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Cyclic adenosine monophosphate/Protein kinase A (cAMP/PKA) signaling

pathway is the master regulator of endocrine tissue function. The level,

compartmentalization and amplitude of cAMP response are finely regulated

by phosphodiesterases (PDEs). PDE8 is responsible of cAMP hydrolysis and its

expression has been characterized in all steroidogenic cell types in rodents

including adrenal and Leydig cells in rodents however scarce data are currently

available in humans. Here we demonstrate that human Leydig cells express

both PDE8A and PDE8B isoforms. Interestingly, we found that the expression of

PDE8B but not of PDE8A is increased in transformed Leydig cells (Leydig cell

tumors-LCTs) compared to non-tumoral cells. Immunofluorescence analyses

further reveals that PDE8A is also highly expressed in specific spermatogenic

stages. While the protein is not detected in spermatogonia it accumulates

nearby the forming acrosome, in the trans-Golgi apparatus of spermatocytes

and spermatids and it follows the fate of this organelle in the later stages

translocating to the caudal part of the cell. Taken together our findings suggest

that 1) a specific pool(s) of cAMP is/are regulated by PDE8A during

spermiogenesis pointing out a possible new role of this PDE8 isoform in key

events governing the differentiation and maturation of human sperm and 2)

PDE8B can be involved in Leydig cell transformation.
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Introduction

Mammalian spermatogenesis is a complex differentiation

process that involves the interplay of different cell types and

comprise a series of cellular and biochemical metamorphoses.

A long series of findings suggest that among the delicate

regulatory mechanisms implicated in testicular function, the

second messengers cyclic adenosine monophosphate (cAMP)

and cyclic guanosine monophosphate (cGMP) dependent signal

transduction pathways play a role of key importance (1–4). In

the somatic cells, Leydig cells (LCs) and Sertoli cells, they

promote steroidogenesis when Luteinizing hormone (LH),

released by pituitary gland, binds its receptor (LHR). The

subsequent activation of adenylate cyclase (ACs) leads to an

increase of cAMP level, that in turn allows protein kinases

(PKA) to phosphorylate its target substrates (5). In the

seminiferous tubules, cAMP and cGMP cooperate in the

control of germ cell differentiation, both directly and indirectly

through Sertoli cells (6). Sharper evidences have been reported in

their involvement in sperm function during capacitation, such as

activation of motility, changes in the motility pattern known as

hyperactivation and for development of the ability to undergo

the acrosome reaction (7).

The fine local and temporal regulation of cAMP/cGMP

depends on the net balance between their generation by

cyclase enzymes, Adenylate cyclases-ACs and Guanylate

cyclases-GCs, and hydrolysis by the phosphodiesterases

(PDEs) (5). PDEs are a class of enzymes belonging to 11

different gene families (PDE1-11) that undergo several

alternative splicing giving rise to multiple isoforms in human

and rodents (8–10) displaying, in some cases, specific cellular

and subcellular distribution (11–14). The expression of these

enzyme in human testis has been reported for a restricted group

(PDE1, PDE4, PDE5 and PDE11) and their role was attributed

in controlling sperm function for (15–17).

Although the role of some PDEs in rodent testis has been

already elucidated, data on humans are scarce. Starting from the

above findings, in this study, we investigated the expression of

PDEs in human testis using different approaches.
Materials and methods

Ethical approval

The use of testicular tissues for this study was approved by a

regional medical and research ethics committee (permit no. H-2-

2014-103) and by the Policlinico Umberto I Ethical Committee.

Normal testicular biopsies were obtained from heart-beating

organ donors at the hospital Policlinico Umberto I. Biopsies

were fixed in 4% paraformaldehyde (PFA) (Electron Microscopy

Sciences, Hatfield, PA, USA)) and paraffin-embedded. All the

samples showed well-preserved testicular tissue and a normal
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spermatogenesis. Residual tissues from orchiectomy specimens

of patients diagnosed with Leydig cell tumours (LCT) were

collected after their written informed consent. After evaluation

by pathologists, the remaining tissue fragments were snap-

frozen for molecular analyses or fixed and paraffin-embedded

for histological examinations.
QuantiGene 2.0 plex assay

Expression of Phosphodiesterases on human testis (n=4) or

Leydig cells tumours (n=4) was analyzed by a custom

QuantiGene Plex Assay (QGPA,Affymetrix, Santa Clara, CA,

USA) according to manufacturer’s instructions. 5 mg human

testis biopsies from Leydig cell tumours and healthy donors were

processed. The assay was performed in a 96-well plate including

three replicates for each sample, signal was detected by a Bio-

Plex 200 SystemTM (BioRad, Hercules, CA, USA.) and data

analysis was performed using the Bio-Plex ManagerTM 6.0

software (BioRad, Hercules, CA, USA). Results were

normalized for HPRT1 expression.
Real time PCR

Total RNA was isolated from human testis biopsies (NT,

n=9; LCTs n=9) using Rneasy isolation kit (Qiagen, Hilden,

Germany) according to manufacturer’s instruction. RNA was

treated with DNAse (Zymo Research, CA, USA) and reverse

transcribed with random hexamer primers using GoScript I

Reverse Transcriptase (Promega, Mannheim, Germany). After

cDNA synthesis step, qRT-PCR reaction was carried out in

triplicate for each gene for each sample by using GoTaq qPCR

Master Mix (Promega, Mannheim, Germany) using HPRT1 for

normalization. The PCR reaction was carried out using the CFX

Connect Real Time PCR System (BioRad, Hercules, CA, USA).

