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Fatty acid metabolism-related
genes in bronchoalveolar lavage
fluid unveil prognostic and
immune infiltration in idiopathic
pulmonary fibrosis

Yin Lyu1,2, Chen Guo1,2 and Hao Zhang1,2*

1Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, China, 2Department of Thoracic
Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
Background: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive

condition with an unfavorable prognosis. A recent study has demonstrated that

IPF patients exhibit characteristic alterations in the fatty acid metabolism in

their lungs, suggesting an association with IPF pathogenesis. Therefore, in this

study, we have explored whether the gene signature associated with fatty acid

metabolism could be used as a reliable biological marker for predicting the

survival of IPF patients.

Methods: Data on the fatty acid metabolism-related genes (FAMRGs) were

extracted from databases like Kyoto Encyclopedia of Genes and Genomes

(KEGG), Hallmark, and Reactome pathway. The GSE70866 dataset with

information on IPF patients was retrieved from the Gene Expression

Omnibus (GEO). Next, the consensus clustering method was used to identify

novel molecular subgroups. Gene Set Enrichment Analysis (GSEA) was

performed to understand the mechanisms involved. The Cell-type

Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT)

algorithm was used to evaluate the level of immune cell infiltration in the

identified subgroups based on gene expression signatures of immune cells.

Finally, the Least Absolute Shrinkage and Selection Operator (LASSO)

regression and multivariate Cox regression analysis were performed to

develop a prognostic risk model.

Results: The gene expression signature associated with fatty acid metabolism

was used to create two subgroups with significantly different prognoses. GSEA

reveals that immune-related pathways were significantly altered between the

two subgroups, and the two subgroups had different metabolic characteristics.

High infiltration of immune cells, mainly activated NK cells, monocytes, and

activated mast cells, was observed in the subgroup with a poor prognosis. A risk

model based on FAMRGs had an excellent ability to predict the prognosis of

IPF. The nomogram constructed using the clinical features and the risk model

could accurately predict the prognosis of IPF patients.
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Conclusion: The fatty acid metabolism-related gene expression signature

could be used as a potential biological marker for predicting clinical

outcomes and the level of infiltration of immune cells. This could eventually

enhance the accuracy of the treatment of IPF patients.
KEYWORDS

idiopathic pulmonary fibrosis, fatty acid metabolism, immune infiltration,
biomarker, prognosis
Introduction

Idiopathic pulmonary fibrosis (IPF), an interstitial lung

disease (ILD), is a chronic, progressive, and age-related

disease. IPF has high morbidity and a poor prognosis.

However, the cause of IPF is unclear (1, 2). Alveolar epithelial

cells’ apoptosis, generation of pro-fibrotic factors, and

stimulation of myofibroblasts and fibroblasts are involved in

the pathogenesis of IPF (3–5). The Food and Drug

Administration has approved two clinical drugs, nintedanib,

and pirfenidone, for the treatment of IPF. However, these drugs

have poor tolerability and cannot reverse the lung damage

caused by IPF or reduce IPF-related death (6–8). IPF patients

experience unfavorable clinical outcomes. The median survival

rates are 50% and 20%, 3–5 years post IPF diagnosis,

respectively, similar to lung cancer (9, 10). Consequently, IPF

patients need personalized, targeted treatment, which requires

developing a strategy for risk classification and the identification

of prognostic genes.

Recently, substantial alterations in the metabolism of fatty

acids (FAs) have been observed in IPF patients, which indicates

that alterations in FA metabolism play an important role in the

pathogenesis of IPF. FA metabolism pathways are complex, and

disturbance in FA metabolism pathways in the lungs may result

in the development of a pro-fibrotic phenotype in epithelial cells,

macrophages, and myofibroblasts/fibroblasts. Sunaga et al.

reported that treating cultured alveolar type (AT) 2 cells with

palmitic acid induces cell apoptosis and transforming growth

factor (TGF)-b1 expression in these cells (11). Mounting

evidence has shown the involvement of the immune system in

the progression of fibrosis and response to treatments. It has also

gained extensive attention in interstitial lung disorders (12, 13).

