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Metformin is the first-line oral treatment for type 2 diabetes mellitus and is

prescribed to more than 150 million people worldwide. Metformin’s effect as a

glucose-lowering drug is well documented but the precise mechanism of

action is unknown. A recent finding of an association between paternal

metformin treatment and increased numbers of genital birth defects in sons

and a tendency towards a skewed secondary sex ratio with less male offspring

prompted us to focus on other evidence of reproductive side effects of this

drug. Metformin in humans is documented to reduce the circulating level of

testosterone in both men and women. In experimental animal models,

metformin exposure in utero induced sex-specific reproductive changes in

adult rat male offspring with reduced fertility manifested as a 30% decrease

in litter size and metformin exposure to fish, induced intersex documented in

testicular tissue. Metformin is excreted unchanged into urine and feces and is

present in wastewater and even in the effluent of wastewater treatment plants

from where it spreads to rivers, lakes, and drinking water. It is documented to

be present in numerous freshwater samples throughout the world – and even

in drinking water. We here present the hypothesis that metformin needs to be

considered a potential reproductive toxicant for humans, and probably also for

wildlife. There is an urgent need for studies exploring the association between

metformin exposure and reproductive outcomes in humans, experimental

animals, and aquatic wildlife.
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Introduction

The oral blood-glucose-lowering drug, metformin, is

effective, low-cost and the most commonly used antidiabetic

drug in the world (1). Metformin has been used to treat diabetes

in European countries since 1958 and is currently recommended

as a first-line oral treatment for type 2 diabetes mellitus (T2DM)

for both men and women (1, 2). In 2012, metformin was

prescribed to more than 150 million people worldwide (3) and

was the 4th most prescribed drug in the US in 2019 (4). Unlike

insulin, metformin crosses the placenta readily (5) and has the

potential to cause negative effects on the developing fetus (6–8).

However, metformin is used in pregnant women with T2DM,

and benefits on the maternal glycaemic level and neonatal

adiposity are demonstrated (9). In addition, there is an

increase in experimental studies investigating whether

metformin can be used in different diseases and conditions

including endometriosis (10). The therapeutic indications for

metformin prescription may therefore be expanding, resulting in

even more widespread use. However, as stated in a recent review

by Triggle et al. (10) metformin may act as an endocrine

disrupter through multiple sites of actions and signaling

pathways, and this uncertainty may offset the expansion use

of metformin.

Recently, we found that offspring of diabetic fathers who

were prescribed metformin during the three months before

fertilization had an increased risk of malformations, especially

in the male sexual organs where malformations were three times

more common (11). These findings prompted us to search the

literature for indications of other negative reproductive effects of

metformin and to present the hypothesis that metformin should

be considered a potential reproductive toxicant for humans, and

possibly also for wildlife.
Clinical action, metabolism, and
excretion to the environment

Evidence suggests that long-term metformin treatment works

primarily by inhibiting hepatic gluconeogenesis and secondarily

by improving glucose uptake in skeletal muscles and adipocytes,

resulting in lowering blood glucose concentrations (12).

Metformin presumably affects all tissues within the human body

via AMP-activated protein kinase (AMPK)-dependent and

-independent mechanisms, primarily by inhibition of

mitochondrial respiration (13). However, despite more than 60

years of extensive use, metformin’s precise mechanism of action is

not known (14). Metformin, like many pharmaceuticals, derives

from petrochemicals, which again derive from fossil fuels (15).

Unlike most pharmaceuticals, metformin is difficult to decompose

and not metabolized in the human body and thus enters the

environment unchanged, mainly through urine and feces (16). As
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metformin enters the aquatic compartments, it can be

transformed into guanylurea, and several recent reports provide

evidence that both metformin and guanylurea are present in the

environment (17) (Figure 1). A recent study from 2022,

investigating pharmaceutical pollution of the world’s rivers,

reported metformin as one of the most frequently detected

active pharmaceutical ingredients, as it was detected in over half

of the monitored sampling sites (18).
Reproductive side-effects of male
metformin treatment

