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Estrogen receptors were initially identified in the uterus, and later throughout

the brain and body as intracellular, ligand-regulated transcription factors that

affect genomic change upon ligand binding. However, rapid estrogen receptor

signaling initiated outside of the nucleus was also known to occur via

mechanisms that were less clear. Recent studies indicate that these

traditional receptors, estrogen receptor-a and estrogen receptor-b, can also

be trafficked to act at the surface membrane. Signaling cascades from these

membrane-bound estrogen receptors (mERs) not only rapidly effect cellular

excitability, but can and do ultimately affect gene expression, as seen through

the phosphorylation of CREB. A principal mechanism of neuronal mER action is

through glutamate-independent transactivation of metabotropic glutamate

receptors (mGluRs), which elicits multiple signaling outcomes. The

interaction of mERs with mGluRs has been shown to be important in many

diverse functions in females, including, but not limited to, reproduction and

motivation. Here we review membrane-initiated estrogen receptor signaling in

females, with a focus on the interactions between these mERs and mGluRs.

KEYWORDS

estrogen, estrogen receptors, membrane estrogen receptors, metabotropic
glutamate (mGlu) receptors, estrogen receptor signaling
Introduction

The estrogen receptors, estrogen receptor-a (ERa) and estrogen receptor-b (ERb)
were initially identified as intracellular, ligand-regulated transcription factors (1),

members of the larger nuclear receptor superfamily (2, 3). Originally identified in the

uterus (4, 5), these estrogen receptors are expressed throughout the body, including in a

multitude of brain regions (6, 7). Estradiol binding to these receptors was initially

demonstrated to induce transcriptional changes at estrogen response elements (EREs)

(8). However, this classical signaling pathway is not the only mechanism through which
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estrogen receptors directly elicit genomic change. Many

estrogen-regulated genes lack ERE sequences (9, 10), which led

to the discovery of additional genomic actions occurring via

other response elements and transcription factors (11, 12).

However, even with multiple pathways leading to direct

genomic effects, this was still insufficient to fully explain the

plethora of actions estradiol was observed to induce both inside

and outside the nervous system.
Membrane-initiated signaling

The first clues that estrogen signaling could be initiated

outside the nucleus came from Szego & Davis in the late 1960s.

Following ovariectomy (ovx) in rats, acute exogenous estradiol

treatment resulted in an increase in uterine cAMP accumulation

within seconds, concentrations indistinguishable from intact

animals (13). The speed at which these changes occurred

eliminated the possibility of nuclear-initiated action and

strongly suggested the recruitment of a surface-initiated

second messenger signaling pathway. Rapid effects of estradiol

were subsequently noted within the nervous system, first in

female preoptic-septal neurons in the hypothalamus. Within

seconds of application, estradiol modulated firing rates,

returning to experimental baseline when the steroid was

removed (14). The use of estradiol conjugated to bovine serum

albumen (BSA) further implicated membrane-associated

estrogen receptors (15). However, skepticism remained, as

there was suspicion that estradiol might be cleaved from BSA

(16). Thus, large dendrimer macromolecules conjugated to

estrogens were produced. These conjugates avoided the

potential for cleaving and were unable to cross the cellular

membrane, precluding the activation of nuclear ERs, but still

resulted in rapid estradiol signaling (17). While in 2000 a novel

estrogen receptor potentially located at the membrane was

identified, i.e. G protein-coupled estrogen receptor 1 (GPER1)

(18), overexpression of both ERa and ERb (19), along with

immunohistochemical (20) and co-immunoprecipitation studies

(21) also indicated that a subpopulation of these classical

receptors are trafficked to the membrane (19). The

development of transgenic mice allowed researchers to explore

the effects of rapid signaling in vivo. In transgenic knockout mice

devoid of ERa, and/or ERb, rapid estradiol signaling was

eliminated in a brain-region and signaling pathway-dependent

manner, suggesting that these receptors are responsible for many

of the membrane signaling effects (22).

Membrane-initiated estrogen receptor signaling does not

preclude downstream influences on gene expression.

Particularly prominent is estradiol activation of PKC-MAPK

signaling, ultimately resulting in the phosphorylation of CREB

(23–26). Serine-133 phosphorylation of CREB can initiate a

diverse array of transcriptional and behavioral changes,

including by estradiol-mediated CREB activation via
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membrane ER (mER) interactions with metabotropic

glutamate receptors (mGluRs) (23). Initial findings in

hippocampal neurons found estradiol acting through ERa-
mGluR1a leads to MAPK-dependent CREB phosphorylation.

