
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Andrea Dalbeni,
Verona University Hospital, Italy

REVIEWED BY

Alessandro Mantovani,
University of Verona, Italy
Heng Sun,
University of Macau, China

*CORRESPONDENCE

Chunlong Li
chunlong81@163.com
William C. Cho
williamcscho@gmail.com;
chocs@ha.org.hk
Shan Yu
yushan@hrbmu.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Gut Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 25 July 2022
ACCEPTED 14 October 2022

PUBLISHED 29 November 2022

CITATION

Che W, Zhao M, Li X, Li C, Cho WC
and Yu S (2022) Current insights
in molecular characterization of
non-alcoholic fatty liver disease
and treatment.
Front. Endocrinol. 13:1002916.
doi: 10.3389/fendo.2022.1002916

COPYRIGHT

© 2022 Che, Zhao, Li, Li, Cho and Yu.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 29 November 2022

DOI 10.3389/fendo.2022.1002916
Current insights in molecular
characterization of
non-alcoholic fatty liver
disease and treatment

Wensheng Che1†, Ming Zhao2,3†, Xiaoqing Li4, Chunlong Li1*,
William C. Cho5* and Shan Yu4*

1Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China, 2Chengdu Medical College, Chengdu, China, 3Department of Gastroenterology,
The First Affiliated Hospital of Chengdu Medical College, Chengdu, China, 4Department of
Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China, 5Department
of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
There is a continuously rising incidence of non-alcoholic fatty liver disease

(NAFLD) around the world, which parallels the increasing incidence of

metabolic diseases. NAFLD is a range of liver conditions that contains simple

non-alcoholic fatty liver and advanced non-alcoholic steatohepatitis. In serious

cases, NAFLD may develop into cirrhosis or even liver cancer. NAFLD has an

intense relationship with metabolic syndrome, type 2 diabetes mellitus. It is

known that gut microbiota, and functional molecules such as adenosine

monophosphate-activated protein kinase JNK, and peroxisome proliferator-

activated receptors (PPARs) in progressing and treating NAFLD. Traditionally,

the conventional and effective therapeutic strategy is lifestyle intervention.

Nowadays, new medicines targeting specific molecules, such as farnesoid X

receptor, PPARs, and GLP-1 receptor, have been discovered and shown

beneficial effects on patients with NAFLD. In this article, we focus on the

molecular mechanisms and therapeutic approaches to NAFLD.

KEYWORDS

non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), gut
microbiota, metabolic diseases, adenosine monophosphate-activated protein kinase
Introduction

Non-alcoholic fatty liver disease (NAFLD), defined by the National Institute of

Diabetes and Digestive and Kidney Diseases, is a condition in which excess fat builds up

in the liver, and it is not caused by heavy alcohol consumption. In patients with NAFLD,

there is fat accumulation in the liver without inflammation or liver damage. Besides, it is

characterized by hepatic steatosis and necroinflammation with different stages of fibrosis
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known as non-alcoholic steatohepatitis (NASH) (1). The

incidence of NAFLD has risen rapidly in the last decade and

has become a major health issue: NAFLD affects 25% of the adult

population worldwide (2). In addition, NAFLD has seen a

significant rise in liver-associated mortality and morbidity

among liver-related diseases (3). Notably, NAFLD can occur

in non-obese or even lean populations (10.8%) in Asia (4), and

NAFLD is associated with extrahepatic diseases, such as

cardiovascular disease (CVD) and type 2 diabetes mellitus

(T2DM). NAFLD results in insulin resistance due to

controlling lipid accumulation and mitochondrial function (5).

In advanced stage of NAFLD, NASH is characterized by

steatosis, inflammation, and liver damage, often accompanied

by pericellular fibrosis (6). NASH elevates the incidence of

cirrhosis, hepatic failure, and even hepatocellular carcinoma

(HCC). Hyperglycemia and toxic lipids such as ceramides,

diacylglycerol (DAG), free fatty acid (FFA), and cholesterol in

hepatocytes may result in deleterious effects (glucolipotoxicity),

which may change NAFLD from simple steatosis to NASH

through mechanisms including cellular death, oxidative stress,

and mitochondrial disorders (7).
Risk factors of non-alcoholic fatty
liver disease

Metabolic diseases

A series of studies have reported that NAFLD is highly

associated with metabolic syndrome (8). Metabolic syndrome

(hyperglycemia, dyslipidemia, hypertension, and insulin
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resistance) is a crucial risk factor for NAFLD progression (9,

10). Metabolites of FFAs contribute to hepatocyte injuries such

as endoplasmic reticulum (ER) stress, inflammation, apoptosis,

and ballooning (11), which finally leads to NAFLD or even

NASH (Figure 1). Obesity, with reference to body mass index

(BMI), has been thought of as a key risk factor for NAFLD for

decades. Interestingly, it has been reported that almost 40% of

NAFLD patients do not have obesity (12), suggesting that BMI

may not be considered a criterion for NAFLD diagnosis. A meta-

analysis also showed a much weaker relationship between

obesity and the incidence of severe liver diseases compared to

other risk factors, such as insulin resistance and dyslipidemia

(13). However, the incidence of metabolic syndromes is more

prevalent in obese people (14), and NAFLD patients with obesity

seem to have a poor prognosis (15). Obesity, or higher BMI, may

contribute to NAFLD in a non-directive way, for example,

through metabolic syndrome; this requires further in-

depth study.

