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Immune checkpoint inhibitors, namely anti-CTLA-4, anti-PD-1 and anti-PD-L1

monoclonal antibodies, have emerged in the last decade as a novel form of

cancer treatment, promoting increased survival in patients. As they tamper with

the immune response in order to destroymalignant cells, a new type of adverse

reactions has emerged, known as immune-related adverse events (irAEs),

which frequently target the endocrine system, especially the thyroid and

hypophysis. Thyroid irAEs include hyperthyroidism, thyrotoxicosis,

hypothyroidism and a possibly life-threatening condition known as the

“thyroid storm”. Early prediction of occurrence and detection of the thyroid

irAEs should be a priority for the clinician, in order to avoid critical situations.

Moreover, they are recently considered both a prognostic marker and a means

of overseeing treatment response, since they indicate an efficient activation of

the immune system. Therefore, a multidisciplinary approach including both

oncologists and endocrinologists is recommended when immune checkpoint

inhibitors are used in the clinic.
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Introduction

The influence of the immune system over tumor development is of high importance,

since the immune system can recognize and destroy tumor cells. This is not the case for

every type of tumor: different mechanisms are involved in a process called immune

escape, helping malignant cells to avoid being killed (1). Our immune system could also

respond against healthy tissues, leading to autoimmunity, which is normally prevented
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through activation of inhibitory pathways known as immune

checkpoints. When these pathways are not properly regulated,

immune escape of cancer cells may occur (2).

Immune checkpoint inhibitors (ICIs) have emerged as a new

class of drugs used for in treatment of various types of

malignancies, since their first U.S. Food and Drugs

Administration (FDA) approval, in 2011 of ipilimumab (3, 4).

Anti-cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)

monoclonal antibodies (e.g. ipilimumab), anti-programmed death

1 (PD-1) monoclonal antibodies (e.g. pembrolizumab, nivolumab,

cemiplimab) and anti-PD-1 ligand (PD-L1) monoclonal antibodies

(e.g. avelumab, atezolizumab, durvalumab) are the types of ICIs

used at the moment (5). They have improved overall survival for

patients suffering from neoplasms, such as melanoma, non-small

cell lung cancer (NSCLC) and renal cancer. However, ICIs are also

the cause of specific adverse reactions known as immune-related

adverse events (irAEs) (6). IrAEs are usually phenotypically similar

to autoimmune conditions, even though it is not certain that the

underlying mechanisms are similar. Some predisposing factors that

might lead to irAE are genetic and environmental, or a

combination of both (7).

Common irAEs associated with ICI therapy include thyroid

dysfunctions, both hypothyroidism and hyperthyroidism or

thyrotoxicosis, especially while administering anti-PD-1 or

anti-PD-L1 antibodies. Therefore, this form of cancer

treatment challenges both oncologists and endocrinologists

and it should involve a multi-disciplinary approach (8).
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Immune checkpoint inhibitors:
Mechanism of action

The therapy involving modulation of/tampering with the

immune system in order to treat malignant tumors is called

immunotherapy. It involves cancer vaccines, an oncolytic virus,

a bi-specific T-cell and ICIs (9). ICIs have emerged in the last

decade, changing the outlook on treatment for at least 17

different types of cancer (3).

Immune checkpoints are responsible for self-tolerance, while

inhibitory checkpoint molecules such as CTLA-4, PD-1 and its

ligands PD-L1 and PD-L2, regulate this process. Inflammation is

said to upregulate these molecules through interferon gamma.

Antibodies targeting CTLA-4 or PD-1 and its ligands ensure the

enhancement of immune reactions against malignant cells, while

also promoting autoimmunity (3, 6, 9).

CTLA-4 (also known as CD152) is a glycoprotein expressed

by CD4+ and CD8+ T-cells (10), acting as a negative regulator

for T-cell activation (11). This inhibitory effect is based on its

similarities to CD28, which enable binding of CTLA-4 to B7

glycoproteins (B7.1 or CD80 and B7.2 or CD86) with 20-fold

higher affinity than CD28 (11, 12). This results in limitation of

activated T-cell proliferation (8), promoting the immune escape

of cancer cells (see Figure 1).

PD-1 (also known as CD279) is mainly expressed on the

activated CD8+ T-cells (13), although it is also present on the

surface of macrophages, dendritic cells, B-cells, and while it is
A
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C

FIGURE 1

The mechanisms of action for immune checkpoint inhibitors include the CTLA-4 pathway (on the left, panels (A) and (B)) and the PD-1/PD-L1
pathway (on the right, panels (C) and (D)). Normally, CTLA-4 is present on the surface of T-cells and by binding to its ligands, CD80 and CD86
(expressed on antigen-presenting cells), it exerts an inhibitory effect on the T-cell proliferation (A). Anti-CTLA-4 antibodies (a variety of ICIs)
bind to CTLA-4 and block its inhibitory effects, stimulating T-cell proliferation (B). Similarly, T-cells express PD-1, which binds to its ligand, PD-
L1, present on cancer cells, suppressing T-cell proliferation (C). Anti-PD-1 antibodies bind to PD-1 blocking its inhibitory effects and stimulating
T-cell proliferation (D).
frontiersin.org

https://doi.org/10.3389/fendo.2022.1010279
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chera et al. 10.3389/fendo.2022.1010279
also similar to CD28, it binds to its specific ligands: PD-L1

(expressed on immune cells, hepatocytes, pancreatic islet cells,

endothelial cells, myocytes, thyroid cells and many other cells,

including various tumor cells) and PD-L2 (only expressed on

macrophages and dendritic cells) (12). The inhibitory effect on

T-cell activity is obtained through binding of PD-1 to its ligands,

which results in a decrease of glucose uptake and

gluconeogenesis of T-cells and apoptosis, while also

interrupting the co-stimulatory pathway of CD28-CD80/86

(11, 12). Only regulatory T-cells will have an increased

survival, as they have the ability to suppress cytotoxic CD8+

T-cell proliferation, in favor of immune escape of cancer cells

(11, 14). The PD-1 ligands seem to be present mostly in

inflammatory settings as they are strongly regulated by

interferon gamma (15): this could be a reason why chronic

inflammation which surrounds tumors limits the destruction of

cancer cells (16). Also, the high expression of PD-L1 which

promotes immune escape was linked with greater tumor

aggressiveness (17).