Immune cells like macrophages are predominantly distributed in

the lung tissues and have an important role in the

pathophysiology of pulmonary fibrosis. Macrophages can

polarize into two phenotypes: M1 and M2. Once macrophages

are activated, M2 macrophages release profibrotic cytokines,

including TGF-b1, which stimulate the activity of fibroblasts

and the deposition of extracellular matrix (14). There may be a

strong association between the polarization of macrophages and
02
FA metabolism. The M2 phenotype of the macrophages depends

on the transcription factor peroxisome proliferator-activated

receptor (PPAR)-g, which plays an important role in FA

metabolism as its natural ligand (15). In addition, FAs are

responsible for enhancing the expression of FA receptor

CD36, which induces the M2 phenotype by increasing FA

uptake and self-reinforcing the profibrotic activation cycle

(16). Dysfunctional epithelial cells and polarized macrophages

produce numerous profibrotic cytokines, which induce the

d i ff erent ia t ion of fibrob las t s in to myofibrob las t s .

Myofibroblasts in IPF lungs produce an excessive extracellular

matrix, disrupt the basement membrane, and are considered

primary effector cells (17, 18). Reddy et al. have shown that

nitrated FAs are PPAR-g receptor agonists and stimulate the

dedifferentiation of myofibroblasts by inhibiting the impacts of

TGF-b1 (19). Furthermore, FA and their derivatives modulate

CCAAT enhancer-binding protein (C/EBP) a and promote the

dedifferentiation of myofibroblasts to lipofibroblasts (20).

Therefore, targeting FA metabolism is an innovative approach

for the treatment of IPF and is currently tested at the pre-clinical

stage on pulmonary fibrosis models (21–23). However, the role

of fatty acid metabolism-related genes (FAMRGs) in IPF

pathogenesis is poorly understood, and the prognostic

significance of these genes is yet to be elucidated.

Currently, lung biopsy is widely used for determining

the molecular biomarkers for diagnosis and prognosis of IPF.

However, lung biopsies are invasive, and hence their

applications are limited. Prasse A et al. reported that the

gene expression patterns of bronchoalveolar lavage (BAL)

cells could predict mortality in IPF patients (24). Some

studies showed that the levels of saturated long-chain FAs,

including stearic acid, oleic acid, and palmitic acid, were low in

bronchoalveolar lavage fluid (BALF) of IPF patients, in

contrast, others showed that the levels of stearic and palmitic

acid were high in BALF of IPF patients (25, 26). This may seem

contradictory, but it gives us a clue that the changes in FA

metabolism in the alveolar compartment of IPF patients could

indicate disease progression.

In this study, we have analyzed FAMRGs in BAL cells to

comprehensively examine the impacts of FA metabolism on the
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survival of IPF patients. In addition, a risk score model based on

FAMRGs was developed to examine the predictive ability of

FAMRGs in IPF patients. These results may offer novel insights

into understanding the molecular basis of IPF. It may also

provide a novel approach to the targeted therapeutic for IPF

and facilitate the development of personalized therapy for

IPF patients.
Materials and methods

Datasets and samples

For this study, gene expression profiles and clinical data of

176 IPF patients were used. Gene expression of BAL cells from

the GSE70866 dataset was retrieved from Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/).

The training cohort consisted of 112 IPF patients (from Siena,

Italy, and Freiburg, Germany). The RNA microarray chips from

IPF patients were performed using the Agilent-028004 SurePrint

G3 Human GE 8x60K Microarray. The validation cohort

consisted of 64 IPF patients (from Leuven, Belgium), and the

RNA microarray chips from these patients were performed

using Agilent-039494 SurePrint G3 Human GE v2 8x60K

Microarray. The details of the patients included in this study

are presented in Table 1. In addition, the raw data of IPF patients

from the Freiburg and Siena groups were merged into the

training cohort using the R package inSilicoMerging (27). The

batch effect was removed using the Empirical Bayes method (28).