Our recent nationwide study by Wensink and colleagues (11)

showed an association between preconception paternal

metformin treatment and genital birth defects in boys in

Denmark. In both, the offspring of the background population

and of insulin-treated fathers, the prevalence of major birth

defects was 3.3%, while the prevalence in the offspring of the

metformin-treated father was 5.6% (adjusted OR 1.40, CI95%,

1.08 to 1.82). In the male sexual organs, the malformations were

three times more common. The data also supported an association

between metformin exposure and alteration in the secondary sex

ratios, as the child exposed to metformin, were less often male

(49.4%), compared to those without exposure to diabetes drugs

(51.4%) or insulin-exposed offspring (51.3%). These findings align

with evidence suggesting men exposed to reproductive toxicants

may have altered secondary sex ratios (19, 20). However, it is

known that hyperglycemia is a risk factor for fetal malformations

(21). In the given study a large proportion (84%) of the insulin

group likely had been on insulin for many years, whereas we do

not know how many in the metformin group were diagnosed and

treated during or shortly before spermatogenesis. As it typically

takes weeks or months of metformin treatment to control

glycemia, the severity of hyperglycemia during spermatogenesis

may have differed between the insulin and metformin groups (22).

However, if poor glycemic control did play a major role in relation

to the increased prevalence of malformation, we would have

expected to see a similar signal with an increased prevalence of

malformation in fathers taking insulin (23). There is a need for

further studies to support our hypothesis, in particular studies

accounting for variables such as obesity and glycemic control.

It is well known that men with T2DM have lower testosterone

levels. In a recent randomized controlled study, Hu and colleagues

(24) found that in men with T2DM, metformin may cause

decreasing testosterone levels independent of blood glucose

control. The authors reported that a 1-month treatment resulted

in a 27.4% (CI95% -47.2 to -7.6) reduction in testosterone levels

among men treated with both insulin and metformin, compared

with men only treated with insulin. In addition, the authors did

another study with a prolonged duration of 3 months of metformin

treatment and their results were consistent with the previous study,
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as they found that compared with the control group, testosterone

levels in the metformin group significantly decreased. Despite these

studies being rather small in sample, the data strongly suggest that

metformin can reduce the level of testosterone to a clinically

significant extent in men (24) and metformin may be another

reason for the high prevalence of low testosterone in males with

T2DM (25). Furthermore, metformin has been used as an anti-

androgen for women with polycystic ovary syndrome (PCOS) (26).

Together this shows that the compound is a strong disruptor of

steroidogeneses in both sexes. Interestingly, in obese males with

metabolic syndrome and reduced fertility, metformin has been

shown to improve fertility through increased testosterone
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production (27). In a study, Morgante and colleagues showed

that 6-month metformin treatment resulted in an increase in the

serum testosterone in obese males (28). However, this may be

related to changes in sex hormone-binding globulin (SHBG) inmen

with metabolic syndrome, treated with metformin, as obesity and

metabolic syndrome are associated with lower SHBG

concentrations and thus decreased testosterone production, but

normal levels of free testosterone (29, 30). However, when obese

males are treated with metformin, their metabolic status improves,

resulting in increasing SHBG levels, which can trigger testosterone

production, as experimental evidence suggests that an increase in

SHBG is associated with an increase in testosterone level (31).
FIGURE 1

Metformin’s path from the synthesis of the drug from petrochemicals to contamination of the environment via wastewater. 1) Metformin derives
from petrochemicals, which again derive from fossil fuels such as oil. 2) From petrochemicals there is a production of the drug, metformin
which is 3) prescribed to more than 150 million people, including a large proportion of patients with diabetes 2, who thus are directly exposed
through therapeutic treatment. 4) As metformin is not metabolized in the human body, it enters the environment unchanged through urine and
feces, and 5) metformin thus reaches wastewater treatment plants and later 6) freshwaters as rivers and lakes and drinking water. 7) Metformin,
therefore, contaminates our environment affecting the aquatic wildlife and potentially exists as indirect exposure to human populations all over
the world.
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Taken together, these data suggest a scenario where the

effects of metformin on reproduction need to be seen in the light

of the indication for treatment and the effects of the

underlying disease.
Reproductive side-effects of female
metformin treatment

In women with PCOS, the effects of metformin treatment are

generally described as beneficial, as metformin treatment is

associated with a 20% reduction in the testosterone level (26)

and improves ovarian cyclicity (27). Furthermore, several

randomized trials have shown that metformin treatment in

women with PCOS increases clinical pregnancy rates (32).

