCD

Recollection-based
memory for emotional
material ↑
Attentional
discrimination between

(Continued)
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TABLE 1 Continued

Study
(author/
year)

Sample size Study design &
protocol

Age
(years)

Stimulationparameter Symptom Targetdisorder taVNS effects

emotional and neutral
scenes↑

Steenbergen
et al., 2015
(82)

30 (26 F)
taVNS: 15
Sham: 15

Between
Acute taVNS

18-27 taVNS: outer auditory canal
sham: earlobe
0.5mA, 25Hz, 200-300ms,
30s on 30s off

Impulsivity and
inattention

ADHD
ASD
DBD

Responses when two
actions were executed
in succession ↑

Beste et al.,
2016 (83)

51 (37 F)
taVNS: 25
Sham: 26

Between
Acute taVNS

23.63 taVNS: inner ear
sham: earlobe
0.5mA, 25Hz 200-300ms,
30s on 30s off

Impulsivity and
inattention

ADHD
ASD
DBD

The ability of inhibitory
control ↑

Fischer
et al., 2018
(84)

21 (18 F) Within
Acute taVNS

20.3(1.4) taVNS: cymba conchae
1.3 mA
sham: earlobe
1.49 mA
25Hz, 200-300ms,
30s on 30s off

Impulsivity and
inattention

ADHD
ASD
DBD

Adaption to conflict ↑

Jongkees
et al., 2018
(85)

40 (32 F)
taVNS: 20
Sham: 20

Between
Acute taVNS

taVNS: 22.3
(2.7) years
Sham: 22.5
(2.5) years

taVNS: medial of the tragus
sham: earlobe
0.5mA, 25Hz, 200-300ms,
30s on 30s off

Impulsivity and
inattention

ADHD
ASD
DBD

Response selection
processes ↑

Keute et al.,
2019 (86)

16 (8 F) Within
Acute taVNS

20-28 taVNS: cymba conchae 5.9
(1.6) mA
sham: earlobe
7.5(0.8) mA
25Hz, 200ms,
30s on 30s off

Impulsivity and
inattention

ADHD
ASD
DBD

Automatic motor
response inhibition ↑

Keute et al.,
2020 (87)

22 (16 F) Within
Acute taVNS

21-28 taVNS: cymba conchae 2.37
(0.16) mA
sham: earlobe
2.6 mA
25Hz, 200ms,
30s on 30s off

Impulsivity and
inattention

ADHD
ASD
DBD

General adaptive
control and sustained
attention ↑

Borges et al.,
2020 (88)

23 (9 F) Within
Acute taVNS

23.17(4.08) taVNS: cymba conchae
2.19(0.93) mA
sham: earlobe
2.20(1.06) mA 25Hz, 200-
300ms,
30s on 30s off

Impulsivity and
inattention

ADHD
ASD
DBD

Cognitive flexibility ↑

Pihlaja
et al., 2020
(89)

25 (16 F) Within
Acute taVNS

25.5(4.8) aVNS: inner tragus
sham: earlobe
30Hz, 250ms

Impulsivity and
inattention

ADHD
ASD
DBD

Cognitive control
resources required to
withhold a prepotent
response ↓

Steenbergen
et al., 2020
(90)

84 (52 F) Within
Acute taVNS

22.32(2.71) taVNS: cymba conchae
sham: earlobe
0.5mA, 25Hz, 200-300ms,
30s on 30s off

Impulsivity and
inattention

ADHD
ASD
DBD

Self-control ↑

Llanos et al.
2020 (91)

36 (20 F)
tVNS-hard: 12
tVNS-easy: 12
control: 12

Between
Acute taVNS

21.60(3.56) taVNS: cymba conchae
hard: 1.67(0.79) mA
easy: 1.24(0.88) mA
control: no stimulation

Others/
Language
deficits

ASD Speech category
learning & retention of
correct stimulus
response associations ↑

Thakkar
et al., 2020
(92)

37 (27 F)
Computer
control: 7
Device sham
control: 7
Earlobe
stimulation

Between
Acute taVNS

18-28 taVNS: cymba conchae 1.68
(0.87) mA
sham control: cymba
conchae
no stimulation
earlobe control: earlobe
1.51(0.35) mA

Others/
Language
deficits

ASD Novel orthography
acquisition ↑

(Continued)
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treatment of refractory depression (104). Several studies have

now also used taVNS as a noninvasive alternative of VNS, and

found beneficial effects on mood in adult MDD patients (17, 49).