Because of the intense relationship between NAFLD and

metabolic diseases, it has been suggested to re-classify fatty liver

diseases by whether metabolic dysfunction coexists, naming it as

“metabolic dysfunction-associated fatty liver disease (MAFLD)”

(16). This classification is probably a better description of

patients and improves clinical care and scientific research.
Gut microbiota

The gut microbiota is an “invisible organ” in the body and a

key player in host metabolism and immune regulation (17). The

gut microbiota benefits our bodies in several ways, not only
FIGURE 1

The pathogenic process of non-alcoholic fatty liver disease (NAFLD). The pathogenetic process of NAFLD always starts from unsatisfactory
customs in daily life. An unhealthy lifestyle and poor diet, exceptionally high fructose, and a high-fat diet will trigger gut microbiota
dysregulation. Unbalanced gut microbiota exposes liver cells to an endotoxic environment by producing short-chain fatty acids and secondary
bile acids. At the same time, metabolic syndrome, through factors such as obesity and insulin resistance, causes excessive free fatty acid
production because of unsatisfactory energy homeostasis. Once the body reaches its limit for lipid management, this will cause lipid
accumulation in the liver cells; expose liver cells to high ER stress, oxidative stress, and lipotoxic condition (green box); and result in hepatocyte
inflammation. These pro-inflammatory stimuli generate multiple pathways, leading to further hepatocyte injury (blue box) and continuous
inflammation. Cell damage finally causes liver fibrosis (red box). ER, endoplasmic reticulum.
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contributing to absorbing nutrients and energy, but also

producing some molecules, including short-chain fatty acids

(SCFAs), secondary bile acids (BAs), and choline derivatives.

These molecules can regulate host metabolism through multiple

molecular mechanisms (18, 19).

The gut microbiota changes under conditions such as a high-

fat diet (HFD), the use of antibiotics, or exposure to toxic

substances (20). A recent report also confirmed a strong

connection between gut microbiota and NAFLD in mice and

humans (21).

NAFLD shows an alteration of the gut microbiota profile,

and the occurrence of chronic liver disease is elevated by the

overgrowth of extremely small intestinal bacteria (22). For

example, the fecal microbiota transplantation (FMP) test

demonstrated that the germ-free C57BL/6J mice that

transplanted the gut microbiome of HFD mice displayed a

higher possibility of steatosis than these transplanted bacteria

from normal mice (23).
Dietary effect for non-alcoholic fatty
liver disease

Industrialized nations are bearing witness to an obesity

epidemic. An increasing number of patients with serious

chronic diseases, such as NAFLD, lead to liver dysfunction

and metabolic syndrome, which in turn cause T2DM and

vascular complications (24).

In the past decades, the dietary composition in many

countries has become focused on higher fat and lower

carbohydrates from a traditional diet with a high percentage of

carbohydrates and lower fat. The nutritional transition was

highly associated with dramatically increased incidence of

obesity, NAFLD, T2DM, and cardiovascular disease (25). A

high-fat diet could promote NAFLD progression by causing

gut microbiota dysregulation (26). A study tested whether a

different percentage of fat intake changes the structure of the gut

microbiota, decreases the proportion of Firmicutes, and

increases Alistipes and Bacteroides. However, a low-fat diet

showed contrasting results (27).
Oxidative stress

Oxidative stress is also strongly associated with NAFLD.

Oxidative stress reflects the lack of balance between the reactive

oxygen species (ROS) and the eliminating capacity of the

antioxidant system (28).

Under physiological conditions, the amount of ROS is kept

at a homeostatic status to promote physiological redox signaling.

Normal physiological levels of ROS act as signaling molecules
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involved in cell metabolism, survival, immune defense,

proliferation, and differentiation through the modulation of

transcription factors and epigenetic pathways (29). However,

once under oxidative stress, excessive ROS triggers pathological

redox signaling, causing cellular injury in various diseases,

significantly when cellular ROS production changes into

further toxic ROS species such as HO• (30, 31). Even a little

elevation of ROS will lead to cytotoxicity and oxidative stress in

the cells. Overproduced ROS can lead to lipid peroxidation,

reduced mitochondrial and peroxisomal oxidation of fatty acids,

and cytokine release. Furthermore, increased ROS output and

oxidative stress are considered underlying mechanisms of

insulin resistance (32, 33). Reduction of nuclear factor E2-

related factor 2 (Nrf2), a redox-sensitive transcription factor

and the principal regulator of the redox balance, and

upregulation of the NF-kB signaling pathway have been

observed simultaneously with the presence of ROS (32). Also,

it has been discovered that the downregulation of Nrf2 and

upregulated NF-kB lead to insulin resistance (32). Oxidative

stress is associated with insulin resistance, chronic

inflammation, and hepatic fibrosis. In addition, it has been

shown that the Nrf2 pathway is essential for mitochondrial

and ER homeostasis due to its ability to mediate the

expression of detoxifying enzymes, which may indicate the

relationship between oxidative stress, ER stress, and

mitochondrial dysfunction (34). In the condition of NAFLD,

impaired redox status and ROS accumulation are the origins of

hepatic fat accumulation, thereby leading to hepatic metabolic

impairment and NASH progression. Thus, maintaining cellular

redox homeostasis is considered one of the therapeutic strategies

for NASH (35).
Inflammation

Inflammation is a process responding to injury or infection,

which leads to the secretion of various inflammatory factors,

such as cytokines, chemokines, and eicosanoids. Liver

inflammatory response is an important factor in NAFLD

occurrence and progression. The persistence of inflammatory

activity over time results in chronic inflammatory changes that

exacerbate tissue injury and result in an abnormal response,

which in NAFLD develops into NASH and liver fibrosis (36).