Considering the fact that CTLA-4 and PD-1 regulate different

stages of the immune response (CTLA-4 regulates the early stages

of T-cell activation, while PD-1 is expressed after the T-cells

are activated) and that they exert their actions at different sites

(draining lymph nodes for CTLA-1 and tumor microenvironment

for PD-1 and its ligands), it is understandable that their effects and

adverse reactions are different (18–20). PD-1 inhibitors seem to

have a more specific effect, associating less severe adverse reactions

(20–23).

Both CTLA-4 and PD-1 are also involved in development of

autoimmune disorders. CTLA-4 seems to have a role in the

development of Graves’ disease (24) and immune dysregulation

syndrome, through autosomal dominant mutations (25). PD-L1

expression is increased in Hashimoto’s thyroiditis (26), while

PD-1 blockade might stimulate B-cells to produce thyroid

autoantibodies and thyroid dysfunction, especially in patients

with higher baseline levels of these thyroid antibodies prior to

the treatment (1, 27, 28).

The importance of prognostic markers and routine

laboratory investigation before deciding to use a specific

cancer treatment option has been previously established (29).

Potential prognostic markers with either proven efficacy or in-

line for future studies are: tumor mutational burden, PD-L1

expression, fraction of copy number alteration, human leukocyte

antigen (HLA)-I evolutionary divergence, the loss of

heterozygosity status in HLA-I25, microsatellite instability,

body mass index, sex, blood neutrophil-to-lymphocyte ratio

(NLR), tumor stage, immunotherapy drug agent, age, cancer

type, whether the patient received chemotherapy before

immunotherapy, blood levels of albumin, platelets and

hemoglobin (the last three providing information about the

presence of tumor-promoting inflammation), other molecular

features of the tumor immune microenvironment (infiltration

levels of myeloid cells or lymphocytes), composition of the
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microbiome, T-cell receptor diversity, mutations associated

with resistance to ICIs and the expression of ADORA1 or p62

(30–47).

Currently, the main FDA-approved prognostic marker for

ICI response is the tumor mutation burden, which measures the

number of mutations present in the tumor, proportional to the

number of neo-antigens and to the probability of triggering a T-

cell response. It performs well on its own, but the efficacy can be

increased by associating the detection of PD-L1 expression (48,

49) or NLR (33). Regarding PD-L1 expression, it has been

hypothesized that the presence of tumor infiltrating

lymphocytes might increase its accuracy in predicting the ICI

treatment response (35). NLR is an accessible marker of systemic

inflammation, negatively correlated to cancer prognosis and

response to immunotherapy (32).
FDA-approved immune
checkpoint inhibitors

The first ICI approved by the FDA for treating metastatic

melanoma (2011) was ipilimumab, an anti-CTLA-4 monoclonal

antibody, and it was followed by the FDA-approval of three anti-

PD-1 (pembrolizumab, nivolumab, cemiplimab) and three anti-

PD-L1 monoclonal antibodies (atezolizumab, durvalumab,

avelumab) (5). Along with ipilimumab, another anti-CTLA-4

antibody known as tremelimumab has entered clinical trials, but

its antineoplastic activity was low while it was administered as a

single drug, and it has also shown substantial side effects (the

incidence of thyroid disorders is 0-5.2%). However, its

association with durvalumab for treating mesothelioma,

melanoma, NSCLC, gastroesophageal or colorectal tumors

could be promising, even though some studies have not shown

a substantial benefit added by tremelimumab compared to

durvalumab alone (50–52). A phase 3 clinical trial (CheckMate

037) has shown that anti-PD-1 antibodies have both higher

efficacy and a superior safety profile compared to ipilimumab

(53). Another association of ICIs considered to be successful is

the combination of ipilimumab with nivolumab, which has

shown 57% intracranial central nervous system response for

patients suffering frommelanoma brain metastases (54, 55). ICIs

can also be associated with chemotherapy agents to treat certain

types of cancer: in 2019, FDA has approved the combination of

atezolizumab and paclitaxel for treating patients with advanced

metastatic triple negative breast cancer expressing PD-L1,

without previous systemic treatment for metastatic disease (56,

57). Also, radiation therapy might be useful alongside ICI

treatment, as it can sensitize melanoma brain metastases to

ICIs (55, 58).

While most of the studies about ICIs involved solid tumors,

their promising effects have paved the way for treating

hematological malignancies as well: nivolumab and

pembrolizumab were approved by the FDA in 2016 and 2017
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for the treatment of the relapsed/refractory Hodgkin’s

lymphoma (5, 59, 60).

The anti-CTLA-4, anti-PD-1 and anti-PD-L1 antibodies

belong to different categories: ipilimumab, atezolizumab,

durvalumab and avelumab belong to the IgG1 subclass,

activating the classical complement pathway and initiating

antibody-dependent cell-mediated cytotoxicity (ADCC), while

pembrolizumab, nivolumab and cemiplimab are part of the IgG4

subclass, which is not able to activate the classical complement

pathway and has a lower potency in inducing ADCC (10).

Ipilimumab (Yervoy®) is a CTLA-4 inhibitor belonging to

the IgG1 subclass, approved by the FDA in March 2011 (4, 9). It

is used for the treatment of melanoma, renal cell carcinoma and

colorectal cancer (13), while also being responsible for

development of irAE, usually after 9 weeks of therapy

(hypophysitis, hypothyroidism, hyperthyroidism are the most

frequent) (9, 61, 62).