Metformin is used for the treatment of women with T2DM

(9) and currently, there is no evidence that maternal metformin

intake is associated with an increased risk of major birth defects.

In an international case-control study including 141 malformed

offspring, the risk of congenital malformations was regarded as

similar in both offspring of women taking metformin for diabetes

or PCOS and the background population (33). In addition, a small

study on the offspring of women treated with metformin during

pregnancy did not find any effects on the testicular size of their

sons (34). Thus, in the relatively few and small studies

investigating maternal metformin intake during pregnancy,

there is found no association with birth defects or other adverse

reproductive outcomes. However, studies of large populations of

pregnant women using metformin, with a focus on genital

malformations, are lacking. There is thus a need for additional

studies evaluating the risk of congenital malformations in

offspring of mothers treated with metformin. However, it

remains clear that metformin in the clinic on one hand is used

as an antiandrogenic compound to decrease testosterone in

women with PCOS, while it on the other hand is frequently

used in women with gestational diabetes or T2DM during

pregnancy without considering the potential effects on

hormonal regulation of the developing fetus.
Experimental evidence of reproductive
effects of metformin from animal models

Disruption of e.g., hormonal regulation during fetal life can

have adverse health outcomes later in life (35). Hence, exposure

to drugs during sensitive periods of sexual differentiation can

induce alterations in cell numbers, leading to irreversible

reductions in sperm and oocyte production that ultimately can

influence fecundity later in life (36, 37). Evidence from

experimental studies suggests that metformin can interfere

with fetal life through at least four essential processes: (i)

steroidogenesis (38), (ii) epigenetics (39), (iii) metabolism (40),

and (iv) gamete development and maturation (27) (Figure 2).
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The exact mechanism of metformin’s actions remains to be

completely understood, however, it is clear that metformin

inhibits Complex I of the mitochondrial respiratory chain at

relatively high concentrations (mM) (27). This inhibition results

in a decline in ATP production by mitochondria and activation

of the AMPK pathway. It has been suggested that the effects on

epigenetics, metabolism, and gamete development might be

through AMPK, as the signaling pathway is a crucial cellular

energy sensor that maintains cellular energy homeostasis.

However, not all effects can be explained by activation of the

AMPK pathway and the effects on steroidogenesis have been

suggested to be AMPK-independent (38).

The potential effects on fertility have especially received

much attention and it is clear that maternal exposure to

metformin can interfere with reproductive parameters in male

offspring. In a study investigating the effect of in utero and

lactational exposure to metformin in male rat offspring (41), the

authors reported a significant decrease in the number of

spermatids and spermatids per organ, as well as daily sperm

production in male rat offspring exposed to metformin during

gestation and lactation, compared to controls. Interestingly, the

decrease in sperm count was only observed in the offspring of

mothers exposed to metformin during both gestation and

lactation, suggesting that the exposure is needed to cover the

entire critical period of male sexual differentiation in the rat.

In another study, Tartarin et al. (42) reported that metformin

can reduce testosterone production in vitro, and probably also in

vivo. The authors reported that in vitro, metformin decreased the

secretion of testosterone by human fetal testicular tissue at a

therapeutic dose (50 mM) by 45% and found a reduced testicular

size and Sertoli cell population in vivo. The authors thus suggest

that metformin can alter the masculinization of human offspring

when mothers are exposed during pregnancy. Furthermore, the

authors reported that the testosterone secretion by mouse fetal

testes was reduced by 20% at a concentration of 500mM.

Furthermore, the authors reported that metformin decreased

mRNA expression of the main factors involved in

steroidogenesis by 60-90% in mouse fetal testis. In vivo exposure

of metformin to mice during pregnancy reduced the size of both

fetal and neonatal testes of offspring. The number of Sertoli, but

not germ cells, was slightly increased in both the fetal and neonatal

period and the Leydig cell population was reduced in the

fetal period.

Taken together, this evidence suggests that metformin may

have anti-androgenic effects and that it might influence the

development of the male reproductive tract and thus alter male

fecundity later in life (43).