Other studies have shown effects on clinical severity. For

example, after one month of treatment, scores on the

Hamilton Depression Rating Scale were significantly reduced

in a taVNS compared to control group in adult MDD patients,

and this was associated with increased default mode network

functional connectivity under taVNS (13). Kraus and colleagues

(38) found that taVNS compared to sham stimulation could

decrease BOLD-signals in limbic brain areas and improve

subjective well-being ratings (38). Indeed, a range of beneficial

taVNS effects have now been reported in a number of clinical

trials on MDD patients (14, 15, 17, 49, 105). Recently, evidence

from healthy populations also indicates that a prolonged period
Frontiers in Endocrinology 07
of effort exertion with concurrent taVNS in comparison to sham

stimulation could boost mood recovery, indicating that taVNS

may help improve affect after a mood challenge (66).

Previous research has shown that emotion regulation deficits

may play an important role in contributing to sustained sad

mood in depressive patients (98, 106). In line with this, Koenig

and colleagues reported that taVNS decreased attention to sad

stimuli in adolescents with MDD when they performed in

different emotion recognition tasks (68). Furthermore, in

healthy subjects, taVNS reduced the ability to recognize

sadness in dynamic bodily expressions (67). Similarly, a recent

study indicates that participants receiving active taVNS,

compared to sham, were better at using cognitive reappraisal

strategy to down-regulate their response to negative emotional

pictures (65). Moreover, taVNS could improve impaired
TABLE 1 Continued

Study
(author/
year)

Sample size Study design &
protocol

Age
(years)

Stimulationparameter Symptom Targetdisorder taVNS effects

control: 9
taVNS: 14

5Hz, 200ms,
30s on 30s off

Hong et al.,
2019 (93)

14 patients
requiring open
laparotomy (8
F)

Within
Acute taVNS

57.6 (10.5) taVNS: cymba conchar
10mA, 25Hz, 250ms,
Control: no stimulation

Others/
Gastrointestinal
problems

ASD Stomach function ↑

Teckentrup
et al., 2020
(94)

22 (14 F) Within
Acute taVNS

19-29 taVNS: cymba conchae 1.37
(0.81) mA
sham: earlobe
1.89(0.89) mA
25Hz
30s on 30s off

Others/
Gastrointestinal
problems

ASD Gastric function ↑

Steidel et al.,
2021 (95)

HF taVNS: 24
(15 F)
LF taVNS:
28 (18 F)

Mixed
Acute taVNS

25.5(5.2) taVNS: cymba conchae,
250ms HF: 25 Hz 0.91(0.43)
mA
LF: 1 Hz
0.66(0.53) mA
30s on 30s off

Others/
Gastrointestinal
problems

ASD Gastric function ↑

Wu et al.,
2021 (96)

40 patients with
primary
insomnia
Group A: 20
(15 F)
Group B: 20 (13
F)

Between
repeated taVNS
(30min of taVNS
twice a day, 5 days per
week for 4 weeks)

Group A:
49.40±12.22
years
Group B:
46.20±12.76
years

taVNS: cavum concha
7-12mA, 20Hz, 200ms,
No stimulation for Group B
(controls)

Others/ Sleep
problems

GAD
MDD

Sleep quality ↑

Zhang et al.,
2021 (42)

20 patients with
primary
insomnia

Within
repeated taVNS
(30min of taVNS
twice a day, 5 days per
week for 4 weeks)

Not reported taVNS: cavum concha
0.8-1.5mA, 4/20 Hz, 200ms,

Others/ Sleep
problems

GAD
MDD

Score of Pittsburgh
Sleep Quality Index ↓
Sleep duration↑

He et al.,
2022 (97)

24 patients with
chronic
insomnia (CI)
(12F)
18 healthy
controls (HC)
(12 F)