Pembrolizumab (Keytruda®) is a PD-1 inhibitor belonging

to the IgG4 subclass, approved by the FDA in September 2014

(9, 63). It is used for the treatment of melanoma, small-cell lung

cancer (SCLC), NSCLC, Hodgkin’s lymphoma, squamous cell

carcinoma of the head and neck, urothelial carcinoma,

gastroesophageal and colorectal cancer, primary mediastinal

large B cell lymphoma, hepatocellular carcinoma, Merkel cell

carcinoma, cervical and renal cell cancer (13). The most frequent

irAEs induced by pembrolizumab are hypothyroidism and

hyperthyroidism (64), which have a particular immune

phenotype demonstrated by studies: elevation of CD56+CD16+

natural killer (NK) cells along with decrease of CD56brCD16-

NK cells and CD14+HLA-DRlo/neg monocytes. PD-1 is not

expressed on T-cells from pembrolizumab-induced thyroiditis,

which supports a T-cell mediated mechanism, rather than a B-

cell mediated one (65).

Nivolumab (Opdivo®) is a PD-1 inhibitor belonging to the

IgG4 subclass, approved by the FDA in 2015 as a second-line

treatment for NSCLC (grades IIIB and IV) (66, 67). Currently, it

is used for the treatment of melanoma, SCLC, NSCLC,

Hodgkin’s lymphoma, squamous cell carcinoma of the head

and neck, urothelial carcinoma, microsatellite instability-high or

mismatch repair deficient colorectal cancer, hepatocellular and

renal cell carcinoma (10, 52, 68). The combination of nivolumab

and ipilimumab is the most frequent cause of hypothyroidism

(CheckMate 069 trial has shown an incidence of 17%) (9, 69, 70).

Nivolumab-induced thyrotoxicosis shows similarities to

autoimmune thyroiditis (predominance of CD8+ T-cells),

while also showing granulomas, destruction of thyroidal

follicles and chronic thyroid lymphocytic inflammation, which

are not present in autoimmune thyroiditis (71).

Cemiplimab (Libtayo®) is a PD-1 inhibitor belonging to the

IgG4 subclass, approved by the FDA in September 2018, for the

treatment of metastatic or locally advanced cutaneous squamous

cell carcinoma not amenable to surgery or radiation (72, 73).

Clinical studies are conducted for evaluating its efficacy in
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NSCLC, renal, ovarian and uterine carcinomas (74). It is

responsible for the following irAEs: hypothyroidism (a

research study has found an 8% incidence of hypothyroidism

in a cohort of 59 patients treated with cemiplimab) (75),

hyperthyroidism, type 1 diabetes mellitus (T1 DM), adrenal

insufficiency and hypophysitis (76).

Atezolizumab (Tecentriq®) is a PD-L1 inhibitor belonging

to the IgG1 subclass, approved by the FDA in 2016 for the

treatment of urothelial carcinoma (77). It has also shown efficacy

in SCLC, NSCLC, triple-negative breast cancer and metastatic

squamous cell carcinoma of the head and neck (13, 78–81). It

can induce hypothyroidism as irAE (64).

Durvalumab (Imfinzi®) is a PD-L1 inhibitor belonging to

the IgG1 subclass, approved by the FDA in 2017 for the

treatment of urothelial carcinoma and NSCLC (13, 82), while

inducing hypothyroidism and hyperthyroidism as irAEs (64).

Avelumab (Bavencio®) is a PD-L1 inhibitor from the IgG1

subclass, approved by the FDA in 2017 for urothelial carcinoma,

Merkel cell carcinoma and renal cell carcinoma (13, 83), while

inducing hypothyroidism as irAE (64).

The information about the ICIs described above is

synthetized in Table 1.

Immune checkpoint inhibitors:
Immune-related endocrine
adverse events

The immunologic tolerance can be altered after the

administration of ICIs, therefore the risk of targeting self-

antigens is high (84). A new category of adverse events has

emerged as a consequence of the augmented immune response -

they are known as immune-related adverse events (6) and they

are present in the majority of the patients treated with anti-

CTLA-4 and anti-PD-1 antibodies (a clinical trial has identified

86% occurrence of irAEs after ipilimumab administration, 82%

after nivolumab and 96% after combination therapy) (70, 85),

the most frequent being the thyroid dysfunctions (86).

Common Terminology Criteria for Adverse Events

(CTCAE) are used for grading the irAEs induced by ICIs.

There are 5 grades of severity, grade 1 representing mild

toxicity and grade 5 representing death caused by the adverse

reaction (see Table 2) (87). CTLA-4 inhibitors are responsible

for causing grade 3 or 4 irAEs in >34% of the patients, while PD-

1 inhibitors induce grade 3 or 4 irAEs in 15% of the patients. ICIs

combinations are the most frequent elicitors of severe irAES (58-

68%) (70, 88–91). Nivolumab and pembrolizumab are

considered to be more easily tolerated than ipilimumab in

terms of irAE severity (6, 70, 92).

IrAEs can involve the following sites: skin, gastrointestinal

tract, liver, endocrine system, cardiovascular system, lungs,

kidneys, pancreas, bone marrow, musculoskeletal system,

nervous system, ocular system (see Figure 2). The endocrine
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related adverse events are the most frequent, as they are present

in up to 40% of the patients treated with different ICIs – in

descending order, the affected organs are: thyroid, hypophysis

(both of these having a rich vascularization, ensuring contact

with activated T-lymphocytes), adrenals, beta cells of the

pancreatic islets (3, 68, 93–96) and parathyroid glands.

Generalized lipodystrophy, autoimmune polyglandular

syndrome (97, 98), hypercalcemia (99), low testosterone levels

(in the absence of hypophysitis) and a single case of “suspicious”

adrenocorticotropic hormone (ACTH)-independent cortisol
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secretion (in the absence of exogenous cortisol administration)

after ICIs’ administration, have also been described (76, 100).

Although the pathogenesis is not clearly elucidated, there

are many mechanisms that have been incriminated in irAEs

development : genet ic suscept ibi l i ty which tr iggers

autoimmunity, cross-reactivity of neoantigens released from

tumoral and normal cells, or production of cytokines (101). In

addition, different ICIs might involve different mechanisms and

sites, seeing that the anti-CTLA-4 antibodies target the

hypophysis more frequently, while the anti-PD-1 antibodies
TABLE 2 Grading guidelines proposed by Common Terminology Criteria for Adverse Events (CTCAE) (applicable for immune-related adverse
events induced by immune checkpoint inhibitors).