The Uniform Manifold Approximation and Projection (UMAP)

method was used to determine if the batch effect was eliminated

(29). Data on 309 FAMRGs were obtained from the databases

like Kyoto Encyclopedia of Genes and Genomes (KEGG),

Hallmark, and Reactome.
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Identification of molecular subgroups

Univariate Cox regression analysis discovered 95 genes

associated with the prognosis of IPF patients. Consensus

clustering was performed based on the expression matrix of

the 95 genes and was carried out using the R package

ConsensusClusterPlus (30).
Enrichment and immune analysis

Gene Set Enrichment Analysis (GSEA) was carried out using

the same dataset to examine the differences across the clusters.

Meanwhile, Cell-type Identification by Estimating Relative

Subsets of RNA Transcripts (CIBERSORT) (31) analysis was

used to determine the proportions of 22 human immune cell

subsets in the BALF of IPF patients based on the gene

expression data.
Construction and verification of the
risk model

Least Absolute Shrinkage and Selection Operator (LASSO)

regression analysis was performed using R package glmnet,

based on a 5-fold cross-validation in the training cohort to

filter out FAMRGs associated with the survival of IPF patients.

The lowest lambda value was determined as the optimal value.

LASSO regression analysis identified genes related to the

prognosis of IPF patients (survival time and status). These

genes were used to generate a prognostic risk signature based

on the regression coefficients. The following formula was used to

determine the risk score of each patient within the training and

validation cohorts: Riskscore = S Exp (mRNAi) × Coefficient
TABLE 1 Patients’ features in the training and validation cohorts.

Variables Training Cohort Validation Cohort P-value

n 112 64

Group, n (%) < 0.001

Freiburg 62 (35.2%) –

Siena 50 (28.4%) –

Leuven – 64 (36.4%)

Sex, n (%) 0.726

Female 19 (10.8%) 13 (7.4%)

Male 93 (52.8%) 51 (29%)

Status, n (%) < 0.001

Alive 36 (20.5%) 40 (22.7%)

Dead 76 (43.2%) 24 (13.6%)

Age, median (IQR) 69.5 (62, 76) 68.5 (63.75, 75) 0.920

Survival time (days), median (IQR) 569.5 (291, 961.25) 566.5 (346, 963.75) 0.625
front
IQR, Interquartile range.
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(mRNAi). Patients were categorized into low- and high-risk

groups based on the median value. The predictive ability of the

model was assessed using the survival analysis and time-

dependent receiver operating characteristic (ROC) curves.
Statistical analysis

R package (version 4.0.2) was used to perform statistical

analysis. The Kaplan-Meier survival analysis and the log-rank

test were used for survival analyses. The predictive accuracy of

the risk model was assessed by the time-dependent ROC using

the R package survivalROC. The patients were classified based

on age and gender for subgroup analysis. The student’s t-test was

used to compare the two groups, and the comparisons among

multiple groups were carried out using one-way ANOVA.

Statistical significance was defined as p < 0.05.
Results

Removal of batch effects in the
training cohort

Figure 1 shows the flowchart of the workflow of the study. The

empirical Bayes method was used to eliminate batch effects

between the Freiburg and Siena groups in the training cohort.

The boxplot shows that the sample distribution of each group

differed significantly before the elimination of the batch effect,

indicating the existence of the batch effect. Once the batch effect

was removed, the data distribution of each group was consistent

(Figure 2A). UMAP results show that the samples from each group

clustered together before batch effect elimination, suggesting the

presence of the batch effect. Once the batch effect was eliminated,

the samples from each group clustered together and intertwined,

suggesting that the batch effect was eliminated (Figure 2B).
Frontiers in Endocrinology 04
Molecular subtype identification
prediction based on FAMRGs

The consensus clustering method was used to classify the IPF

patients from the training cohort into distinct groups based on 95

prognostic genes obtained by univariate Cox analysis (Table S1).

K = 2 was identified as the optimum value for clustering stability

(Figures 3A–D). Cluster 1 (C1) included 53 IPF patients, and

cluster 2 (C2) had 59 IPF patients. The expression levels of

FAMRG in the two clusters were visualized using the heatmap

(Figure 3E), and the results revealed that C1 and C2 had

significantly different gene expression patterns. Further, the

patients in C2 exhibited a significantly higher (p < 0.0001)

overall survival (OS) compared to patients in C1 (Figure 3F).