Liver inflammation in NAFLD can be triggered by

extrahepatic (e.g., adipose tissue) and/or intrahepatic (e.g.,

lipotoxicity, oxidative stress, and cell death) factors (36). Studies

showed that when under a high-fat diet or upon FFA treatment,

Kupffer cells are activated by steatotic hepatocyte released

extracellular vesicle and direct effect of FFA, producing a high

amount of pro-inflammatory cytokines such as TNF-a and IFN

(37). Notably, other cells are also known as important mediators
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of inflammation and NAFLD progression. NASH is characterized

by B-cell and T-cell infiltration of the liver. T cells could

potentially stimulate hepatic macrophages regulated through

releasing of cytokines, and alterations in regulatory T cell and

hepatic dendritic cell homeostasis can trigger immune responses

that drive the progression of NASH (38). This evidence supports

inflammation being a key pathophysiological mechanism and a

target for therapeutic intervention.
Genetic risk factors

In a family cohort study, the risk of advanced fibrosis in the

NAFLD group was 12 times more than in the control group (39).

Some single-nucleotide polymorphisms (SNPs), including

rs738409 c.444 C>G p.I148, rs58542926 c.499 G>A p.E167K,

rs1260326 c.1337 C>T p.P446L, rs641738 g.54173068 C>T/c.50

G>A p.G17E, and rs62305723 c.778 C>T p.P260S, have been

discovered as being robustly associated with the pathogenesis of

NAFLD (40), and these genetic variants showed moderate-to-

large effect sizes in glucose and lipid homeostasis pathways for the

development of NAFLD (41). The rs738409 c.444 C>G p.I148 is

considered the most common genetic predisposition in NASH.

One of the major findings is that the PNPLA3 I148M variant

increases susceptibility to the whole spectrum of liver damage

related to NAFLD, from steatosis to NASH, fibrosis, and HCC

(42). Carrying this variant increases the risk of liver-associated

mortality (43). These findings represent that genetic factor is

probably an important risk factor for the development of NAFLD.

These genes also have an association with therapeutic approaches.

For example, PNPLA3 I148M carriers showed higher effectiveness

through lifestyle intervention and seemed to receive less benefit

from omega-3 supplements than certain other SNPs (44–46).

Recently, targeting these genes to treat NAFLD has come

under the spotlight. Targeting PNPLA3 (p.I148M) at RNA levels

through small hairpin RNAs (shRNAs) or antisense

oligonucleotides (ASOs) could provide long-lasting

suppression of the risk variant expression in carriers. PNPLA3

silencing caused a significant reduction of liver steatosis,

inflammation, and fibrosis in mice fed with a NASH-inducing

diet (47). An ASO compound called ION839 (also known as

AZD2693) is currently under investigation in phase I trials

(NCT04142424 and NCT04483947).

Degradation of gene production also could be a viable

therapeutic intervention. Momelotinib, previously identified to

treat myeloproliferative neoplasm, showed downregulation of

PNPLA3 mRNA, representing a new and effective therapeutic

approach for NASH (48).

The identification of the relationship between genes and

the development of NAFLD may explore new therapeutic

options, and the future genome-wide studies may reveal

additional mechanisms.
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Understanding non-alcoholic
fatty liver disease by
molecular mechanisms

Adenosine monophosphate-activated
protein kinase

Adenosine monophosphate-activated protein kinase (AMPK)

is a well-known energy-sensing kinase that manages the energy

balance. Therefore, it is necessary for cell survival with marginal

energy supplements (49–51). The AMPK activity is allosterically

regulated by AMP/ATP ratio, with activation during nutrition

shortage and inactivation under obesity conditions,

hyperglycemia (52–54), and hyperinsulinemia (55, 56).

AMPK is activated through phosphorylation on the NH2-

terminus (Thr172) (57), which is mediated by its upstream kinase

liver kinase B1 (LKB1) or the AMP binding with g-unit allosterically
(58, 59), as well as exercise directly. The AMPK activation not only

reduces the AMP/ATP ratio but also induces lipolysis and lipid

oxidation to consume whole-body energy (60, 61). Therefore,

AMPK activation could benefit NAFLD. AMPK facilitates a

variety of biological processes, including oxidative

phosphorylation, autophagy, uptake, and utilization of glucose

and FFA while reducing anabolism, such as protein synthesis by

inhibiting mTOR signaling, cholesterol by inhibiting HMA-CoA

reductase, and fatty acids by phosphorylating acetyl CoA

carboxylase (ACC) (49, 62–66). These processes are closely

correlated with hepatic lipid homeostasis and the pathogenesis of

NAFLD. AMPK is dysregulated in obese humans. Decreased

AMPK activity in adipose tissue is connected with whole-body

insulin resistance, suggesting that AMPK activity in adipose tissue

may be necessary for NAFLD (67, 68). In a healthy population, de

novo lipogenesis (DNL) contributes less than 5% to liver triglyceride

(TG) content, while it contributes up to 26% of liver TG in humans

with NAFLD (69, 70). Researchers have discovered that AMPK

phosphorylates and inactivates ACC to downregulate the rate-

limiting step of DNL (50, 71–73). A-769662, an AMPK agonist,

showed an abolishment effect in NAFLD, which restored hepatic

fatty acid oxidation and ameliorated liver lipid accumulation (74).

These studies indicate that AMPK may be a key player in the

pathogenesis of NAFLD (Figure 2).