Between
repeated taVNS for CI
patients (30min of
taVNS twice a day for
4 weeks),

CI patients:
42.50±15.42
years
HC:
43.5 ± 11.23
years

taVNS: bilateral cymba
conchae 4/20 Hz, 200ms ±
30%
No stimulation for HC

Others/ Sleep
problems

GAD
MDD

The scores of Pittsburgh
Sleep Quality Index and
Flinders Fatigue Scale ↓
F, female; HF, high frequency; LF, low frequency. ↑: increased/higher/better. ↓: decreased/lower.
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cognitive flexibility in depressive patients by enhancing

divergent thinking in healthy participants (63). Lack of

pleasure (i.e., no interest in reaction to pleasurable stimuli or

experiences and lack of anticipation of pleasure) is another main

symptom of depression. One recent study demonstrated that

acute taVNS facilitated reward-seeking by boosting invigoration,

suggesting that taVNS may enhance pursuit of prospective

rewards (64). Thus, all the above results suggest that taVNS

could be a useful add-on to current therapies for depressive

disorders (e.g., emotion regulation, cognitive flexibility, lack of

pleasure) in pediatric as well as adult populations.
3.2 Potential taVNS effects on anxiety
and fear

Anxiety disorders are among the most prevalent

psychiatric conditions in children and adolescents worldwide

but are often untreated in pediatric populations (107, 108).

Excessive fear and anxiety are shared features of anxiety

disorders, and uncontrollable and excessive worrying is a

typical symptom of generalized anxiety disorder (GAD) in

particular (109).

Burger and colleagues suggested that attentional engagement

to threat and negative thought intrusions could be reduced by

active taVNS in high trait worrying adults, providing preclinical

support for future application of taVNS in the treatment of

pediatric GAD (69, 70). Fear extinction is also a fundamental

step in exposure therapies for anxiety and stress-related

disorders (e.g., post-traumatic stress disorder (PTSD)) and low

levels of vagal activity have been found in anxiety patients. Thus,

VNS could be a non-pharmacological alternative for improving

extinction memory (110–112). Studies have now shown that

taVNS has beneficial effects on the modulation of fear extinction.

For instance, extinction of declarative fear and explicit fear

extinction learning could be facilitated by active taVNS

compared to sham stimulation (71, 72). Additionally, it has

been found that an extinction training together with taVNS

resulted in rapid anxiolytic effects as well as an inhibition of fear

potentiated startle response (73). Furthermore, associated

memory performance and recollection-based memory can be

enhanced by taVNS, suggesting its potential role in promoting

extinction memory retention beyond its effect on extinction

learning (74, 75). Additionally, it has also been found that

neurobiological dysfunctions in post-traumatic stress disorder

(PTSD), such as increased norepinephrine and sympathetic

activity and abnormal inflammatory function, could be

modulated by vagal activity (for more detailed discussion see

(113)). Thus, taVNS may also be a potential anxiolytic

intervention for treatment of pediatric as well as adult anxiety

related disorders.
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3.3 Potential taVNS effects on
social dysfunction

Social dysfunction is one of the key characteristics of ASD,

and also occurs in ADHD and OCD (114, 115). Impaired

emotion recognition is also often observed in these disorders

(116). The symptoms of these disorders can often be severe and

cause problems in everyday life as well as stress and economic

burden for individuals and their families. So far, no effective and

reliable treatment has been established for ASD in particular,

and there is an urgent need for developing novel

effective therapies.

Pre-clinical studies have demonstrated that taVNS can

improve emotion recognition in healthy populations. For

example, emotion recognition based on the eye region alone

(76), whole faces (77) or body movement (67) is enhanced by

active taVNS compared to sham stimulation. Further, taVNS

can also generally increase emotion recognition in healthy

adolescents independent of the type of task (68).Ventura-Bort

and colleagues (81) reported that taVNS increased memory

performance for emotional but not neutral materials and

facilitated early attentional discrimination between emotional

and neutral scenes. This may indicate a role of taVNS in

increasing the salience of emotional stimuli. In line with this,

taVNS has been recently reported to bias visual attention

towards salient facial features, which are important for

emotional recognition, and increasing endogenous release of

the hypothalamic neuropeptide, oxytocin (78). Previously, it had

already been found that plasma oxytocin concentrations in rats

increased immediately after iVNS (117). A large number of

studies have demonstrated as important role for oxytocin in

facilitating social cognition and reward (118), taVNS effects on

oxytocin may play a key role in helping to increase the salience of

social cues (119). Some clinical trials in children with ASD have

also shown it can improve social symptoms (120–122).