These results show that IPF patients can be classified into two

distinct molecular subgroups based on FAMRGs, and each

subgroup had a different OS. Hence, these results indicated that

it was possible to create a prediction model based on FAMRGs.

GSEA was used to elucidate the possible mechanisms

responsible for the difference between C1 and C2. As shown in

Figure 4A, immune-related pathways, including the Nod-like

receptor signaling pathway, chemokine signaling pathway,

leukocyte transendothelial migrations, natural killer cell-

mediated cytotoxicity, B cell receptor signaling pathway, Toll-

like receptor signaling pathway, and metabolism-related pathways

(i.e., arginine and proline metabolism, glycosaminoglycan

biosynthesis heparan sulfate, glycerophospholipid metabolism,

arachidonic acid metabolism, and histidine metabolism) were

significantly (p < 0.05) enriched by cluster 1, indicative of poor

survival. Further, five metabolism-related pathways, including

propanoate metabolism, butanoate metabolism, aminoacyl

tRNA biosynthesis, riboflavin metabolism, and limonene and

pinene degradation, were significantly (p < 0.05) enriched by

cluster 2 and were different compared to pathways enriched by

cluster 1 (Figure 4B). Taken together, these findings show a

correlation between the FAMRGs expression and dysregulation
FIGURE 1

The flow chat of this study.
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of the immune system and changes in nutrient metabolism status.

This may be linked to the poor prognosis of IPF patients.

To establish the association between clusters and the infiltration

of immune cells in the BALF of IPF patients, a CIBERSORT

analysis was conducted to compare the relative levels of immune

cells in C1 and C2 (Figure 4C). High infiltration of activated natural

killer (NK) cells, monocytes, and activated mast cells were observed

in the BALF of IPF patients in C1. The infiltration levels of resting

dendritic cells, naive B cells, resting mast cells, M0 and M2

macrophages, and resting NK cells were high in the BALF of IPF

patients in C2. These results demonstrate considerable differences

in the immune status of the two clusters.
Construction of FA metabolism-related
prognostic risk model

Next, a risk signature model was created to determine the

contribution of FAMRGs for the accurate prognosis of IPF
Frontiers in Endocrinology 05
patients. The LASSO algorithm and the lambda value set at

0.23 were used to identify the most reliable prognostic FAMRGs

(Figure 5A). Five genes (GGT5, ACOX2, CYP4F3, HACD4, and

ODC1) were identified and used to generate the FAMRGs-

associated prognostic risk model (Figure 5B). The Kaplan-

Meier survival analysis shows that each gene could

independently serve as a prognostic indicator for IPF patients

(Figure S1). The following formula was used to determine the

Riskscore for each patient in the training and validation cohorts:

Riskscore = 0.0949389697248446 × expression value of

GGT5 + 0.315559675709913 × expression value of ACOX2 +

0.00450989430661515 × expression value of CYP4F3 −

0.284593576349762 × expression value of HACD4 +

0.190681441039345 × expression value of ODC1.

The patients were classified into low- and high-risk groups

based on the median score. Kaplan-Meier survival analysis

(Figures 5C, D) shows that IPF patients in the high-risk group

experienced significantly more rapid progression compared to

IPF patients in the low-risk group in both the training (p <
A

B

FIGURE 2

Comparison of expression data distribution and Uniform Manifold Approximation (UMAP) distribution before and after removal of the batch
effect. (A) Expression data distribution. (B) UMAP distribution. The colors distinguish the Freiburg and Siena groups.
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0.0001) and the validation cohort (p < 0.01). Therefore, the