Grade 1(Mild) Grade 2(Moderate) Grade 3(Severe) Grade 4(Life-
threatening)

Grade 5(Death)

- asymptomatic or mild
symptoms
- only clinical or diagnostic
observations
- intervention not indicated.

- minimal, local or noninvasive intervention
indicated
- limiting age-appropriate instrumental
activities of daily living.

- medically significant, but not
immediately life-threatening
- hospitalization/prolongation of
hospitalization is indicated
- disabling
- limiting self-care activities of daily
living.

- urgent intervention is
indicated.

- death related to
adverse events.
Adapted from reference (87).
TABLE 1 Immune checkpoint inhibitors, cancer types for which they are used and the most frequently induced immune-related endocrine
adverse events.

Drug name Class IgG
subclass

FDA
approval

Cancer types for which the drug is used Frequent
immune-related
endocrine adverse

events

Ipilimumab
(Yervoy®)

Anti-CTLA-
4
monoclonal
antibody

IgG1 2011 Melanoma, renal cell carcinoma, colorectal cancer Hypophysitis,
hypothyroidism,
hyperthyroidism

Pembrolizumab
(Keytruda®)

Anti-PD-1
monoclonal
antibody

IgG4 2014 Melanoma, small-cell lung cancer (SCLC), non-small-cell lung cancer (NSCLC),
Hodgkin’s lymphoma, squamous cell carcinoma of the head and neck, urothelial
carcinoma, gastro-esophageal and colorectal cancer, primary mediastinal large B cell
lymphoma, hepatocellular carcinoma, Merkel cell carcinoma, cervical, renal cell
cancer

Hypothyroidism,
hyperthyroidism

Nivolumab
(Opdivo®)

Anti-PD-1
monoclonal
antibody

IgG4 2015 Melanoma, SCLC, NSCLC, Hodgkin’s lymphoma, squamous cell carcinoma of the
head and neck, urothelial carcinoma, microsatellite instability-high or mismatch
repair deficient colorectal cancer, hepatocellular, renal cell carcinoma

Hypothyroidism,
hyperthyroidism

Cemiplimab
(Libtayo®)

Anti-PD-1
monoclonal
antibody

IgG4 2018 Cutaneous squamous cell carcinoma, NSCLC, renal, ovarian, uterine carcinomas Hypothyroidism
hyperthyroidism type 1
diabetes mellitus,
adrenal insufficiency,
hypophysitis

Atezolizumab
(Tecentriq®)

Anti-PD-L1
monoclonal
antibody

IgG1 2016 Urothelial carcinoma, SCLC, NSCLC, triple-negative breast cancer, metastatic
squamous cell carcinoma of the head and neck

Hypothyroidism

Durvalumab
(Imfinzi®)

Anti-PD-L1
monoclonal
antibody

IgG1 2017 Urothelial carcinoma, NSCLC Hypothyroidism,
hyperthyroidism

Avelumab
(Bavencio®)

Anti-PD-L1
monoclonal
antibody

IgG1 2017 Urothelial carcinoma, Merkel cell carcinoma, renal cell carcinoma Hypothyroidism
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are usually linked to thyroid dysfunctions (9): this is also linked

to the presence of CTLA-4 expressed in the pituitary gland

[mostly on cells secreting prolactin or thyroid stimulating

hormone (TSH)] and the expression of PD-1 and PD-L1 in

the thyroid (68, 102).

Unfortunately, endocrinopathies induced by ICIs are usually

irreversible (50% recovery of the pituitary-thyroid axis, 50-60%

recovery of the pituitary-gonadal axis) (9, 62, 70, 103). They can

occur at any time after the ICI administration. They usually tend

to develop early after therapy initiation. However, seeing that the

benefic, anti-cancer effects are still present after discontinuation

of ICIs, there is also a risk of late development of adverse

reactions (104, 105).

Risk factors for developing irAEs are the administration of

high doses of ICI (only while using CTLA-4 inhibitors),

preexisting autoimmune diseases (3, 106) and obesity (through

the proinflammatory metabolic state) (107, 108). It is not known

whether certain races may develop irAEs more frequently than

others, which is why more studies need to be conducted on

minorities and differentiated populations (101).

Clinicians should be vigilant in order to detect irAEs as early

as possible. Before initiating treatment with ICIs, a few initial

tests are recommended: thyroid function tests (TSH, free T4, free

T3), hypophysis function tests (early morning cortisol levels),

fasting glucose, adrenal function tests (ACTH), gonadal function

tests (testosterone, luteinizing hormone – LH, and follicle-

stimulating hormone – FSH), brain magnetic resonance

imaging (MRI) (1, 93, 94). Patients should be monitored after
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each course during the first semester, every two courses over the

next 6 months, and afterwards more rarely, as needed,

considering the clinical suspicion (68, 109).

The management of the endocrine irAEs does not usually

involve stopping the administration of ICIs (97, 103). Mild irAEs

need low/moderate doses of steroids (0.5 mg/kg of prednisone or

equivalent) and supportive therapy for 4-6 weeks, with the

possibility of using other immunosuppressants the patient

does not respond to steroids (3, 93).

Several research studies suggest that the occurrence of irAEs

could predict a favorable response to treatment with ICIs,

increased survival and progression-free survival, especially

linked to PD-1 or PD-L1 inhibitors administration (5, 110).

Hypophysitis is the most frequent irAE found in patients

treated with anti-CTLA-4 antibodies (9) (around 5% of the

patients) (111), with higher incidence in patients treated with

combination therapy involving ipilimumab and nivolumab, even

though the mechanisms are not fully understood (96, 97). While

hypophysitis generally affects women, ICI-related hypophysitis

seems to be more frequently found in male patients. It tends to

appear either within the first 2-3 months of therapy or even 19

months after (12, 112, 113). The supposedly direct proportional

relationship between the doses of ipilimumab and the incidence

of hypophysitis has been discussed in several studies, without a

consensus being reached (64, 100, 114). Symptoms associated

with hypophysitis are: fatigue, muscle weakness, headache,

anorexia, nausea, weight loss, visual changes, intolerance of

temperatures, arthralgias , mental status alteration.