The direct effect on fertility is supported by a study from

2021, where Faure et al. (44) reported that metformin exposure

in utero induced sex-specific metabolic and reproductive

changes in adult rat offspring. Adult males exhibited reduced

fertility, manifested as a 30% decrease in litter size compared to

controls whereas adult females presented no clear reduction in
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fertility. In this study the lower fertility in male rats was not due

to changes in sperm production or motility, but rather to lower

sperm head quality, including significantly increased

spermatozoa head abnormality with greater DNA damage. The

authors suggested that metabolic modification by metformin

may alter the expression of epigenetic regulators, which could

contribute to reduced fertility. It has been suggested that the

predominant mechanisms behind the effects leading to

decreased fertility are likely through the AMPK pathway, while

the effects on androgen production regulating key steroidogenic

enzymes HSD3B2 and CYP17A1are likely through an AMPK

independent pathway (38).
Metformin in the environment

The expanded metformin use and its resistance to

decompose may have an influence on the environment.

Several studies have investigated the presence of metformin

and guanylurea in our environment, and the results are
Frontiers in Endocrinology 05
unambiguous: Metformin is ubiquitous in the aquatic

environment, all over the world. In a systematic review,

Ambrosio-Albuquerque, and colleagues (45) reported

measurable concentrations of metformin in several different

aquatic sources, including influent, sludge, and effluent from

wastewater treatment plants, sewage, different surface waters,

e.g., rivers, lakes, and oceans, drinking water and sediment.

The percentage of detection of metformin varied across the

different sources, ranging from e.g., 8% for drinking water,

28% for surface waters, and 51% for urban wastewater. In

addi t ion , a s tudy from 2022, inves t igat ing act ive

pharmaceutical ingredients in 258 of the world’s rivers,

from 1052 locations, in 104 countries, detected metformin

at over 50% of the sampling sites. The authors reported a

similar frequency of metformin across continents, and

metformin was one of the pharmaceuticals analyzed, which

was present in the highest concentrations (18). In fact,

metformin has been recognized as the most frequently

detected anthropogenic-organic contaminant in the aquatic

environment among several analyzed pharmaceuticals in
FIGURE 2

Metformin’s processes of potential interference with fetal development. Metformin may interfere with fetal development through effects on
steroidogenesis (38), epigenetics (39), metabolism (40), and gamete development and maturation (27). The mechanism behind these effects
remains poorly understood, but data suggest that the AMP-induced protein kinase (AMPK) pathway might play a central role except for effects
on steroidogenesis that might be AMPK-independent (38).
frontiersin.org

https://doi.org/10.3389/fendo.2022.1000872
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tavlo et al. 10.3389/fendo.2022.1000872
different studies and is considered an emerging pollutant of

concern (45).

As active pharmaceutical ingredients, such as metformin, are

biologically active molecules, specially designed to interact with

several biochemical pathways within the human body (18), the

widespread presence of metformin in the aquatic environment

should be of concern. Notably, metformin is also found in

several sources of drinking water around the world, meaning

that numerous people worldwide potentially are exposed.

Despite the removal of metformin in wastewater treatment

plants having a high efficacy rate, ranging from 84% to 99%

(46), metformin, and guanylurea are still widely detected in both

surface- and drinking water. Another concern is metformin’s

chlorination byproducts. Chlorine is used for the disinfection of

drinking water all over the world, and there is evidence that

chlorine can oxidize metformin into two byproducts: Y;