Interoception, which is regarded as a fundamental basis for

emotional processing, can also be improved under taVNS, with

is evidenced by increased cardiac interoceptive accuracy in a

heartbeat discrimination task (79). Furthermore, researchers

also found that taVNS modulates attention to direct gaze

(salient social cue) irrespective of the expressed emotion in a

Rapid Serial Visual Presentation task (80). This finding suggests

that taVNS may enhance perception of gaze direction, thereby

increasing joint attention, making the observer more sensitive to

socially relevant facial cues. In addition, a few studies have

reported that massage, which increases vagal activity, can

improve social responses and relationships between parents

and children with ASD (123, 124). Overall, therefore, the

above studies suggest that taVNS has a great potential in

improving social cognition and responses (i.e., emotional

processing, eye contact) in individuals with neurodevelopment

disorders (for more details see Table 1).
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3.4 Potential taVNS effects on impulsivity
and inattention

The main features of ADHD are a persistent pattern of

inattention and/or hyperactivity-impulsivity that interfere with

functioning or development (125). However, impulsive

behaviors are also seen in children with ASD and DBD and

ones with oppositional defiant disorder (ODD) or conduct

disorder (CD). Response inhibition deficits often relate to

impulsivity, and together they greatly increase the likelihood

that these children will develop antisocial personality disorder or

substance use disorders and face incarceration in adulthood

(126–128).

Several published meta-analyses of functional MRI studies

on ADHD patients have demonstrated abnormal neural activity

(129–131) in the executive control and dorsal attentional

networks (132–134) which can also be activated by taVNS

(50). Other preclinical studies in healthy populations have

demonstrated beneficial effects of taVNS on behavioral and

executive control, which further suggest its potential

therapeutic application in disorders involving problematic

impulse control (58). For example, Beste and colleagues (83)

investigated the effects of taVNS on different aspects of

inhibitory control (i.e., backward inhibition and response

inhibition), and reported enhanced response control after

active taVNS (83). Subsequently, Fisher and colleagues (2018)

demonstrated that taVNS increased adaption to conflict in a

response conflict task (the Simon task) (84). Furthermore,

response selection during sequential action (85), automatic

motor inhibition (135) and self-control in delay discounting

(90) have all been reported to be improved by taVNS. It has also

been suggested that the effects of taVNS on improving response

control in the above studies may be due to its modulatory role in

reducing resources required for cognitive control (89).

Additionally, emerging evidence has shown that cognitive

flexibility, general adaptive control and sustained attention can

be enhanced by taVNS, indicating its potential use in alleviating

inattention symptoms in pediatric as well as adult ADHD

patients (87, 88).
3.5 Other clinical symptoms

Children with ASD often suffer from gastrointestinal

problems which are associated with vagal activity (136–138).

As shown in Figure 1, gastrointestinal tract dysfunction could be

regulated by stimulating the vagus nerve which plays a key role

in the interaction between brain and peripheral organs. Hong

and colleagues (93) found that taVNS led to significant reduction

in action potential frequency and increased action potential

amplitude in the stomach compared to controls, and raised

levels of gastrin 3 h after stimulation (93). Subsequently,
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Teckentrup and colleagues (64) reported that taVNS reduced

gastric activity frequency without acutely altering resting energy

expenditure (94). A recent study also indicated that gastric

motility could be increased by high frequency taVNS (95).

These three tentative studies indicate that taVNS may have

potential treating of gastrointestinal dysregulations in ASD.

Additionally, a key feature of ASD is restricted verbal and

nonverbal communication, and a failure in spoken language

development (139). Two recent studies have shown that taVNS

could improve novel orthography acquisition and enhance

speech category learning in healthy populations. Thus taVNS

as an adjunct to language training could be a novel therapeutic

strategy for children with ASD (91, 92).

Comorbidity of depression and anxiety in youth is often

reported in clinical situations (140, 141), and GAD and MDD

have a high rate of comorbidity (142, 143). A possible

explanation is that they share some diagnostic symptoms, such

as sleeping problems, difficulty concentrating, being easily

fatigued, and psychomotor agitation (144). It has been

reported that taVNS treatment is effective in improving sleep

quality and prolonging sleep duration in primary insomnia

patients via the regulation of a broad brain network (i.e.,

default mode network, salience network and sensorimotor

network) (96, 97, 145, 146). He and colleagues (97) have also

reported that 4 weeks of taVNS treatment improved chronic

insomnia symptoms by decreasing Pittsburgh Sleep Quality

Index (PSQI) and Flinders Fatigue Scale (FFS) scores, and

increasing the reduced neuroexcitability of the dorsolateral

prefrontal cortex. Altered dorsolateral prefrontal cortex

excitability was associated with symptom improvements and

may therefore predict the efficacy of taVNS treatment effects.