Hyponatremia, low ACTH or low TSH might be present (9,

100, 114). The suspicion of hypophysitis appears when two of

the symptoms are identified, and the diagnosis is confirmed by

hypophysis enlargement found on the brain MRI (which

subsides after steroid treatment) (100, 111, 115). Given that

the vast majority of the symptoms are unspecific, they can be

overlooked, and the patient could develop life threatening

complications. Usually, the hypopituitarism developed during

hypophysitis is permanent and it does not respond to high doses

of steroids (70, 97, 103), leading to infertility among other

consequences (96, 100). Treatment with ICIs should not be

discontinued, and the patient should receive replacing pituitary

hormones (84).

Immune checkpoint inhibitor-related diabetes mellitus

has been reported after treatment with PD-1/PD-L1 inhibitors

(10, 12). Patients should be instructed regarding the associated

symptoms of this irAE, in order to avoid life-threatening

complications (93, 116). Diabetes mellitus can appear a few

weeks after the ICI treatment initiation, or belatedly, after more

than a year (97, 117), mostly in patients with no prior

prediabetes, diabetes or other autoimmune diseases. However,

islet autoantibodies have been identified in 50% of the patients

that have been tested (10), and genetic susceptibility through

HLA variants could be involved in diabetes development

(fulminant type 1 diabetes mellitus was associated with HLA
FIGURE 2

Organs suffering from immune-related adverse events after
administration of immune checkpoint inhibitors.
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DRB1*04:05- DQB1*04:01) (10, 117). The average blood glucose

level at diagnosis is higher than 550 mg/dL (116, 118), the

patients accusing polyuria, polydipsia, weight loss and

sometimes nausea, vomiting, abdominal pain, lethargy or even

coma if diabetic ketoacidosis occurs (119). The exocrine

component of the pancreas could be affected, with increased

lipase levels (120). Monitoring blood glucose is crucial for a

prompt diagnosis. High-dose corticosteroids are not able to

reverse the ICI-related diabetes mellitus (97, 121), therefore

the treatment is centered on administering insulin analogs in

order to maintain the glycated hemoglobin below 8% (68, 109),

followed by long-term insulin therapy (10, 12, 81).

Immune checkpoint inhibitor-related primary adrenal

insufficiency presents itself by elevated ACTH levels and low

glucocorticoids and mineralocorticoids, usually installed 10

weeks after initiating the treatment with ICIs (97). It seems to

be more frequent in men and after administration of

ipilimumab, nivolumab and pembrolizumab. The patient can

report fatigue, ortostatic hypertension and abdominal disconfort

(12, 122). Tests should be conducted in order to differentiate

primary adrenal insufficiency from secondary adrenal

insufficiency (as the first requires both glucocorticoid and

mineralocorticoid administration). In the case of adrenal crisis,

the treatment should include high doses of glucocorticoids (100

mg hydrocortisone administered intravenously, followed by 50

mg hydrocortisone, every 6 hours) (10, 97).

Immune checkpoint inhibitor-related primary

hypoparathyroidism involves acute hypocalcemia along with

low levels of parathormone (68). In some cases, autoantibodies

against the calcium-sensing receptor have been identified (123, 124).

In most cases, the parathyroid dysfunction is irreversible, requiring

continuous calcium and active vitamin D administration (97, 124).

Acquired generalized lipodystrophy represents the loss of

subcutaneous fat alongside central obesity and insulin resistance

after initiating treatment with ICIs; the level of leptin is low

(97, 108).

Autoimmune polyendocrine syndrome type II has been

stated as a rare endocrine irAE (125). It is defined by the

presence of two out of the following three elements:

autoimmune thyroid disease, type 1 diabetes mellitus and

Addison’s disease (126). Mutations in CTLA-4 or HLA DR3-

DQ2 and HLA DR4-DQ8 variants might increase the risk of

developing this syndrome after the administration of ICIs

(125, 127).
Thyroid-related adverse
events linked to immune
checkpoint inhibitors

Thyroid dysfunct ions , such as hypothyroidism,

thyrotoxicosis, painless thyroiditis or the “thyroid storm” are
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present in 1-6% of the patients treated with ICIs (9, 114, 128)

(other authors suggest the percentage amounts to over 10%)

(86). Painless thyroiditis is probably under-reported, since it is

not clinically suggestive, while hypothyroidism ranges between

1-15% and hyperthyroidism between 1-10%, in ICI-treated

patients (pembrolizumab alone, nivolumab alone or

combinations) (6, 53, 70, 92, 129).

There are certain risk factors linked to the development of

thyroid-relates irAEs after ICI administration: gender (females

seem to have a higher risk), age (younger patients are at risk) (97,

130), race (Caucasian and Hispanic races are associated with

hypothyroidism, while African Americans are linked to

thyrotoxicosis) (101), elevated anti-thyroid peroxidase

antibodies (TPOAb) or anti-thyroglobulin-antibodies (TgAb)

(27, 131), higher baseline TSH, a higher number of treatment

cycles, usage of PD-1 and PD-L1 inhibitors rather than CTLA-4

inhibitors, obesity (linked to earlier occurrence of thyroid irAEs

– every increase of 1 kg/m2 of the body mass index rises the risk

of symptomatic thyrotoxicosis to 10%) (107, 132), increased

fluorodeoxyglucose (18FDG) uptake in the thyroid before

initiating treatment (65, 97), and renal cell carcinoma

(probably due to the fact that before treatment with ICI,

sunitinib is usually used for treating these patients and it can

affect thyroid function as well) (133).

The thyroid irAEs usually develop 6 weeks after starting the

treatment (3, 134), but they can also appear years after treatment

initiation (19, 135, 136); therefore, frequent monitoring of

patients treated with ICIs is important even after therapy

completion (137). ICI combinations are linked to earlier

development of thyroid dysfunctions (135, 136).