The activity of AMPK in hepatocytes is reduced within NAFLD

(74). A recent study showed that the downregulation of AMPK in

hepatocytes results in more hepatocellular death and fibrosis due to

the upregulation of caspase-6 (75). AMPK is phosphorylated by

AMPK-related protein kinase 5 (ARK5) and thus prevents

hepatocytes from apoptosis by inhibiting the cleavage of

procaspase-6 (76, 77). Inversely, when the activity of AMPK is

reduced due to overnutrition, hyperglycemia, diabetes, and NAFLD,

caspase-6 would gain functions to sustain the caspase cascade. The

cascade activates caspase-3 and caspase-7, further leading

hepatocytes to caspase-mediated apoptosis (78). Thus, AMPK not
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only is a crucial energy-sensing protein, but that it may also

participate in cell apoptosis regulation in NAFLD/NASH.
c-Jun N-terminal kinase

c-Jun N-terminal kinase (JNK) is a member of the mitogen-

activated protein kinase (MAPK) family and is capable of

promoting apoptosis via Bcl-2 interacting mediator of cell

death (Bim), p53 upregulated modulator of apoptosis

(PUMA), and members of pro-apoptotic Bcl-2 family (79).

JNK is a vital mediator of insulin resistance and FA-induced

lipotoxicity (80), and its activation mediates apoptosis in

hepatocytes (81). It has been reported that the ASK-1–JNK

axis induced TNF-a related apoptosis in steatotic hepatocytes

from a mouse model of NAFLD (56). The prolonged activation

of JNK could be alleviated by NF-kB-mediated upregulation of

anti-apoptotic genes, such as Bcl-xl and cFLIP (82), which may

be a therapeutic strategy for NASH. In conclusion, JNK is

essential for regulating apoptosis in NAFLD and NASH.

Interestingly, JNK also contributes to protective responses

such as hepatocyte proliferation and liver regeneration (83).
Peroxisome proliferator-activated
receptors

Peroxisome proliferator-activated receptors (PPARs) belong

to the nuclear receptor superfamily, which is considered a fatty
Frontiers in Endocrinology 05
acid sensor, thus modulating carbohydrate metabolism and

energy usage (Figure 3). PPARs are also reported as regulators

of NAFLD development and treatment (84–86). PPARa, an
isoform of PPARs, is negatively correlated with the severity of

NASH (87), which may be linked with metabolism modulation,

such as fatty acid metabolism, ketogenesis, and b-oxidation (88,

89). In addition, PPARa showed a countering effect on pro-

inflammatory cytokines that were characterized by the

downregulation of IL-6, TNF-a, and COX2 (90). In the PPARa
knock-out mice, it showed an increment in triglyceride, oxidative

stress, inflammation, and hepatocyte death (91). The PPARa
activation was shown to improve NAFLD through AMPK-

PPARa signaling through aerobic training (92). PPARg is

predominantly expressed in adipose tissue and macrophages

and is capable of regulating adipocyte differentiation, lipid

synthesis, and lipolysis (93). In NAFLD, disrupted PPARg
restricted macrophage polarization to the M2 phenotype, thus

inducing hepatocyte steatosis, inflammation, and fibrosis.

Thiazolidinediones (TZDs), a PPARg agonist, were reported to

affect NASH by increasing insulin sensitivity (94, 95).
Therapeutic strategies

Although multiple clinical trials for NAFLD/NASH have

been in process in recent years, there is currently no drug that

has been approved by the United States Food and Drug

Administration (U. S. FDA) (6). The current most effective

way to alleviate NAFLD is still exercise and dietary
FIGURE 2

Mechanisms of adenosine 5′-monophosphate-activated protein kinase. AMPK is a crucial controller of energy metabolism. AMP, LKB1, and exercise
can activate AMPK directly or indirectly. AMPK regulates protein, fat, and carbohydrate metabolism. Activation of AMPK restrains lipogenesis,
promoting fatty acid catabolism in the liver through multiple mechanisms of energy regulation, thus decreasing hepatocyte steatosis and
contributing to the consumption of the energy of the whole body. Due to its function in energy regulation, activation of AMPK reduces lipid
accumulation by reducing lipid synthesis and stimulating lipid catabolism, which alleviated hepatocyte steatosis and showed a beneficial effect on
NAFLD. In addition, the function of AMPK reducing hepatocyte apoptosis by inhibiting activation of caspase-6 has been found recently, which may
indicate a new approach to improve NAFLD. Three pink icons at the top of the image are approaches to activating AMPK. The green arrows
represent the positive effect, and the red triangles represent the negative effect. NAFLD, non-alcoholic fatty liver disease.
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intervention (96). Meanwhile, the drugs already approved for

treating other diseases are repurposed for NAFLD/NASH

treatment, saving time and cost. Notably, phase III clinical

trials of promising drugs of these kinds are ongoing.
Exercise and dietary intervention

Lifestyle (exercise and dietary) intervention is still a good

therapeutic choice for NAFLD. Several studies have demonstrated

that caloric restriction and exercise could improve NAFLD through

weight loss (97). Lifestyle intervention showed an impressive

reduction in alanine aminotransferase (ALT) and aspartate

aminotransferase (AST) and amelioration in steatosis and

cirrhosis (97). In addition, exercise stimulates AMPK directly,

which restricts the synthesis of fatty acid, promotes fatty acid

catabolism, and ameliorates hepatocyte apoptosis (75, 98). In

addition, lifestyle intervention could reduce inflammation,

ballooning, and fibrosis. However, achieving NASH improvement

through weight loss has become challenging because of work-

related stress and the difficulty of changing lifestyles in the

modern era (99).

In addition to caloric restriction, the rational dietary

structure is a hotspot for NAFLD/NASH improvement. The

rampancy of NAFLD shows a parallel increase in the prevalence

of a diet that contains high fat and low fiber. In contrast, a diet

that contains whole grains with a high proportion of fiber

showed a great effect on weight loss and blood lipid
Frontiers in Endocrinology 06
profile (100). It also modulates the composition of gut

microbiota (49), which may further have an impact on NAFLD.