established prognostic risk model successfully grouped the

patients with IPF into low- and high-risk groups. Moreover,

high expression of the four candidate genes (GGT5, ACOX2,

CYP4F3, and ODC1) and low expression of a candidate gene

(HACD4) were observed in the high-risk group compared to the

low-risk group (Figures 5E, F). The ROC curve was used to

investigate the predictive ability of the Riskscore for patient

prognosis and the area under the curve (AUC) values for 1-, 2-,

3-years were calculated. In the training cohort, the AUC values

for determining the accuracy of Riskscore as a predictive marker

for 1-, 2-, 3-years were 0.794, 0.849, and 0.879, respectively

(Figure 5G). Further, in the validation cohort, the AUC values

for 1-, 2-, and 3-years were 0.622, 0.679, and 0.723, respectively

(Figure 5H). Based on these results, the established risk model

had the potential to predict the prognosis of IPF patients.
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Finally, the CIBERSORT algorithm was used to determine the

differences in infiltration levels of different immune cells between

the two groups and the association between the Riskscore and the

immune cell infiltration in the BALF (Figure 6A). Patients with

elevated Riskscore showed increased levels of activated mast cells,

monocytes, and activated NK cells, and the levels of resting mast

cells, naive B cells, resting dendritic cells, M2 macrophages,

activated memory CD4, and CD8 T cells were relatively lower.

Correlation analysis reveal an inversely correlation between

Riskscore and the naive B cells (Figure 6B; r = −0.249, p <

0.01), CD8 T cells (Figure 6C; r = −0.218, p < 0.05), activated

memory CD4 T cells (Figure 6D; r = −0.257, p < 0.01), M2

macrophages (Figure 6G; r = −0.317, p < 0.001), resting dendritic

cells (Figure 6H; r = −0.432, p < 0.001), resting mast cells

(Figure 6I; r = −0.272, p = 0.004). A positive correlation was

observed between activated NK cells (Figure 6E; r = 0.327, p <
A B

D E

F

C

FIGURE 3

Consensus cluster. (A–D): K = 2 was identified as the optimal value for consensus clustering. (E) Heatmap shows the expression of fatty acid
metabolism-related genes in the two clusters. (F) Survival curve of the patients in the two clusters.
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0.001), monocytes (Figure 6F; r = 0.252, p < 0.01), activated mast

cells (Figure 6J; r = 0.464, p < 0.001) and Riskscore. These results

show a close correlation between the constructed risk model and

the level of immune cell infiltration in the BALF of IPF patients.
Established risk model’s independence

Furthermore, the correlation between the Riskscore and

clinical characteristics was evaluated, and the independence of

the risk model was verified by performing subgroup and

regression analysis. There was no difference in the Riskscore
Frontiers in Endocrinology 07
between IPF patients of different ages (Figure 7A) and sex

(Figure 7B), suggesting no correlation between Riskscore and

clinical parameters. Once the patients were classified based on

age (Figures 7C, D) and sex (Figures 7E, F), the risk model

demonstrated powerful predictive ability. The IPF patients with

lower Riskscore had more favorable outcomes. Additionally,

univariate and multivariate Cox regression analysis show that

the developed risk model could independently serve as

a predictive indicator for the prognosis of IPF patients

(Table 2). These results suggest that the constructed risk

model demonstrated independence in predicting the prognosis

of IPF patients.
A

B

C

FIGURE 4

Enrichment analysis and the immune infiltration characteristics of the two identified subgroups with distinct prognoses. (A) GSEA for cluster 1
(C1) and cluster 2 (C2). Immune and metabolism-related pathways were significantly enriched by cluster 1. (B) and another five metabolism-
related pathways were significantly enriched by cluster 2. (C) Boxplots shows differences in the infiltrating immune cells between clusters 1 and
2. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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Development of a predictive nomogram

A predictive nomogram was constructed to estimate the

prognosis risk of IPF patients by calculating the chances

of survival of patients 1, 2, and 3 years after diagnosis

(Figure 8A). The accuracy of the nomogram was verified by

testing it on training and validation cohorts. The C-index, the
Frontiers in Endocrinology 08
calibration curve (Figures 8B–G), and decision curve analysis

(Figure S2) demonstrated satisfactory accuracy of the diagnostic

nomogram model. In the training cohort, the C-index for the

nomogram was 0.7642 (95% CI: 0.7125-0.7962), and the C-index

for the validation cohort was 0.6906 (95% CI: 0.5578-0.8234).