This study elucidated a separate second pathway whereby

activation of ERa or ERb associated with mGluR2 (and Gi/o-

mediated inhibition of cAMP) resulted in a decrease in L-type

calcium-channel mediated CREB phosphorylation (23). Follow-

up studies found mER signaling through mGluR activation

throughout the brain, which appears to be a mechanism

allowing for diverse signaling outcomes. Not only does mER

activation of group I or group II mGluRs activate separate cell

signaling pathways, but mER pairing with different group I or II

mGluRs (i.e. mGluR1 vs. mGluR5 and mGluR2 vs. mGluR3) can

differentially impact neuronal function as well (27).

The interaction of mERs with mGluRs requires caveolin

(CAV) (28–30), a family of scaffolding proteins involved in

trafficking receptors to the membrane (31). The particular ER-

mGluR pairing is mediated through the CAV isoform associated

with the ER (28) (Figure 1). A single point mutation in ERa that

disrupts receptor localization with CAV1 inhibited estradiol-

induced CREB phosphorylation. Reducing CAV1 expression

through siRNA knockdown inhibited estradiol-induced CREB

phosphorylation while leaving the estradiol-induced L-type

calcium channel-dependent decrease in CREB phosphorylation

intact. In reciprocal experiments, siRNA knockdown of CAV3

inhibited estradiol-dependent activation of group II mGluRs

without affecting estradiol-mediated CREB phosphorylation. In

both cases, siRNA knockdown did not grossly impact mGluR

signaling, demonstrating the essential nature of caveolin

proteins to mER signaling (28). These data contribute to the

understanding that CAV1 mediates ERa interactions with group

I mGluRs through clustering the receptor at the membrane (28,

29, 33), while CAV3 is involved in the interactions between

mERs and group II mGluRs (28). Additionally, an alternatively

spliced form of ERa, ERaD4, is highly expressed in membrane

fractions derived from cultured cells. This receptor has been

shown to associate with both mGluR2/3 and CAV3 in ARH

membrane fractions (34).

Following these experiments, the precise mechanism of

action linking ERs to mGluRs and to the membrane remained

unclear, though palmitoylation was an attractive hypothesis.

Palmitoylation is a reversible, post-transcriptional modification

involved in the trafficking and function of proteins both within

and outside the nervous system (35). Global pharmacological

blockade of palmitoylation inhibited the downstream outcomes

of membrane estradiol signaling, while introducing single point

mutations at palmitoylation sites in both ERa and ERb was

sufficient to inhibit membrane signaling (36). Two palmitoyl

acetyltransferases (DHHC-7 and DHHC-21) have been shown

to be crucial in ER membrane localization (37). Disrupting

expression of either was sufficient to inhibit estradiol-

dependent CREB phosphorylation (36), and to prevent ERa
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from associating with CAV1 (38). siRNA knockdown of these

enzymes together, but not separately, was sufficient to decrease

the palmitoylation of CAV1 itself (38). These data suggest that

palmitoylation is a crucial component in the interaction of mERs

with CAV proteins, the coupling of mERs with mGluRs, and the

subsequent signaling cascades.

While estrogen-mediated signaling plays a crucial role in the

female brain, estrogen-mediated signaling is not absent in the

male brain. Estrogen plays an important role in masculinizing

the brain (39), and rapid estradiol signaling occurs in adult

males, including through mGluRs. Estradiol activation of

mGluR1a through ERb modulates sexual behavior in male

quails (40, 41), and rodent studies have confirmed rapid mER-

mGluR signaling in both the male and female adult cerebellum

(42). In females, though, rapid signaling of estradiol, including

through mGluRs, has been shown to be incredibly important in

driving reproduction, including in the development of the

luteinizing hormone surge which stimulates ovulation, the

central event in female reproduction. In rodents, and certain

other species, rapid membrane signaling is also crucial in the

physical display of the principal reproductive behavior, lordosis.