It has been reported that w-3 poly-unsaturated fatty acids

(PUFAs) could ameliorate liver fat and AST (101), and a lower

content of w-3 PUFAs was detected in patients with NAFLD

(102). These findings highlighted made the diet with higher

content of mono-unsaturated fatty acids (MUFAs) and w-3 fatty
acids a hotspot, such as nuts, olive oil, fish, and wine. Compared

with other types of diet, these foods showed impressive results in

weight loss, reduction of ALT, and improvement of insulin

resistance in NAFLD patients (103, 104).
Medications in advance

Obeticholic acid

Obeticholic acid is a selective farnesoid X receptor agonist.

Activation of the farnesoid X receptor can reduce fibrosis and

inflammation in NASH by regulating bile acid metabolism

(Figure 4) (105, 106). Usage of obeticholic acid for 18 months

showed a significant amelioration in fibrosis and histological

problems such as hepatocyte ballooning, lobular inflammation,

and reduction of ALT and AST level in a phase III trial

(NCT02548351) (107). Obeticholic acid showed mild adverse

effects, but the most common one is pruritus. Another

mechanism of obeticholic acid in NASH treatment has been

discovered that inhibits NLRP3 inflammasome in macrophage
FIGURE 3

The effects of adenosine 5′-monophosphate-activated protein kinase, peroxisome proliferator-activated receptors, and c-Jun N-terminal kinase
in the progress of non-alcoholic steatohepatitis. AMPK, PPARs, and JNK are important factors in NASH progression. As energy sensors, PPARs
and AMPK regulate energy usage to prevent the liver from developing steatosis. PPARs also show an inhibitory effect on inflammasome activity
(such as TNF-a and IL-6), thus regulating liver inflammation. Activated AMPK attenuates hepatocyte apoptosis by inhibiting the activity of the
caspase pathway, especially caspase-6. By contrast, activated JNK promotes liver cell apoptosis by mediating fatty acid-related lipotoxicity and
inducing TNF-a activation. These factors play a part in hepatocyte pathogenesis, regulating the progression of NAFLD and NASH. In this figure,
arrows represent promoting effect, and short lines imply repressing effect. PPARs, peroxisome proliferator-activated receptors; NASH, non-
alcoholic steatohepatitis; NAFLD, non-alcoholic fatty liver disease.
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activation and suppresses lipid accumulation without the

participation of the farnesoid X receptor (108).
Lanifibranor

Lanifibranor is an anti-fibrotic drug that activates PPAR-a,
PPAR-b, and PPAR-d, called a pan-PPAR agonist. Lanifibranor

improved insulin resistance, fibrosis, and inflammation in

preclinical trials (109, 110). Oral intake of 800 or 1,200 mg

once daily of lanifibranor for 6 months showed impressive

amelioration in steatosis, activity, and fibrosis (SAF) score,

ALT, AST level, and markers of apoptosis and steatosis in a

phase IIb trial (NCT03008070) (123). Some scholars suggest that

there is no sufficient evidence to support the efficacy of

lanifibranor because there is only one randomized controlled

trial for the drug (124). A phase III trial of lanifibranor in the

treatment of NASH is ongoing to investigate its safety and long-

term efficacy.
Resmetirom

Resmetirom is a thyroid hormone receptor b (THR-b)
agonist. THR-b is the most important receptor of thyroxine in

the liver, regulating cholesterol metabolism (111). Many studies

demonstrated that activation of THR-b reduces triglyceride,

cholesterol, apoptosis, and insulin resistance in an animal model

(125–127). Usage of resmetirom for 12 or 36 weeks orally

significantly alleviated liver fat content evaluated by MRI-PDFF
Frontiers in Endocrinology 07
in a phase II trial (NCT02912260) (112). At the same time,

resmetirom showed relatively mild side effects (diarrhea and

nausea). Resmetirom has also been demonstrated to reduce

ALT and AST reduction. A phase III trial is ongoing to

investigate its efficacy on NASH and stage F2–F3 fibrosis patients.
Semaglutide

Semaglutide is a glucagon-like protein-1 (GLP-1) receptor

agonist approved for T2DM treatment and chronic weight

management (128). A number of trials have recently assessed the

possible beneficial hepatic effects of injectable GLP-1 receptor

agonists for NAFLD. An updated meta-analysis of randomized

controlled trials showed that GLP-1 receptor agonists reduce liver

fat content and serum liver enzyme level, thus improving NAFLD

(129). Semaglutide has shown its therapeutic effect for NASH in

phase II clinical trials in 2021 (113). Compared with the placebo, it

showed the ability to ameliorate obesity, T2DM, ALT, AST, fibrosis,

and liver histology. However, semaglutide also showed side effects,

such as constipation, nausea, vomiting, decreased appetite, and

abdominal pain. Moreover, neoplasm and fatal cardiovascular

events were observed during the trial. The American Association

for the Study of Liver Disease practice guidelines published in 2018

suggested that it is premature to consider GLP-1 receptor agonists

to treat NAFLD or NASH (130). Nevertheless, at the same time,

some researchers suggest that the effect of GLP-1 receptor agonists

for NAFLD treatment is attractive, especially in patients with

coexisting type 2 diabetes or obesity (124). The usage of

semaglutide for NAFLD requires further observation.
FIGURE 4

Mechanism of medications (dosage is listed in Table 1). As a multi-factor disease, the pathogenesis of NAFLD/NASH involves many pathways.
Modulating these pathways with different medications can improve NAFLD/NASH. As a metabolic disease, the theme of NAFLD treatment is to
regulate energy metabolism. A high percentage of ongoing drug experiments are related to energy management. However, the medicines that
improve NAFLD in other mechanisms, such as regulating apoptosis or inflammation, are also attracting attention because of their impressive effects
in treatment. Unfortunately, all of these drugs are undergoing trials, and no drug has been approved by U. S. FDA).
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Saroglitazar

Saroglitazar is a PPARa/g agonist shown to improve

NAFLD/NASH (131). Due to its double-sensitizing effect,

saroglitazar not only increases b-oxidation and reduces

triglyceride synthesis but also increases insulin sensitivity

(121). In a randomized controlled, double-blind phase II trial,

saroglitazar ameliorated ALT secretion, insulin resistance, and

dyslipidemia significantly in NAFLD/NASH patients (132). Of

note, even though limited cases of severe adverse effects were

observed, a mild, dose-dependent weight gain was observed in

the saroglitazar group.
Metformin

Metformin is widely used in T2DM as a first-line therapy,

which suppresses hepatic gluconeogenesis (133–135).