Together, this preliminary evidence indicates that taVNS may be

expected to play an active role in the treatment sleep problems

common in patients with depression and anxiety-related

disorders as well as in ASD.

Furthermore, auricular electroacupuncture (EA) on vagally

innervated regions, which can mimic taVNS, is reported to be

effective in treatment of insomnia and relief of acute and chronic

pain as well (147). Recently, Li and colleagues found that taVNS

combined with cranial EA can be applied for the treatment of

depression with chronic pain (148).

In sum, therefore taVNS may represent a potential therapeutic

intervention for a number of different clinical behavioral

manifestations targeting pediatric neurodevelopmental and other

psychiatric disorders, including ASD, ADHD, OCD, DBD,

depression and anxiety-related disorders (see Figure 2).
4 Optimization of taVNS protocols

Anatomical evidence indicates that the external ear is the

only part of our body where the vagus nerve has a peripheral
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termination (51), and that taVNS produces its functional effects

by stimulation of the auricular branch of the vagus nerve

(ABVN) (52). Therefore, both the auricular anatomy of vagus

nerve and its corresponding physiological properties influence

appropriate localization and stimulation parameters for taVNS

devices (149), and in turn affect the safety and effectiveness of

this technique. Here we detail some of the key factors that need

to be considered for optimizing taVNS application protocols in

clinical pediatric cases.
4.1 Stimulation region

4.1.1 Cymba concha or tragus?
The cymba concha (100% innervated by ABVN) and tragus

(45% innervated by ABVN) are the two most frequently chosen

auricular regions in taVNS studies (149). However, there is some

controversy regarding the optimal positions in the ear for

attachment of electrodes for taVNS (150, 151). Notably, it is

essential to confirm that it is the vagus nerve rather than other

auricular nerves (great auricular nerve, auriculotemporal nerve

and lesser occipital nerve) which is activated via taVNS.

Evidence from an fMRI study has demonstrated that

stimulation of cymba concha induced the strongest activation

of the NTS, which is the recipient of most afferent vagal

projections located in the brainstem, compared to the ear

canal, inner tragus and earlobe (57). Additionally, stimulating
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the inner tragus relative to the earlobe demonstrated increased

activation in brain regions receiving projections from the

brainstem (50).The tragus may also have some practical

advantages over the cymba concha (150) given that it appears

to be easier to apply electrical stimulation by attaching a clip

electrode to the tragus rather than by inserting or affixing

electrodes to the concha.

Importantly, the current knowledge of auricular vagal nerve

anatomy needs to be extended by more anatomical studies on

the human ear since to date there is only one dissection study

performed on 7 German cadavers (14 ears) (56). Optimal

localizations of electrodes need to be informed by more

precise future studies.
4.1.2 Left or right ear?
The left ear has been favored most in taVNS studies since it

is thought to avoid any risk of incurring possible cardiac

arrhythmic effects associated with activation of efferent vagal

fibers connected to the right ear (152). However, a study has

reported that stimulation of right ear has more beneficial effects

on the modulation of heart rate variability (HRV) when

compared to left ear (153). A systematic review has also

concluded that right-ear stimulation does not increase the risk

of aversive effects (154). In addition, bilateral taVNS has been

used in a number of studies (64, 155–158) with no obvious

adverse events being reported. Currently, studies on the
FIGURE 2

Illustration of the potential effects of taVNS on clinical symptoms and corresponding disorders. Depressive disorder (DD), Generalized anxiety
disorder (GAD), Post-traumatic stress disorder (PTSD), Obsessive-compulsive disorder (OCD), Autism spectrum disorder (ASD), Conduct disorder
(CD), Attention-deficit/hyperactivity disorder (ADHD), and Oppositional defiant disorder (ODD).
frontiersin.org

https://doi.org/10.3389/fendo.2022.1000758
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhu et al. 10.3389/fendo.2022.1000758
neurophysiological effects underlying different stimulation sites