Finally, rapid membrane signaling has been shown to play an

important role in female motivation for reproduction.
Ovulation and the luteinizing
hormone surge

Ovulation is the central event in female reproduction,

controlled by a network of neurons and astrocytes in the

hypothalamus that act as a pattern generator, releasing

gonadotropin-releasing hormone (GnRH) onto luteinizing

hormone (LH) neurons in the anterior pituitary in small,

rhythmic pulses (43, 44). Rising estradiol concentrations via

ovarian release, trigger a switch from an estrogen-negative to an
Frontiers in Endocrinology 03
estrogen-positive feedback loop. This estrogen-positive feedback

loop, which is unique to females, is crucial in the surge release of

LH that ultimately triggers ovulation (45). The preovulatory rise

in circulating estradiol sharply increases GnRH neuronal activity

and the release of LH from the pituitary to elicit ovulation (46,

47). Blocking either progesterone receptors or progesterone

synthesis prevents the surge release of both GnRH and LH

and halts the estrous cycle (48, 49). While GnRH neurons do not

express ERa or nuclear progesterone receptors (45, 50, 51),

kisspeptin neurons that are upstream regulators of GnRH

signaling do express the necessary steroid receptors (52–54).

Classically it has been understood that both estradiol and

progesterone released from the ovaries orchestrate the LH

surge, but it has become apparent that progesterone is also

synthesized de novo in the brain (55–57), and that it is this

neuroprogesterone (neuroP) that is vital in the LH surge that

ultimately leads to ovulation (58). Neuroprogesterone is

synthesized in hypothalamic astrocytes that express mERa and

mGluRs, and it has been shown that the LH surge relies upon the

mER-mGluR signaling in these astrocytes (55, 59). Estradiol

activation of mERa directly leads to the activation of mGluR1

and its downstream signaling cascades. mGluR1 activity

increases inositol triphosphate and allows for the release of

intracellular calcium ([Ca2+]i) stores (59, 60). The release of

[Ca2+]i activates a Ca
2+-sensitive adenylyl cyclase (AC-1), which

increases the production of cAMP. This cAMP activates protein

kinase A (60), leading to the synthesis of neuroP (56, 57, 59).

Blocking neuroP synthesis in rats that had both ovaries and

adrenals removed is sufficient to prevent the LH surge (61). Cell

culture experiments in astrocytes isolated this signaling pathway.

Blocking mGluR1a activity, or any part of the cell signaling

cascade initiated by the ERa activation of mGluR1, in astrocytes

inhibits neuroP synthesis (49, 55, 59, 60). Further, in the absence

of estradiol, activating mGluR1a directly is sufficient to release

[Ca2+]i and induce neuroP synthesis (59, 62).
A B

FIGURE 1

mER transactivation of group I and group II mGluRs. 17b-Estradiol (17bE) binds to membrane-bound estrogen receptors (ER) to activate distinct
signaling pathways via Group I (A) or Group II (B) mGluRs. (A) Membrane-ER interactions with Group I mGluRs, dependent on CAV1, activates
Gq-mediated signaling through protein lipase C (PLC) and protein kinase C (PKC), subsequent activation of MEK, MAPK, and RSK, and ultimately
the phosphorylation of CREB. PLC also activates IP3, which binds to the IP3 receptor (IP3R) to result in the release of intracellular calcium
(Ca2+). (B) Membrane-ER activation of Group II mGluRs, dependent on CAV3, results in the Gi/o-mediated inhibition of adenylyl cyclase (AC),
decreasing the activity (indicated by dashed lines) of protein kinase A (PKA). This results in reduced L-type calcium channel currents and L-type
calcium channel-dependent CREB phosphorylation. CaM, Calmodulin; CaMKIV, calmodulin-dependent protein kinase IV; CAV, caveolin; IP3,
inositol triphosphate; MEK, MAPK/ERK kinase; MAPK, mitogen-activated protein kinase; RSK, ribosomal S6 kinase. Figure adapted from (32).
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Lordosis

Another important aspect of reproduction controlled by ER

interactions with mGluRs is lordosis. Lordosis is a reflexive

behavior that is acutely triggered by mounting from a conspecific

male. This behavior consists of an arching of the spine, the

raising of both the head and the hindquarters, and the lifting of

the tail (63). While integration of the tactile cues with other

externosensory cues is crucial for the display of lordosis, this

behavior depends heavily on the appropriate timing of the

release of ovarian hormones and the subsequent priming of

neural circuits by these hormones. The role of intracellular and

membrane-bound ERs, as well as the interaction between mERs

and mGluRs, have all been shown to be important components

in driving lordosis (64, 65).