Metformin showed an inhibitory effect in lipogenesis and lipid

oxidation in hepatocytes (74), restricting lipid accumulation in

NAFLD. Metformin showed a significant effect on weight loss in

a human trial (136) and an amelioration effect on ALT levels

(118, 119). In addition, metformin activates AMPK through the
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phosphorylation at Thr172 to inhibit gluconeogenesis in the

liver (137). Meanwhile, metformin inhibited the cleavage and

activation of pro-apoptotic factors, such as caspase-3 and

caspase-7, thus ameliorating apoptosis in the NASH model

(138). Meanwhile, some guidelines recommend against using

metformin as a specific treatment for NASH because metformin

was shown to not improve liver histology in adult NAFLD

patients (124).
Salsalate

Salsalate, a member of the salicylates family, is a weak non-

steroidal anti-inflammatory drug (NSAID) used for inflammatory

and non-inflammatory disorders (139, 140). It has been reported

that salsalate strongly phosphorylated AMPK and ACC and

restored activation of AMPK and caspase-6 improved NAFLD in

the HFD mouse model (120). Additionally, salsalate elevates the

resting expenditure of energy (141, 142). These mechanisms

indicate that salsalate may improve symptoms of NASH/NAFLD

simultaneously. Furthermore, salsalate may also contribute to

NASH improvement via COX-2, which may interact with TNF-a
and IL-6 to promote hepatocellular apoptosis (143).
TABLE 1 Medications treatment.

Medication Dosage Outcome and proposed mechanism Experimental model Ref.
no.

Obetecholic
acid

Daily 10mg for 18 months Regulates bile acid, improves ALT, AST, fibrosis, ballooning, inflammation Human 105–
108

Daily 25mg for 18 months

Lanifibranor Daily 800mg for 6 months Improves fibrosis, inflammation, ALT, AST, apoptosis by activating PPARs Human 109,
110

Daily 1200mg for 6 months

Resmetirom Daily 80mg for 12 weeks Reduces liver fat, cholesterol by activating THR-b Human 111,
112

Daily 89mg for 36 weeks

Semaglutide Daily 0. 1mg for 72 weeks Improves ALT, AST, triglycerides, body weight via activating GLP-1 Human 113

Daily 0. 2mg for 72 weeks

Daily 0. 4mg for 72 weeks

Prebiotics N/A Decreases serum endotoxin, ALT, AST, oxidative stress, inflammation by
changing gut microbiota

HFD induced NAFLD model
Human

114,
115

Probiotics N/A Reduces lipid accumulation, oxidative stress, TNF-a, IL-1b 116,
117

Metformin 500mg three times a day for 4
months

Reduces BMI, ALT via restriction of lipid accumulation and stimulating
AMPK

Human 118,
119

Salsalate Daily 300mg/kg for 7days Reduces fat mass, reverses AMPK repression and caspase-6 activation C57BL/6J mice 120

Saroglitazar Daily 1mg for 16 weeks Improves ALT, insulin resistance, fibrosis, and dyslipidemia by stimulating
PPARa/g

Human 121

Daily 2mg for 16 weeks

Daily 4mg for 16 weeks

Hesperetin N/A Alleviate plasma lipid profile,
Reduce hepatic ROS overproduction

HepG2 cell 122

HDF mice
frontie
ALT, alanine aminotransferase; AST, aspartate aminotransferase; GLP-1, Glucagon-like peptide 1; BMI, Body mass index; TNF-a, tumor necrosis factor alpha; IL-1b, Interleukin-1b;
AMPK, adenosine 5‘-monophosphate-activated protein kinase; PPAR, Peroxisome proliferator-activated receptor; ROS, Reactive oxygen species; N/A, Not applicable.
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Antibiotics

Several types of antibiotics are being tested for NAFLD

counteraction due to the association between gut microbiota

and fatty liver disease. Long-term usage of antibiotics reduces

gut bacteria diversity and downregulates liver inflammation

(144). Rifaximin, an antibiotic that is non-absorbable in the

intestines, induced a significant reduction of AST, ALT, low-

density lipoprotein (LDL), and BMI in NASH patients (145).

However, antibiotic application in NAFLD is of concern because

antibiotics not only kill the pernicious bacteria, but also destroy

the probiotics. Moreover, the most concern issue is antibiotic

resistance due to frequent abuse in daily life.
Prebiotics

Prebiotics are incompletely digested food ingredients that

guide gut microbiota in a beneficial manner (146). Prebiotic

feeding is an effective therapeutic strategy for NAFLD that works

by increasing the population of probiotics in the gut (114, 115).

The underlying mechanism may include oxidative stress

reduction, inflammation alleviation, glucose tolerance, and

triglyceride accumulation by adjusting gut microbiota (147–

149). In addition, prebiotics also stimulate SCFA production,

which is beneficial for NAFLD.
Probiotics

Numerous animal studies, as well as clinical trials, have

demonstrated the effect of probiotics on NAFLD improvement.