Many theories have emerged regarding the pathogenesis of

thyroid-related irAEs. However, the most accepted current

theory involves an interplay between genetic factors, cellular

autoimmunity and humoral immunity, supported by T-cells

cross-reactivity, increased levels of interferon gamma-inducible

chemokines (which attract T-cells), the contribution of ADCC

and the HLA-DR allele which is involved in autoimmunity (5,

138). Anti-PD-1 antibody-induced thyroiditis seems to be

primarily a T-cell mediated process, supported by the presence

of CD8+ T-cells in the thyroid, and CD4-CD8- T-cells in the

thyroid and blood of the patients (139, 140). However, T-cell

dependent activation of B-cells has been reported, resulting in

production of autoantibodies which could serve as biomarkers

for ICI-induced immunogenicity and therapeutic response

(141). A modified Th1/Th2 balance has been reported in favor

of Th1, with increased levels of IL-2 (which might stimulate

autoreactive lymphocytes), IL-1b, GM-CSF and decrease of Il-8,

G-CSF and MCP-1 (111, 142).

Two clinical patterns of thyroid dysfunction related to the

administration of ICIs have been described: 1. hyperthyroidism,

followed by hypothyroidism; 2. de novo hypothyroidism. There

is also the triphasic pattern of presentation in some of the

patients (hyperthyroidism, followed by hypothyroidism and
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euthyroidism), while the remaining patients experience isolated

hypothyroidism or hyperthyroidism, followed by euthyroidism

(88, 143). However, the distinction between hypo-, hyper- and

euthyroidism should not be radical, seeing that they are part of

the same process (129). Another classification of thyroid irAEs

has been made regarding the duration of therapy needed for

managing the thyroid dysfunction – there are thyroid irAEs

which need continuous therapy for thyroid dysfunction (linked

to maximum levels of thyroglobulin and thyroglobulin

antibodies while administering ICIs) and those in need of

temporal treatment only (144).

The patients with thyroid irAEs developed after treatment

with ICIs can have three different clinical presentations: 1. newly

onset hypothyroidism (TSH ≥ 4.3 mIU/L, free T4 ≤ 0.8 ng/dL) or

subclinical hypothyroidism (TSH ≥ 4.3 mIU/L, free T4: 0.9-1.7

ng/dL); 2. symptomatic (overt) thyrotoxicosis (TSH ≤ 0.2 mIU/

L, free T4 ≥ 1.8 ng/dL) or subclinical hyperthyroidism (TSH ≤

0.2 mIU/L and free T4: 0.9-1.7 ng/dL); 3. acute elevation of TSH

in patients previously diagnosed with hypothyroidism, requiring

a 50% increase of the levothyroxine dose (145). Low levels of

TSH accompanied by low or normal levels of free T4 and free T3

appear in the context of euthyroid sick syndrome, which is a

differential diagnosis for thyroid irAEs (146).

Patients can be asymptomatic, or they might show

nonspecific symptoms, such as tachycardia or palpitations (11,

103). However, there are 5 grades of severity for thyroid irAEs

according to CTCAE, similar to all the other endocrine adverse

events related to ICI administration: grade 1 – mild, grade 2 –

moderate, grade 3 – severe, but not immediately life-threatening,

grade 4 – life-threatening, grade 5 – death (see Table 2 for the

general criteria) (87).

The thyroid workup involves measuring TSH, free T4 (which

seems to successfully predict recovery, because it is less sensitive

than TSH to variations of the thyroid hormone feedback), and also

free T3 can be measured in cases of thyrotoxicosis (93, 94, 147).

Studies have linked irAEs to improved survival in cancer

patients treated with ICIs (148, 149). Therefore, it was

hypothesized that thyroid dysfunction could be seen as a

predictive biomarker of treatment response (139) (patients

with acute symptomatic thyrotoxicosis seem to have a better

prognosis than patients without thyroid irAEs) (139, 145, 150).

The presence of thyroglobulin antibodies has also been

correlated with increased survival (as they are markers of a

potent activation of the immune system) (151). Variations of

thyroid volume might serve as imagistic markers of therapeutic

response as well (due to the increase in volume after

administration of a PD-1 inhibitor) (152).
Thyrotoxicosis and hyperthyroidism

“Thyrotoxicosis” refers to the excess of thyroid hormones of

any cause, while “hyperthyroidism” is a more specific term,
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referring to an excess of thyroid hormones caused only by

overactivity of the thyroid. Despite the terminology, many

studies use both words as equivalents, leading to an

underestimation of ICI-triggered Graves’ disease (which results

in hyperthyroidism) (5). Hyperthyroidism is less common than

hypothyroidism among patients under ICI treatment, with an

incidence of 1-7% (6, 53, 70, 92), which is probably

underestimated. CTLA-4 inhibitors cause hyperthyroidism in

0.2-1.7% of the patients, while PD-1/PD-L1 inhibitors affect 0.6-

3.7% and combinations of ICIs are responsible for 8-11% of the

cases (96, 97, 153).

Hyperthyroidism usually appears after 21 days of

combination therapy, or after 47 days when a PD-1 inhibitor

is administered alone (8, 129, 153). Graves’ disease induced by

ICI appears mostly at the beginning of the treatment. However,

in some cases it can occur many weeks later (90). After 3-6 weeks

of the initial phase of thyrotoxicosis, hypothyroidism is

frequently developed (96, 136).

The pathogenesis is var iable , hyperthyroidism/

thyrotoxicosis may occur either in the context of thyroiditis

(when thyroid follicles are destroyed and the hormones are

spilled into the bloodstream), or because of autoantibody

development (e.g. Graves’ disease) (3, 6). ICI-induced

thyroiditis is considered a T-cell mediated process, with CD8+

and CD4-CD8- T-cells found in the thyroid (140), as well as

clusters of necrotic cells and CD163+ histiocytes (154).

The patients usually present with palpitations, heat

intolerance, tremor, anxiety, emotional lability, weight loss in

the presence of increased appetite, atrial fibrillation,

hyperdefecation, oligo/amenorrhea in women and erectile

dysfunction in men (5, 155). A phenomenon called ‘thyroid

storm’ can sometimes occur, which involves fever, tachycardia

or atrial fibrillation, signs of congestive heart failure and

diarrhea, which poses a great threat (97, 156, 157).