are scarce and more evidence should be provided in future

studies, particularly in terms of establishing potential risks in

pediatric populations.
4.2 Stimulation parameters

The vagal nerve consists of different types of fibers sub-

serving specific functions. The myelinated A-fibers which

convey somatic afferent information are supposed to be the

main target for taVNS (159). Consideration of the signaling

properties of Ab fibers which exclusively send somatic and touch

impulses to the central nervous system should be the main focus

when deciding optimal stimulation patterns for taVNS. A

relatively high frequency of 20-25Hz and short pulse widths

are able to recruit thick Ab fibers (6-12 mm), resulting in

activation of the parasympathetic system, while low frequency

of 0-0.5Hz and elongated pulse widths are required to stimulate

thin fibers, such as myelinated Ad (1-5 mm) or non-myelinated

C fibers (0.4-2 mm), resulting more in activation of the

sympathetic system (149).

Currently, there is no consensus on stimulus parameter

settings in the taVNS field (61). Variable combinations of

frequency, pulse width and intensity have been used given that

taVNS devices have been used in a wide range of applications in

both clinical and healthy populations (58, 160–162). Although

several studies have been carried out to establish optimal

stimulation parameters for VNS (163–165), only one has

systematically investigated the effects of varying parameters of

taVNS (pulse width: 0.1 ms, 0.2 ms, 0.5 ms; frequency: 1 Hz, 10

Hz, 25 Hz) in 20 healthy individuals, and concluded that a

combination of 0.5 ms pulse width and 10 Hz frequency induced

the greatest effects on heart rate (166). Generally, frequencies of

25 Hz or 20 Hz combined with pulse widths of 0.25 – 1 ms have

most commonly been used in previous clinical and preclinical

studies (154, 162). In addition, stimulation intensity is often

fixed at 0.5mA (37, 72, 82, 83, 167), but in other cases is tailored

to individuals' sensitivity/tolerance (50, 57, 153, 168, 169).

Furthermore, use of alternating on and off periods of

stimulation every 30 s have often been adopted in taVNS

procedures to help reduce habituation (63, 77, 85, 88, 170,

171). Overall, therefore, stimulation parameters for taVNS

devices still need to be optimized by future studies,

particularly for use in pediatric populations.
4.3 Stimulation efficacy, side effects
and tolerability

Although several studies have tried to investigate the

underlying neural mechanisms of taVNS effects, inconsistent
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findings have been observed due to the variations among

stimulation protocols and participants (61). Consequently, no

reliable biomarker(s) have been established which could indicate

the efficacy of taVNS in general. At present, heart rate variability,

some noradrenergic process markers, such as salivary alpha

amylase (sAA), P300 amplitude of event-related potentials

(ERPs) and pupil dilation are mostly recorded to demonstrate

effective vagal activation (for details see review from (172)).

However, given the failure of observing increased noradrenergic

activity in active taVNS compared to sham stimulation in several

studies (86, 167, 169, 173–175), we may need to consider

cautiously three possible explanations for the null effects of

taVNS. Firstly, suboptimal stimulation parameters. In these

studies, pulse width and frequency were kept fixed, although

intensity was flexible to adjusted according to individuals pain

threshold. However, evidence from animal studies has indicated

that it is a combination of intensity and pulse width rather than

intensity alone that determines the activation of noradrenergic

system (163). Closed-loop taVNS (CL-taVNS) where feedback

from rapidly changing bio-signals is used to simultaneously

adjust stimulation parameters may be a good choice in future

studies to improve treatment efficacy for different disorders

(176). Currently, only two CL-taVNS systems exist. The first

of these is respiratory-gated auricular vagal afferent nerve

stimulation (RAVANS), which works on the principle that

inhalation induces transient inhibition of vagal nerve activity,

and has shown therapeutic benefits on pain in patients with

pelvic pain and migraine (177, 178). A second system is motor-

activated auricular vagus nerve stimulation (MAAVNS) (179,

180), which uses electromyography (EMG) to record motor

activities as an input signal to guide the administration of

taVNS targeting specific motor activity. This is now applied in

neonates for oromotor neurorehabilitation (181). In principle,

other biomarkers may also be available for developing new CL-

taVNS systems in future according to specific clinical purpose.

Secondly, unlike invasive VNS that involves the simultaneous

activation of afferent and efferent fibers of vagus nerve, taVNS

that only stimulates a small branch of afferent vagus nerve fibers

may be insufficient to effectively induce measurable central

effects on noradrenergic network and the related biomarkers.