Probiotics are a series of non-pathogenic microbes that

positively impact the host (116). Probiotics improve NAFLD

by reducing lipid accumulation, oxidative stress, and

inflammatory cytokines such as TNF-a and IL-1b (116, 117).

However, probiotics are raising concerns because of biosafety,

and just a few bacteria have been proven to have therapeutic

effects. Personalized use of probiotics based on gut microbiota

tests may be an effective way of NAFLD treatment because of the

different gut microbiota biological structures among individuals.
Hesperetin

Hesperetin (3′,5,7-trihydroxy-4′-methoxyflavanone) is a

citrus flavonoid belonging to the flavanone class and is

abundant in oranges, lemons, and grape juice. A recent study

discovered that hesperetin alleviated oleic acid-induced

hepatotoxicity and oxidative stress in vitro and plasma lipid

profile, including TG, total cholesterol (TC), and LDL-C, in
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HFD-induced NAFLD rat model (122). Hesperetin showed its

effect in reducing fatty acid-induced hepatic ROS overproduction

and oxidative damage. Also, hesperetin showed inhibition of fatty

acid-induced NF-kB activation and subsequent inflammation by

reducing ROS overproduction (122). Anti-macrophage scavenger

receptor-1 (anti-MSR1) antibody (MSR1 inhibitor) may be an

important therapeutic approach for the treatment of NAFLD

requiring clinical investigations.
Anti-MSR1 antibody

MSR1 is an important receptor for the uptake of lipids in

macrophages, leading to an inflammatory response and

metabolic changes throughout the body. An MSR1 antibody

showed a reduction of hepatic inflammation and changes in

hepatic lipid metabolism by reducing hepatic lipid-laden foamy

macrophages in vivo and ex vivo (150). Targeting MSR1 using

monoclonal antibody therapy in an obesity-associated NAFLD

mouse model and human liver slices displayed prevention of

foamy macrophage formation and inflammation by regulating

the JNK signaling pathway (150). MSR1 plays a critical role in

lipid-induced inflammation and the MSR1 inhibitor may be an

interesting therapeutic approach for the treatment of NAFLD in

the future.
Sodium-glucose cotransporter-2
inhibitors

Sodium-glucose cotransporter-2 (SGLT-2) inhibitors (such

as dapagliflozin, empagliflozin, ipragliflozin, and canagliflozin)

are oral glucose-lowering medicines approved for the treatment

of T2DM. Recent studies showed beneficial effects in people with

NAFLD (124). By reducing the renal capacity to reabsorb filtered

glucose, SGLT-2 inhibitors lessen the ability to reabsorb filtered

glucose in the kidney, thereby lowering serum glucose and

accompanying some additional benefits such as weight loss

and blood pressure control (151, 152). Recently, a meta-

analysis of several placebo-controlled or randomized control

trials that used various SGLT-2 inhibitors for the treatment of

NAFLD has displayed that usage of SGLT-2 inhibitor for 24

weeks significantly decreased ALT, gamma-glutamyl transferase

(GGT) level, and liver fat content, as well as body weight in

NAFLD patients (152).
Conclusion and future perspective

NAFLD has become one of the major public health issues

throughout the world. The rampancy of NAFLD worldwide is
frontiersin.org

https://doi.org/10.3389/fendo.2022.1002916
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Che et al. 10.3389/fendo.2022.1002916
highly associated with a changed lifestyle and rising incidence of

metabolic problems such as obesity or T2DM. We should pay

attention to dietary structure and exercise to prevent metabolic

disease and NAFLD. Exercise and dietary intervention is the

current therapeutic strategy Nevertheless, the pace of newly

discovered molecules correlated with NAFLD, such as AMPK,

PPARs, and JNK, may act as alternative approaches to NAFLD

treatment. Researchers are focusing on the discovery of

medications that regulate energy metabolism. In the future,

combination therapy with dietary intervention, exercise, and

medicine will probably be the mainstream and effective

therapeutic strategy because NAFLD is a complex disease that

involves many pathways in pathogenesis. Besides, liver biopsy is

regarded as the most reliable diagnostic approach. However, a

biopsy is a snapshot which involves invasive operation and

cannot provide continuous monitoring of changes in disease.

Therefore, a repeatable, non-invasive approach that is capable of

precisely diagnosing and staging is needed. Some extracellular

biomarkers, such as circulating nucleic acid fragments, have

been identified that could help NAFLD diagnosis. Cell-free non-

coding RNA showed its different expression profile among

different stages of NAFLD patients (153). Recent studies have

discovered that plasma exosome and some exosome markers

such as CD9, CD36, and CD63 are significantly increased in

NAFLD patients, especially those liver-derived exosome

markers, compared with controls (154, 155). Exosomes are

spotlighted as an effective target for NAFLD diagnosis due to

their effect on lipid metabolism. These newly discovered

biomarkers are showing their potential in recent studies but

still need further validation. Also, low-cost pharmacotherapy is

required because of the relation to lifestyle and the prevalence of

NAFLD. We look for reliable and cost-effective diagnostic

approaches because a considerable number of patients
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worldwide are not properly diagnosed. We summarized our

views on potential research directions for NAFLD in Table 2.
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TABLE 2 Potential future perspectives.

Screening and diagnosis 1. Explore novel non-invasive biomarkers or an index that included several biomarkers to easily and accurately screen and diagnose
NAFLD.
2. Optimize or create an image-based AI analysis with accuracy close to that of liver biopsy in the diagnosis of NAFLD and liver fat
content as much as possible and is cost-saving.
3. A non-invasive or minimally invasive way to continuously and accurately monitor the liver fat content and treatment response of
NAFLD (liquid biopsy, etc.).