C4H6C1N5 and C; C4H6C1N3 (47). Evidence suggests that

disinfection byproducts formed during chlorine disinfection

have a larger negative effect on human health compared to

their parent compounds (48). The byproduct C has been

detected in 68.40% of tap water in 32 cities in China (48). In

addition, in a recent study (49) byproduct C was detected in

urban drinking water from multiple countries, including China

and the US, and it was demonstrated that the production of both

byproduct C and Y could be increased with increasing

metformin concentration exhibiting marked toxicities of a

potential health concern and thereby being a hidden threat to

the global water supply. So, although the current levels of

metformin present in drinking water are not regarded as a

direct health concern to humans, the potential threats of

metformin’s chlorination byproducts should be explored

further (49).
Effects on aquatic wildlife

As metformin is detected widely in the aquatic environment,

it is important to consider whether this constitutes a threat to

aquatic wildlife. Several studies report that metformin exposure

in environmentally relevant concentrations can cause potential

endocrine disruption in fish. Niemuth and Klaper (50) reported

that exposure to metformin in a concentration relevant to

wastewater effluent levels (40 mg L-1), caused the development

of several alterations in male fathead minnows, including a

significantly higher occurrence of intersexuality, compared to

control males. Furthermore, they reported a significant

reduction in overall size in metformin-treated males as well as

significantly fewer cumulative clutches laid per mating pair over

time and mean clutch size for metformin-treated males,

compared with controls. In contrast, in a fish model using

Oryzias latipes, Lee et al. (51) reported no intersex in male

gonads, but the occurrence of intersex in F0 generation female

gonads in a dose-dependent manner was found.
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Additionally, they found that among F0 generation male

fish, metformin significantly increased gene expression of both

CYP19a and estrogen receptor a. Among F0 generation female

fish metformin significantly decreased the expression of ERb1
and VTG2. Among the F1 generation, metformin significantly

increased the expression level of estrogen receptor a in female

fish, and significantly decreased the expression of VTG1 in male

fish. These sex-specific effects indicate that metformin exposure

may cause feminization in male fish and deactivate the

reproductive system in female fish (51). Several other studies

have investigated the association between metformin and

alterations in the expression of specific genes related to

reproduction in fish models (52, 53). Niemuth and Klaper (52)

have provided evidence that metformin may be an endocrine

disrupter, as they showed that among fathead minnows exposed

to 40 mg L-1 metformin for a year, there was an upregulation of

the expression of five endocrine-related genes (AR, 3b-HSD,

17b-HSD, CYP19A1, and SULT2A1) in male gonads tissue.

Furthermore, they reported a significant correlation between the

expression of three endocrine-related genes (3b-HSD, 17b-HSD

aCYP19A1) in the testis and the occurrence of intersex in the

gonads. In addition, a significant upregulation of mRNA

encoding for VTG in metformin-treated male fish, compared

with controls has been reported (53).

Taken together, the experimental findings suggest that

metformin can interfere with not only fecundity in mammals

but also can act as a disruptor of sexual development in fish at

environmentally relevant concentrations. However, the

bioaccumulation of metformin in surface water worldwide

results in human exposure and is of emerging concern. However,

the effects of chronic exposure are poorly understood and need

future attention for evaluating the consequences of the increasing

amount of metformin found in the environment (45, 54).
Discussion and conclusion

Evidence is accumulating that metformin, besides its well-

documented glucose-lowering effects, may act as a reproductive

toxicant in humans, experimental rodents, and fish. We

recommend that the adverse reproductive effects of metformin

should be examined further. Particularly, there is an urgent need

for studies exploring the association between metformin exposure

and reproductive outcomes in humans and experimental animals

concerning the safety of the offspring following parental

metformin treatment. The study by Wensink and colleagues

(11) on paternal metformin intake should be repeated in

another cohort. Clinical studies in normal and diabetic men

investigating the impact of metformin on sex hormones are

urgently needed. Furthermore, the effect of maternal exposure

to metformin in early pregnancy on the development of

congenital malformations and its impact on offspring should be

investigated. In experimental animals, a randomized study on
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intrauterine metformin exposure and e.g., the anogenital distance

in male offspring can help shed light on metformin’s

antiandrogenic effects and reproductive toxicity. In addition, to

gain insight into the underlying mechanisms of metformin on

steroidogenesis and whether these in fact are AMPK-independent,

experimental studies using AMPK-knockout mouse models can

be executed. If our hypothesis that metformin is a reproductive

toxicant is supported, alternative drugs for the management of

T2DM must be considered. Furthermore, evidence of a

widespread presence of metformin in the aquatic environment

raises concern. Ubiquitous exposure to metformin may not only

be considered a potential threat to aquatic wildlife, but also to

humans and wildlife in general through continuous exposure

from drinking water. As metformin has been used to treat

diabetes since 1958 and is difficult to decompose, we speculate

that metformin might be accumulated in sedimentary deposits

over the latest 60 years, especially in coastal environments

associated with river outlets. This is a potential huge reservoir

for metformin pollution close to densely populated urban areas in

the world.
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