Thirdly, the earlobe may not be an optimal site to apply sham

stimulation given that earlobe stimulation may be associated

with the release of other neurotransmitters (e.g., acetylcholine)

that also have an impact on the biomarkers of noradrenergic

activation (i.e., pupil size, sAA and cortisol). Alternatively, the

ear scapha could be a potential site of sham stimulation (182),

but central effects of stimulating this site need to be further

investigated. Taken together, this also suggests more studies are

required to help optimize protocols and stimulation parameters

for obtaining reliable results in the future clinical studies.

A systematic review including 1322 participants from 51

studies reported that the most common side effects of taVNS
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were local skin irritation from electrode placement, headache

and nasopharyngitis, although symptoms were usually mild and

temporary. Moreover, frequency (Hz) and pulse width (ms) of

stimulation were not correlated with the occurrence of side

effects (154). In addition, taVNS has been used to treat oral

feeding dysfunction in premature newborns (≤33 weeks) (181)

and pediatric nephrotic syndrome in young patients (183)

without observing adverse events related to stimulation. These

suggest that applying taVNS in pediatric populations should

represent little risk of significant side effects, although more

future trials are included to assess potential short- or longer-

term adverse effects.

Tolerance of wearing taVNS electrodes clips in young

children, particularly those with ASD, is clearly an issue that

needs consideration and it is important that electrode clips are

both small and comfortable and that stimulation is not painful.

Badran and colleagues have adopted a customized ear-clip the

size of which is suitable for newborns to make the taVNS

treatment possible (stimulation frequency at 25 Hz, pulse

width at 500 ms, and current intensity at 0.1 mA below

perceptual threshold) (181). Further, it has also been reported

that taVNS could be successfully used in the treatment of

pediatric nephrotic syndrome in young children and

adolescents (4-17 years, at a frequency of 30 Hz with

individual pulse widths of 300 ms, and pulse amplitude

intensity was adjusted to the participant's tolerance) (183).

However, future studies on children will need to consider use

of positive reinforcement to increase cooperation behaviors,

adopting CL-taVNS approaches and perhaps in some cases

administering taVNS during natural sleep. It is worth noting

that many research studies have been performed where young

children with disorders are trained to tolerate procedures such as

MRI, and to accept wearing EEG or fNIRS electrodes on

their head.
5 Conclusions

Although research on taVNS has progressively increased in

the past two decades, this field is still in its infancy. A number of

precautions should be considered for establishing the potential

use of taVNS protocols in pediatric populations: (1) More

reliable biomarkers of taVNS need to be established, especially

the causal link between taVNS and increased vagal activity.

Currently, some noradrenergic related activities and

parasympathetic functions have been proposed to be the

candidates for indicating effective vagus nerve stimulation (i.e.,

pupil diameter, salivary alpha-amylase and heart rate

variability), but inconsistent results have often been reported.

Thus, stimulation sites and parameters should be further

optimized to enhance treatment efficacy. (2) Long-term and
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acute effects of taVNS should be carefully investigated, especially

for translational purpose, and potential long-term effects need to

be investigated in clinical conditions. This information may also

help for optimizing individualized treatment. (3) Treatment

procedures and outcome measurements can focus on one

clinical condition, which may help promote the validation of

beneficial effects of the taVNS technique. (4) More preclinical

evidence on taVNS effects from pediatric populations is required

given that the majority of current studies are from adult

populations. (5) The application and side effects of taVNS in

young children with neurodevelopment and psychiatric

disorders should be investigated in randomized clinical trials.

Studies exploring treatment effect of taVNS in children are

scarce, and although some have reported no adverse events

during the treatment period (181, 183), more future work is

urgently needed.

Early intervention is critical to enhancing the quality of life

for any child who suffers from symptoms of neurodevelopmental

or other psychiatric disorders. For neurodevelopmental

disorders in particular there is considerable evidence

supporting early therapeutic intervention as having the most

effective outcome (184–187) reflecting the fact that

developmental changes in the brain are most prevalent at this

stage and capacity for brain plasticity changes in response to

therapy is highest. In general, taVNS has a tremendous potential

as a non-invasive adjunctive treatment targeting specific

behavioral manifestations including social dysfunction,

impulsivity and inattention, anxiety and fear, and depression

in several pediatric neurodevelopment and psychiatric disorders,

although standardized stimulation protocols (i.e., stimulation

region and stimulation parameters) still need to be established.
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