When the clinician observes these symptoms, thyroid function

tests should be recommended: the patient suffering from

hyperthyroidism will have low levels of TSH and a high free T4

(96). Afterwards, thyroid autoantibodies should be measured (97)

(pembrolizumab increases anti-thyroid peroxidase antibodies and

anti-thyroglobulin antibodies in 80% of the patients with ICI-

induced thyroid dysfunction) (158). Thyroid ultrasound (which

can distinguish Graves’ disease from thyroiditis by vascularity),

scintigraphy, technetium or iodine scanning, positron emission

tomography scan (PET) might also be used for differential

diagnosis. Increased uptake of 18FDG on PET scan is suggestive

for destructive thyroiditis (65, 96, 97).

Graves’ disease which developed after treatment with ICIs,

consists of hyperthyroidism, diffuse goiter and sometimes

ophthalmopathy (159, 160). However, there are also cases of

ophthalmopathy in the absence of elevated thyroid hormones

(161–163). This clinical entity has been named thyroid eye

disease (TED)-like orbital inflammatory syndrome, and it

involves eye pain, conjunctival redness, periorbital edema,
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proptosis and ophthalmoplegia (5, 160). Considering that allelic

variants of CTLA-4 are involved in Graves’ disease development,

CTLA-4 and PD-1 gene polymorphisms might be involved in

the occurrence of TED (21, 164–166). 60-70% of the Graves’

disease cases evolve over a long period of time, with numerous

relapses and remissions, while 30-40% of the patients have only

one episode of hyperthyroidism. It is possible that patients

experience spontaneous remission (5, 167, 168).

Hypothyroidism

Hypothyroidism is the most frequent manifestation of

thyroid irAEs, and it usually occurs 6 weeks after subclinical

hyperthyroidism, in the context of destructive thyroiditis (in 30-

40% of the patients treated with anti-PD-1/PD-L1 antibodies).

Therefore, patients diagnosed with ICI-related thyroiditis should

be monitored for the development of hypothyroidism (3, 6, 134,

145). CTLA-4 inhibitors cause hypothyroidism in 2.5-5.2% of

the patients, while PD-1/PD-L1 inhibitors affect 3.9-8.5% and

combinations of ICIs are responsible for 10.2-16.4% of the cases

(96, 97, 153). Hypothyroidism usually occurs ~63 days after

initiation of ICI-combination treatment, and ~70 days after

intake of PD-1 inhibitors alone. Risk factors do not include

age or gender (8, 155). However. they comprise preexistent

autoimmune diseases (e.g. type 1 diabetes mellitus, gastric

atrophy) and certain HLA-DR alleles (1, 65, 169).

The debut is often nonspecific, especially when

hypothyroidism is classified as a grade 1 or 2 (97), the patients

presenting weight gain, fatigue, cold intolerance, constipation,

dryness of the skin, bradycardia, periorbital edema and tongue

swelling (10, 100, 153, 155). The TSH levels are high, while free

T4 is decreased (97). Rarely, hypothyroidism-associated myositis

might occur (described in a patient after administration of

nivolumab), which involves severe myalgia, arthralgia and high

levels of creatine kinase (170, 171). Fortunately, this condition is

reversible after levothyroxine replacement therapy. Myxedema

crisis was also reported in a few cases (11, 97, 172).

It is important that patients who suffer from preexistent

hypothyroidism are closely monitored with thyroid function

tests at all times after initiation of ICis in order to adjust the

levothyroxine doses (10, 65). Hypothyroidism developed as irAE

is oftentimes permanent and it requires levothyroxine

replacement therapy (10, 97).
Management of thyroid adverse
events linked to immune checkpoint
inhibitors

The American Society of Clinical Oncology (ASCO) has

established a set of guidelines for performing the thyroid
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function tests: TSH and free T4 should be monitored every 4-6

weeks from starting the ICIs. TSH is considered to be the

optimal screening test, accompanied by free T4 when its

values are modified (93).

The treatment with ICIs should not be interrupted if thyroid

irAEs occur, except when severe symptoms occur and in cases of

TED, when ICIs are stopped until the symptoms disappear (8, 93,

97). Severe irAEs also require administration of steroids in order

to limit the inflammation, or infliximab (anti-TNFa antibody),

mycofenolate mofetil, tacrolimus, cyclosporine in cases of lack of

response to steroids (6, 173). The endocrinopathies developed

after ICI therapy are generally managed by the treating

oncologists, but collaborations with endocrinologists should be

considered in complicated or more severe cases (9, 103).
Management of thyrotoxicosis
and hyperthyroidism

Prevention is key for avoiding severe irAEs. Therefore,

monitoring the patient through thyroid function tests is very

important throughout the treatment with ICIs (174): testing

should be performed before therapy initiation, and after every 2

months (9, 93). Ultrasonographic monitoring could be useful in

decision-making, considering that variations of thyroid volume

related to the thyroid dysfunction have been discovered (first,

the thyroid grows in volume after initiation of ICI treatment, and

afterwards it starts shrinking, indicating the need of continuous

thyroid hormone replacement after stopping the ICIs) (175).

Treatment options are chosen considering the CTCAE

grading. Because hyperthyroidism is most frequently of grade 1

or 2 (mild or moderate), ICI therapy does not usually need to be

interrupted and patients should only receive symptomatic

treatment with beta blockers (8, 9, 93). If the patient is

asymptomatic, she/he should only be observed and monitored

thoroughly until symptoms develop, TSH decreases (5-10 mIU/L

or lower) or TPO antibodies increase (93, 97). ICIs should be

interrupted if the patient suffers from a grade 3 thyroid irAE and,

in these cases, in general, corticotherapy should be initiated: 1-2

mg/kg/day of oral prednisolone. In grade 4 hyperthyroidism,

corticotherapy is needed and it consists of 1-2 mg/kg/day

intravenous methylprednisolone first, followed by oral

prednisolone (1-2 mg/kg/day), decreasing the dose after one

month (9, 93). However, some studies have indicated that doses

of prednisone (or equivalent) higher than 7.5 mg/day have not

shown benefits compared to no administration of glucocorticoids

whatsoever, in terms of the duration of thyrotoxicosis, time until

onset of hypothyroidism and dose of levothyroxine needed for

hormonal replacement (5, 176). Depending on whether the

patient suffers from thyrotoxicosis in the context of destructive

thyroiditis or hyperthyroidism in the context of Graves’ disease,

anti-thyroid therapy with methimazole or propylthiouracil might

be considered (it is only effective for hyperthyroidism, and not for
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the thyrotoxicosis caused by thyroiditis) (93, 97). Therefore,

patients developing Graves’ disease after the administration of

ICIs should receive anti-thyroid drugs (which are usually able to

maintain the euthyroidism), and only if the hyperthyroidism is

not manageable through drug administration, radioiodine or

thyroidectomy should be considered (158, 177). There is also a

chance of spontaneous remission of hyperthyroidism caused by

Graves’ disease, even if no treatment is administered (5, 168).