The actual overall survival of the patients for 1, 2, and 3 years

was very similar to the predicted overall survival of the patients
A B

D

E F

G H

C

FIGURE 5

Development and assessment of a prognostic fatty acid metabolism-related signature for patients with IPF. (A, B) LASSO regression analysis with
optimal lambda. (C, D) Kaplan–Meier survival analysis of patients with high- and low- Riskscore in training (C) and validation cohorts (D), IPF
patients in the high- Riskscore group had poor survival prognosis compared to patients in the low- Riskscore group. (E, F) Distribution of the
Riskscore, survival status, and the expression of the five candidate genes in the high- and low- Riskscore groups in the training (E) and validation
(F) cohorts. (G, H) In the training (G) and validation (H) cohorts, time-dependent receiver operating characteristic analysis showed that the
Riskscore had better performance in predicting the survival of patients with IPF.
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in the training cohort (Figures 8B–D). Consistent results were

observed in the validation cohort (Figures 8E–G). Based on these

results, it is tempting to conclude that the nomogram could

accurately predict the prognosis of IPF patients.
Discussion

The condition of IPF patients worsens over time and could

be potentially fatal. Very few therapeutic options are available for
Frontiers in Endocrinology 09
the treatment of IPF patients, and the therapeutic outcomes are

poor and have an unfavorable prognosis. Despite the

advancements in diagnosis and therapeutic strategies, the

survival rate in IPF patients has not improved. The clinical

progression of IPF is highly variable and unpredictable; hence,

better risk assessment strategies and personalized, targeted

therapy for IPF patients are necessary (32).

In this study, two subgroups of IPF patients were identified

based on the expression profiles of genes associated with FA

metabolism and had significantly different overall survival. The
A

B D

E F G

IH J

C

FIGURE 6

Estimation of immune cell infiltration in the bronchoalveolar lavage fluid (BALF). (A) Level of infiltration in the high- and low- Riskscore groups using
the CIBERSORT algorithm. The plots show the differences in immune infiltration scores between the high- and low- Riskscore groups. (B–J) The
Spearman’s rank correlation between Riskscore and the fraction of BALF immune cells is shown. Scatterplots show that the Riskscore negatively
correlated with naive B cells (B), CD8 T cells (C), activated memory CD4 T cells (D), M2 macrophages (G), resting dendritic cells (H), and resting
mast cells (I), while Riskscore positively correlated with activated NK cells (E), monocytes (F), and activated mast cells (J). *p < 0.05; **p < 0.01; and
****p < 0.0001.
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enrichment analysis revealed that the two subgroups enriched

different immune and metabolism pathways. Further, the

immune analysis revealed that two subgroups had different

immune cell infiltration patterns. Additionally, a predictive
Frontiers in Endocrinology 10
risk model based on FAMRGs was developed and could

accurately predict the prognosis of IPF patients. Therefore, the

results of our study shed light on developing IPF-

specific therapies.
A B

D

E F

C

FIGURE 7

Association between Riskscore and clinical characteristics. No significant difference was observed in patients of different ages (A) and sex
(B). Independence analysis of the risk model (C–F). The survival curve of IPF patients regrouped based on age (C, D) and sex (E, F).
TABLE 2 Univariate and multivariate analysis of Riskscore and characteristics in the training cohort.

Variates Total (n) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

Age 112 0.986 (0.963-1.010) 0.255

Sex 112

Male 93 Reference

Female 19 0.810 (0.436-1.504) 0.505

Riskscore 112 10.354 (5.919-18.113) <0.001 10.354 (5.919-18.113) <0.001
front
CI, Confidence interval.
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Consensus clustering was used to classify the IPF patients

into different groups based on the gene expression matrix, and

the results were reliable. Two subgroups were initially identified

by consensus clustering based on the FAMRGs expression in IPF

patients. The results revealed that the two subgroups had

significantly different overall survival. These findings further

confirmed that the FA metabolic subtypes in IPF patients

influence the prognosis, and the prediction models constructed

based on FAMRGs were reliable.