Mechanism of the pathogenesis
of NAFLD

1. The reason for the excessive fat accumulated in liver.
2. Is there a decisive mechanism in the pathogenesis of NAFLD among the mechanisms we already know?
3. The reason for the increasing number of NAFLD in non-obese population.
4. Is there a key substance controlling fat metabolism (like insulin in glucose metabolism)?

Genetic factor 1. Classify NAFLD genotype by signature gene expression.
2. Design personalized treatment guided by different genotypes.
3. Are there any genes making people susceptible to NAFLD?

Therapy 1. Discover drugs against hepatocyte inflammation and apoptosis by targeting AMPK–caspase-6 axis only in liver.
2. Check the effect of antibiotics on NAFLD further.
3. Are vaccines or other immunological ways possible for preventing NAFLD?
NAFLD, non-alcoholic fatty liver disease.
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42. Trépo E, Valenti L. Update on NAFLD genetics: From new variants to the
clinic. J Hepatol (2020) 72:1196–209. doi: 10.1016/j.jhep.2020.02.020
frontiersin.org

https://doi.org/10.1002/hep.26717
https://doi.org/10.1002/hep.28431
https://doi.org/10.1002/hep.28431
https://doi.org/10.1136/gutjnl-2020-320622
https://doi.org/10.1016/j.jhep.2018.05.036
https://doi.org/10.1155/2020/3920196
https://doi.org/10.1038/s41591-018-0104-9
https://doi.org/10.1016/j.metabol.2016.02.014
https://doi.org/10.1097/01.mol.0000174153.53683.f2
https://doi.org/10.1016/j.cld.2017.08.003
https://doi.org/10.1016/j.cld.2017.08.003
https://doi.org/10.1016/j.jhep.2011.12.011
https://doi.org/10.1016/j.jhep.2011.12.011
https://doi.org/10.1002/hep.23719
https://doi.org/10.1016/s2468-1253(20)30077-7
https://doi.org/10.1371/journal.pmed.1003100
https://doi.org/10.1007/s12664-020-01020-3
https://doi.org/10.1080/17474124.2018.1460202
https://doi.org/10.1080/17474124.2018.1460202
https://doi.org/10.1016/j.jhep.2020.03.039
https://doi.org/10.3748/wjg.v26.i16.1901
https://doi.org/10.3389/fphys.2018.01813
https://doi.org/10.3389/fphys.2018.01813
https://doi.org/10.1002/mnfr.201900487
https://doi.org/10.1038/s41598-020-65051-8
https://doi.org/10.5223/pghn.2013.16.1.22
https://doi.org/10.1016/j.cbi.2020.109199
https://doi.org/10.1136/gutjnl-2012-303816
https://doi.org/10.1007/s10620-020-06112-w
https://doi.org/10.1111/obr.12122
https://doi.org/10.3390/microorganisms6040098
https://doi.org/10.3390/microorganisms6040098
https://doi.org/10.1136/gutjnl-2018-317609
https://doi.org/10.3390/ijms141020704
https://doi.org/10.1161/circresaha.117.311401
https://doi.org/10.1016/j.redox.2019.101284
https://doi.org/10.1038/s41575-018-0079-5
https://doi.org/10.1038/s41575-018-0079-5
https://doi.org/10.3390/antiox10020174
https://doi.org/10.1016/j.cell.2020.08.009
https://doi.org/10.1016/j.tibs.2014.02.002
https://doi.org/10.1016/j.cmet.2018.01.007
https://doi.org/10.1038/s41575-018-0009-6
https://doi.org/10.1038/s41575-018-0009-6
https://doi.org/10.1016/j.jhep.2008.01.035
https://doi.org/10.1038/s41575-019-0210-2
https://doi.org/10.1038/s41575-019-0210-2
https://doi.org/10.1172/jci93465
https://doi.org/10.2174/1381612825666190119113836
https://doi.org/10.2174/1381612825666190119113836
https://doi.org/10.1111/apt.15738
https://doi.org/10.1016/j.jhep.2020.02.020
https://doi.org/10.3389/fendo.2022.1002916
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Che et al. 10.3389/fendo.2022.1002916
43. Unalp-Arida A, Ruhl CE. Patatin-like phospholipase domain-containing
protein 3 I148M and liver fat and fibrosis scores predict liver disease mortality in
the US. Population. Hepatol (2020) 71:820–34. doi: 10.1002/hep.31032

44. Shen J, Wong GL, Chan HL, Chan RS, Chan H, Chu WC, et al. PNPLA3 gene
polymorphism and response to lifestyle modification in patients with nonalcoholic fatty
liver disease. J Gastroen Hepatol (2015) 30:139–46. doi: 10.1111/jgh.12656

45. Oscarsson J, Önnerhag K, Risérus U, Sundén M, Johansson L, Jansson P-A,
et al. Effects of free omega-3 carboxylic acids and fenofibrate on liver fat content in
patients with hypertriglyceridemia and non-alcoholic fatty liver disease: A double-
blind, randomized, placebo-controlled study. J Clin Lipidol (2018) 12:1390–
1403.e4. doi: 10.1016/j.jacl.2018.08.003

46. Scorletti E, West AL, Bhatia L, Hoile SP, McCormick KG, Burdge GC, et al.
Treating liver fat and serum triglyceride levels in NAFLD, effects of PNPLA3 and
TM6SF2 genotypes: Results from the WELCOME trial. J Hepatol (2015) 63:1476–
83. doi: 10.1016/j.jhep.2015.07.036

47. Lindén D, Ahnmark A, Pingitore P, Ciociola E, Ahlstedt I, Andréasson A-C,
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