While speaking about TED developed in the context of ICI

treatment, there might be mild cases which are usually treated

topically (with artificial tears, for instance), but also dramatic

cases which require high doses of steroids that are usually able to

stop the inflammation and lead to symptoms resolution (84, 160).
Management of hypothyroidism

For early detection of hypothyroidism as an irAE developed

after ICI treatment, ASCO recommends measuring TSH and

free T4 every 4–6 weeks after initiation of treatment, while also

monitoring the patient after stopping the ICIs (93), while the

European Society for Medical Oncology (ESMO) additionally

proposes screening before starting therapy (measuring TSH, free

T4 and free T3) (94).

Serum TSH levels determine what doses of levothyroxine are

needed for thyroid hormonal replacement therapy. When TSH is

mildly elevated (5-10 mIU/L), hormonal replacement therapy can

be initiated, with low doses of levothyroxine (25-50 µg/day). If the

patient is an elder with cardiovascular comorbidities, lower doses

should be considered (12.5-25 µg/day), while a young, healthy

patient could receive doses of 1.6 µg/kg (full estimated replacement

dose) from the start (84, 97, 178). However, a recent research study

has shown that in a murine model of lung carcinoma,

levothyroxine increased tumor growth, while the administration

of liothyronine, which is a form of T3, has prolonged survival by

suppressing tumor growth. Therefore, more studies regarding the

use of liothyronine instead of levothyroxine for hormonal

replacement in the context of neoplasia should be conducted (179).
Discussion and conclusion

While cancer is on the rise, novel treatments are required for

a better management of the disease. ICIs are a new class of drugs,

emerged in the last decade, which show promising results and

increased survival in cancer patients. Since ICIs are classified as a

subtype of immunotherapy, their main mechanism is removing

the brakes on the immune system, thus facilitating the

destruction of the malignant cells. This comes bundled with a

new category of adverse reactions, known as irAEs, which can

affect the whole body through autoimmunity. Endocrine irAEs

are particularly found in patients treated with ICIs, and among

them the thyroid irAEs (including hyperthyroidism,
Frontiers in Endocrinology 10
thyrotoxicosis, hypothyroidism, ‘thyroid storm’) are the

most frequent.

At this time, the exact mechanisms of thyroid irAEs

induction by each of the ICIs is not fully understood. Many

theories have emerged, and the most accepted current theory

involves an interplay between genetic factors, cellular

autoimmunity and humoral immunity, supported by T-cells

cross-reactivity, increased levels of interferon gamma-inducible

chemokines (which attract T-cells), the contribution of ADCC

and the HLA-DR allele which is involved in autoimmunity (5,

138). The PD-1 inhibitors such as pembrolizumab, nivolumab

and cemiplimab, are IgG4 antibodies and do not activate

classical complement pathway, thus having less potency to

initiate ADCC. Anti-PD-1 antibody-induced thyroiditis seems

to be primarily a T-cell mediated process, supported by the

presence of CD8+ T-cells in the thyroid, and CD4-CD8- T-cells

in the thyroid and blood of the patients (139, 140). However, T-

cell dependent activation of B-cells has been reported, resulting

in production of autoantibodies which could serve as biomarkers

for ICI-induced immunogenicity and therapeutic response

(141). A modified Th1/Th2 balance has been reported in favor

of Th1, with increased levels of IL-2 (which might stimulate

autoreactive lymphocytes), IL-1b, GM-CSF and decrease of Il-8,

G-CSF and MCP-1 (111, 142). In contrast, PD-L1, such as

atezolizumab, durvalumab and avelumab and anti-CTLA-4

inhibitors, such as ipilimumab, activate the classical

complement pathway and initiate the ADCC.

While all of the ICIs have somewhat overlapping thyroid

irAEs, PD-L1 inhibitors, such as atezolizumab and avelumab,

have a predilection in inducing hypothyroidism, while the PD-1

and CTLA-4 inhibitors can cause both hypothyroidism and

hyperthyroidism (Table 1). CTLA-4 inhibitors cause

hyperthyroidism in 0.2-1.7% of the patients, while PD-1/PD-

L1 inhibitors affect 0.6-3.7% and combinations of ICIs are

responsible for 8-11% of the cases (96, 97, 153). Anti-CTLA-4

antibodies are known to have hypophysitis as the most frequent

irAE (9) (around 5% of the patients) (111). Immune checkpoint

inhibitor-related diabetes mellitus has been reported after

treatment with PD-1/PD-L1 inhibitors (10,12, Table 1).

A major inconvenience is that many thyroid irAEs

developed in the context of ICI therapy are irreversible and in

need of long-term hormonal replacement. However, there is a

positive side: thyroid irAEs have been associated with better

cancer outcomes, with increased survival and better prognosis

for the patient developing these adverse reactions. This is

probably due to efficient activation of the immune system. A

better understanding of the irAEs pathogenesis through further

studies is required.

Monitoring the thyroid irAEs is firstly important for

preventing the life-threatening situations that might occur,

such as thyroid storm, and secondly as a means of overseeing

treatment response and estimating the prognosis of the patient.

A close collaboration between the treating oncologist and an
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endocrinologist is crucial, and also raising awareness of the

existence of these adverse reactions should be a priority

among both clinicians and patients, as the former could

recognize early symptoms of hyper- or hypothyroidism and

might seek help from the medical community sooner, receiving

an optimal treatment and increasing their quality of life.
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