Furthermore, the enrichment analysis was conducted

between the two subgroups to investigate the inherent

biological processes. GSEA was used to elucidate the gene

expression pattern in various subgroups (33). GSEA results

revealed the enrichment of immune-related pathways,

including natural killer cell-mediated cytotoxicity, B cell

receptor signaling pathway, Toll-like receptor signaling

pathway, leukocyte transendothelial migration, chemokine

signaling pathway, and Nod-like receptor signaling pathway in

cluster 1 with poor outcomes. Based on the results, it is likely
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that dysregulated immune system could predict the role of FA

metabolism in the onset and progression of IPF. Further, the

association between FA metabolism and immune dysregulation

could be regulated by an epigenetic process such as DNA

methylation influenced by genetic variation (34). The results

showed that cluster 1 and cluster 2 had different metabolic

signatures. The pathways enriched in cluster 1 were

predominantly linked to the metabolism of amino acids,

including arginine, proline, and histidine metabolism, and

lipid metabolism pathways, including the metabolism of

glycerophospholipid and arachidonic acid. Short-chain FA

metabolism pathways, including propanoate metabolism and

butanoate metabolism, and other metabolism pathways,

including aminoacyl tRNA biosynthesis , r iboflavin

metabolism, limonene, and pinene degradation, were mainly

enriched in cluster 2. Since the classification was based on FA

metabolism-related genes, the result showed that the crosstalk

between FA metabolism and other nutrient metabolism could

affect IPF pathogenies and was worth further exploration.
A

B D

E F G

C

FIGURE 8

Construction and calibration of the nomogram. (A) Nomogram integrating risk score and clinical features, (B–D) calibration of the nomogram at
1-, 2-, and 3- years in the training cohort, and (E–G) calibration of the nomogram at 1-, 2-, and 3- years in the verification cohort.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1001563
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Lyu et al. 10.3389/fendo.2022.1001563
As mentioned previously, immune systems play an integral

role in the onset and progression of IPF and are also associated

with FA metabolism. The CIBERSORT algorithm is a tool that

analyses biological information and evaluates the expression

levels of immune cells based on RNA-seq data, and obtains

ratios of different immune cells from samples. It is extensively

used to examine the infiltration of immune cells in various

diseases, such as tumors, osteoarthritis, and lupus nephritis (35–

37). Li et al. established a hypoxia-immune-based prediction

model to determine the prognosis among IPF patients using

CIBERSORT (38). Hence, CIBERSORT was used to determine

the level of immune cell infiltration in the two clusters. The

results revealed the presence of several immune cells in BALF of

patients that could potentially be associated with IPF prognosis.

The immune cells identified were mainly activated and resting

mast cells, naive B cells, M0 and M2 macrophages, monocytes,

activated and resting NK cells, and resting dendritic cells.

Increased infiltration of activated NK cells, activated mast

cells, and monocytes were observed in patients in cluster 1

with poor survival outcomes. Similarly, in the constructed risk

model, an increase in infiltration of these three immune cell

populations was observed in the high-risk group with poor

prognosis and was positively correlated with Riskscore.

Previous studies have shown that pulmonary fibrosis patients

had higher levels of NK cell infiltration in BALF compared to

patients with sarcoidosis (39). Scott et al. indicated that elevated

levels of circulating monocyte count could be a cellular

biomarker for poor outcomes in IPF patients (40). Kawanami

et al. have shown that patients with fibrotic lung disease had

significantly higher numbers of mast cells in their lungs. Mast

cells are often localized around the thickened regions of the

alveolar septa and are located near abnormal epithelial cells (41).

Taken together, these results revealed that activated mast cells,

monocytes, and activated NK cells in the BALF of patients with

IPF may promote disease progression.

Based on our results, it is tempting to infer that

dysregulation in FA metabolism results in the disturbance in

the immune system and metabolism in BALF of IPF patients,

thereby contributing to the poor prognosis of the IPF patients.

As aforementioned, reprogramming FA metabolism was

identified as a distinctive characteristic in IPF patients with

poor prognoses. To further verify the influence of FA metabolic

disorders on IPF and examine the prognostic value of FAMRGs

in IPF patients, a prognostic risk model using FAMRGs was

created and tested on a separate validation cohort. The results

showed that five genes used to establish the risk model were

remarkably associated with the onset and progression of IPF.