A core circuit controlling lordosis is within the

hypothalamus. Here, signaling between the arcuate nucleus

(ARH), the medial preoptic nucleus (MPN), and the

ventromedial nucleus of the hypothalamus (VMH) have been

shown to be fundamental in the expression of lordosis (64, 66–

70) (Figure 2). Within this circuit, estradiol first acts on ERa-
containing neuropeptide Y (NPY) neurons in the ARH (21, 68,

71), allowing for the release of NPY onto NPY-Y1 receptors in

ARH proopiomelanocortin (POMC) neurons. The subset of

POMC neurons that are involved in reproduction project
Frontiers in Endocrinology 04
further to the MPN where they release b-End onto neurons

that express m-opioid receptors (MORs). The estradiol-induced

activation, and subsequent internalization, of MOR depends

upon ERa activity (65). Throughout the estrous cycle the

activation/internalization of this receptor is out of phase with

the ability to express lordosis (69). That is, when MOR is

internalized, a measure of activation, the display of lordosis is

prohibited. As the cycle progresses, increasing progesterone

levels ultimately result in the restoration of MOR to the

membrane, a measure indicating that the receptors are not

stimulated (72), and the behavior can be expressed. While

counterintuitive, this estradiol inhibition of lordosis is

necessary for its later full expression. While many neural

changes must occur to result in the production of lordosis,

recent work has shown that much of the machinery involved in

this behavior utilizes fast-acting mER signaling cascades, and

particularly those signaling through mGluRs.

Within the ARH, a subset of the NPY neurons express both

ERa and mGluR1a, which have been shown to interact at the

membrane to initiate signaling (21). The mER-mGluR signaling

in the ARH has been shown to be crucial in both the

internalization of MOR and the subsequent display of lordosis.

The level of estradiol determines the expression of the mERa-
mGluR1 complex in the ARH.When estradiol is low, the mERa-
mGluR1 complex is present, but as estradiol levels rise the
FIGURE 2

Hypothalamic lordosis circuit. Estradiol acts on estrogen receptor-containing NPY neurons in the ARH, which further project to and activate
ARH POMC/B-End neurons. These POMC neurons project to the MPN where the release of B-End activates and internalizes MORs. When these
receptors are internalized, lordosis is attenuated. In the ARH, the interaction of mERa & mGluR1a is important for both the internalization of
MOR and ultimately the display of lordosis. These MOR-containing neurons in the MPN project further to the ventrolateral (vl) part of the VMH,
where signals from other circuits are integrated. Projections from the VMHvl reach lower brain regions which ultimately innervate the spinal
motor neurons responsible for the production of the behavior. 3V, 3rd ventricle; OC, optic chiasm; ME, median eminence. Figure adapted
from (66).
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expression of mERa-mGluR1 is reduced (73). In the ARH,

antagonizing mGluR1a activity before estradiol treatment is

sufficient to attenuate the internalization of MOR in the MPN

as well as the ensuing expression of lordosis (20, 21). Activating

mGluR1a in the ARH to circumvent the necessity of estradiol is

sufficient to result in the internalization of MOR and lordosis

(20). Both in vitro and in vivo activating mGluR1a through

estradiol-induced mERa activity increases many important

phosphoproteins, including PKC and CREB (20, 21, 23), and

the internalization of MOR appears to depend at least in part

upon PKC signaling. Downstream from mGluR1a activity,

activating PKC signaling in the ARH in the absence of

estradiol was sufficient to result in the internalization of MOR,

and the amount of this internalization was comparable to that

seen following estradiol treatment alone (21).

Another key component in the production of lordosis

regulated by fast mER-mGluR activity is morphological

changes to neuronal structure. Estradiol affects both the

generation and pruning of dendritic spines, though this is not

unique to the hypothalamic lordosis circuit but occurs

throughout the brain (64, 74, 75) and appears due to

retrograde signaling by endogenous opioids (76–78). Within

this circuit, important morphological changes can be induced

rapidly through mERa-mGluR1a signaling in the ARH. Within

4 hours, estradiol activation of mGluR1a results in an increase in

the total number of dendritic spines, which remains for at least

48 hours. By 20 hours these spines display mushroom-shaped

morphology, suggesting that these synapses are functional.

Blocking mGluR1a activity prevented this spinogenesis, as well

as attenuated the display of lordosis (64). Importantly, this time

course of changes in morphology lines up with that of the display

of lordosis.
Motivation

Estrogen membrane-receptor signaling has also been found

to play a role in motivation. Though the long-term consequence

of reproduction is the survival of the species through the

production of offspring, the short-term motivation of

reproduction is often the immediate drive for the rewarding

aspects of the behavior, in females as much as in males (79).

