AUTHOR=Mennigen Jan A. , Ramachandran Divya , Shaw Katherine , Chaube Radha , Joy Keerikkattil P. , Trudeau Vance L. TITLE=Reproductive roles of the vasopressin/oxytocin neuropeptide family in teleost fishes JOURNAL=Frontiers in Endocrinology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2022.1005863 DOI=10.3389/fendo.2022.1005863 ISSN=1664-2392 ABSTRACT=

The vertebrate nonapeptide families arginine vasopressin (AVP) and oxytocin (OXT) are considered to have evolved from a single vasopressin-like peptide present in invertebrates and termed arginine vasotocin in early vertebrate evolution. Unprecedented genome sequence availability has more recently allowed new insight into the evolution of nonapeptides and especially their receptor families in the context of whole genome duplications. In bony fish, nonapeptide homologues of AVP termed arginine vasotocin (Avp) and an OXT family peptide (Oxt) originally termed isotocin have been characterized. While reproductive roles of both nonapeptide families have historically been studied in several vertebrates, their roles in teleost reproduction remain much less understood. Taking advantage of novel genome resources and associated technological advances such as genetic modifications in fish models, we here critically review the current state of knowledge regarding the roles of nonapeptide systems in teleost reproduction. We further discuss sources of plasticity of the conserved nonapeptide systems in the context of diverse reproductive phenotypes observed in teleost fishes. Given the dual roles of preoptic area (POA) synthesized Avp and Oxt as neuromodulators and endocrine/paracrine factors, we focus on known roles of both peptides on reproductive behaviour and the regulation of the hypothalamic-pituitary-gonadal axis. Emphasis is placed on the identification of a gonadal nonapeptide system that plays critical roles in both steroidogenesis and gamete maturation. We conclude by highlighting key research gaps including a call for translational studies linking new mechanistic understanding of nonapeptide regulated physiology in the context of aquaculture, conservation biology and ecotoxicology.