Gamma-glutamyltransferase 5 (GGT5) cleaves glutathione

peptides to maintain the glutathione balance in the human

body (42). Previous research has shown that mice lacking

gamma-glutamyl transpeptidase developed a less severe

bleomycin-induced pulmonary fibrosis (43). However, the role

of GGT5 in FA metabolism and the progression of IPF is
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unknown. Branched-chain acyl-CoA oxidase (ACOX2), a

peroxisomal enzyme, plays a role in the metabolism of bile

acid intermediates and branched-chain FAs. Further,

ACOX2 deficiency has been linked to an increased risk of

developing liver fibrosis (44), but its role in pulmonary fibrosis

is unknown. Leukotriene-B4 omega-hydroxylase (CYP4F3)

consists of enzymes CYP4F3A and CYP4F3B, responsible for

the metabolism of leukotriene B4 and 5-hydroxyeicosatetraenoic

acid via omega oxidation reaction, which results in the inhibition

and deterioration of inflammatory markers (45, 46). CYP4F3 is

associated with inflammatory diseases, like inflammatory bowel

disease (47); however, the role of CYP4F3 in IPF is unknown. 3-

hydroxyacyl-CoA dehydratase 4 (HACD4) is involved in

elongation, and the biosynthesis of very-long-chain FA;

therefore, its role in IPF is worth exploring. Further, ODC1

encodes for rate-limiting enzymes associated with the polyamine

biosynthet ic pathways and acts as a ca ta lys t for

converting ornithine to putrescine. This indicates the

significance of ODC1 in IPF. The survival analysis

demonstrated that the developed risk model had an excellent

ability to predict the survival of IPF patients in both cohorts. The

prognosis of the IPF patients could be determined independently

by each of the five genes. The independent and subgroup

analysis demonstrated that the FAMRGs-based risk model

could independently predict the prognosis of IPF patients,

regardless of age and sex. Ultimately, a nomogram

incorporating the Riskscore and the clinical characteristics was

developed, calibrated, and tested. The results revealed that it had

a powerful ability to predict patient survival. Taken together,

these results provide additional evidence that FAMRGs have a

prognostic and predictive role in IPF.

Due to the poor prognosis, high variability, and

unpredictable nature of IPF progression, there is a need for

efficient risk classification and treatment strategy for developing

personalized, targeted therapy. Our results demonstrate

highlights of FA metabolism in comparison to earlier studies.

Our study was based on FA metabolism, which has gained

considerable attention in IPF-related research. Using consensus

clustering, two molecular clusters with different patient

prognoses and immunological statuses were identified. Second,

the biological processes based on consensus clustering results

were identified, and the fundamental mechanisms associated

with them were partially elucidated. Lastly, the role of FA

metabolism on the infiltration of immune cells in BALF of IPF

patients was elucidated. However, the role of five selected genes

in IPF is unclear, and further studies are necessary to understand

their role in IPF. Our results offer a good theoretical foundation

for research on IPF.

However, our study also has several limitations. First, we

could not establish the involvement of FAMRG in the

progression of IPF due to insufficient data regarding the

pulmonary function of IPF patients. Second, our results were

based on bioinformatics analysis, and hence further
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experimental validation is required. Thirdly, the data used for

the study were retrieved from publicly available databases since

our clinical practice had an insufficient number of IPF patients.

Therefore, further studies evaluating the performance of the

prognostic model and the mechanism of the five FAMRGs in the

IPF pathogenesis using molecular biology tools and prospective

cohort studies are required.
Conclusions

In this study, consensus clustering was used to identify two

distinct molecular clusters based on the FAMRGs in IPF

patients. The enrichment and immune analyses show that

dysregulation of FA metabolism contributes to disorders of the

immune system and nutrition metabolism, which result in poor

prognosis. Our study may shed light on developing novel

targeted treatment approaches and offer a theoretical basis for

personalized treatment strategies.
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