While work has focused on the physiology of ovulation and the

rodent’s reflexive response to mounting by a male, female sexual

behavior is indicative of a motivational drive. Female rats placed

in a modified operant chamber, in which the female can choose

if and when she wants to copulate, will seek the male for

copulation timed to maximize reward (80, 81). Additionally,

other pre-copulatory behaviors from female rodents, such as

hopping or darting (82, 83), further indicate a level of control

over the mating process. This pre-copulatory activity, which is

called “pacing,” contributes to a robust dopamine response in

the female nucleus accumbens (NAc) in response to mating
Frontiers in Endocrinology 05
(84–87). This dopamine response, as well as further structural

changes, in the NAc is regulated at least in part by estradiol

signaling at the membrane.

The NAc is a key region in reward and incentive salience,

and the limbic control of behavioral motivation, and inputs here

affect structural morphology and subsequently behavioral

output. The limbic system is important in the motivation to

engage in reproductive behaviors in both males and females (67,

79), and projections from the hypothalamic nuclei robustly

innervate this circuit. The reproductive limbic circuit consists

of the MPN, the ventral tegmental area (VTA), and the NAc. A

key node connecting the hypothalamus to the limbic component

includes the MPN (88). Projections from here reciprocally

innervate the mesolimbic dopamine system, including the

VTA (89). The VTA projections to the NAc arise from cells

that contain ERs (90) and are sensitive to fluctuations in

estradiol levels (91), as well as estradiol-mediated signals

arising from the MPN (90). These estradiol-mediated changes

in VTA signaling have been shown to further affect the

subsequent release of DA in the NAc (90).

The predominant output neuron in the NAc is the medium

spiny neuron (MSN) - named due to the density of spines it

possesses (92). The MSNs in the NAc receive both DAergic and

glutamatergic inputs (93), and it has been shown that estradiol

plays an important role in modulating both inputs (94–97).

MSNs contain few nuclear ERs, suggesting that estradiol acts

primarily through membrane-bound receptors ERs (98–103). As

in the hypothalamus, estradiol modulates spine density in the

NAc and the estradiol-induced morphological changes in the

MSNs of the NAc are dramatic in terms of functional circuitry

and neuronal morphology (104, 105). In female rodents, sexual

experience modulates future sexual behavior through estradiol-

mediated morphological changes within the limbic circuit (79).

While the complete mechanisms of estradiol modulation on

motivational circuity have yet to be fully elucidated, it is likely

that mER-mGluR signaling plays a role.

The role of membrane estradiol signaling, and particularly

the interaction between mERs and mGluRs, in reproductive

motivational drive can be further extrapolated from studies

investigating when motivational drive becomes maladaptive,

such as in drug addiction. In comparison with men, women

tend to show heightened vulnerability to developing a drug

addiction (106, 107). Additionally, subjective effects of a drug

can vary across the menstrual cycle, as has been reported in

response to cocaine. When estrogen levels are high, women

report the greatest effects of the drug (108). Interest in the

interaction between membrane ERs and group I mGluRs has

been taken in understanding the influence of estradiol on drug

addiction. In ovx rats, estradiol activation of mGluR5 has been

shown to facilitate self-administration of cocaine, while

inhibiting this signaling through an mGluR5 antagonist before

estradiol administration is sufficient to attenuate this intake of

the drug (109). Estradiol activation of mGluR5 in MSNs also
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results in an increase in the phosphorylation of CREB (100), and

a decrease in dendritic spine density in both the core region of

the NAc (27, 104, 105). Conversely, estradiol activation of

mGluR1 can result in an increase in spine density in the shell

region of NAc (27). Taken together, the data suggest that mER-

mGluR signaling are important in the drive to seek reward

generally, as is apparent in drug taking behaviors, and in the

reinforcement of reproductive behaviors.
Discussion

A great deal of progress has been made in understanding

the physiology of rapid estradiol signaling, including the

relationship between mERs and mGluRs. Rapid estradiol

signaling has been found throughout the brain and the

body. In the central nervous system, the signaling cascades

initiated by the mER/mGluR complex has been shown to be

involved in many physiological functions in both sexes, but

particularly in females. In females, the diverse signaling

cascades initiated by the interaction of mERs with mGluRs

have been shown to play important roles in mediating key

aspects of reproduction and motivation, among other crucial

functions. While uncovering the roles of CAV and

palmitoylation has led to further understanding of this

complex signaling cascade, current and future research will

inevitably expand our knowledge of mER/mGluR signaling

and its physiological and behavioral outcomes.
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