Primers pairs used for qRT-PCR are: hPDE8ART-Fw 5’-TTGTT

GGTGTAGTACGCAGG-3’, hPDE8ART-Rw 5’-CAGCTGGA

GCAGTTCATTGT-3’; hPDE8BRT-Fw 5’-CAACAGCACGTG

AAGATCAC-3’,hPDE8BRT-Rw 5’-CAATGGACTCTTTCC

TCCTG-3’; hHPRT1RT-Fw 5’-GTCTTGCTCGAGATGT

GATG-3’, hHPRT1 RT Rw 5’-GTAATCCAGCAGGTCA

GCAA. For quantification analysis, the comparative threshold

cycle (Ct) method was used. The Ct values of each gene were

normalized to the Ct value of HPRT1. The gene expression levels

were evaluated by the fold change using the equation 2−ddCt.
Immunofluorescence analysis

Immunofluorescence on human testis sections (n=4) was

performed after deparaffinization and rehydration by decreasing

alcohol grades. Antigen retrieval was performed microwaving
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sections immersed in 10mM Sodium Citrate Buffer (pH 6.0).

Permeabilization was performed with 0.1% Triton v/v for 10

minutes and blocking was achieved with 5% Donkey Serum-PBS

v/v solution for 30 minutes (Sigma Aldrich, MI, USA). Sections

were incubated with primary antibodies overnight at 4°C: anti-

PDE8A (Atlas Antibodies Cat#HPA007722, RRID :

AB_1855130), PDE8B (Atlas Antibodies Cat#HPA036912,

RRID : AB_10670377), anti-ACROSIN (Biosonda, Santiago,

Chile; Cat No. AMC-ACRO-C5F10-AS), Anti-Golgin-97 (SC-

59820, Santa Cruz Biotechnology), anti-GM130 (610822 BD

Biosciences), Lectin-PNA Alexa Fluor 488 (L21409

ThermoFisher Scientific). After overnight incubation at 4°C,

sections were washed in PBS and incubated with Alexa Fluor

488-Donkey anti-Rabbit IgG, Alexa Fluor 568-Donkey anti-

Mouse IgG or Alexa Fluor 568-Donkey anti-Goat IgG

antibodies (Thermo Fisher Scientific, Waltham, MA, USA) for

1h at room temperature. Following extensive washes in PBS,

sections were counterstained with DAPI and mounted with

VECTASHIELD® Antifade Mounting Medium (Vector

Laboratories, Newark, CA, USA). Confocal images were

acquired as z-stacks on Zeiss Airyscan 2 with a 40x immersion

oil objective (Carl Zeiss, Oberkochen, Germany). The

acquisition was performed for 10 z-stack with a z-step of 0.5

mm and a frame size of 1024x1024 pixel. Pachytene

spermatocytes and spermatids were identified by nuclear

morphology as previously described (18, 19).
Immunohistochemistry analysis

Human testis biopsies from LCTs patients (n=9) and healthy

donors (n=4) after fixation were embedded in paraffin (Bio

Optica, Milano, Italy). Sections, obtained with the HM355S

Microtome (Thermo Fisher Scientific, Waltham, MA, USA),

were de-waxed, re-hydrated and finally processed for IHC using

the EnVision®+ Dual Link System-HRP (DAB+) (DAKO/

Agilent, Santa Clara, CA, USA) according to manufacturer’s

instructions. After each step sections were washed three times

with (PBS) 0,05% v/v Tween20. Antigen retrieval was performed

by microwaving sections in 10mM Sodium Citrate pH 6.0 0,05%

Tween20 v/v for 10 minutes. Sections were incubated overnight

at 4°C with primary antibodies. Antibodies dilutions were

performed in Bond Primary Antibody Diluent (Leica, Wetzlar,

Germany). Before mounting, slides were counterstained with

Hematoxylin (Sigma Aldrich, Saint Louis, MO, USA). Images

were acquired by Zeiss Axiovert 200 inverted microscope using

ZEN imaging software (Carl Zeiss., Oberkochen, Germany).
Statistical analyses

Data are expressed as median and 5-95 percentile, or mean ±

SEM as appropriate. Distribution of data was assessed by
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Shapiro-Wilk test. Differences in outcomes of interest were

analyzed by Mann-Whitney test according to the distribution

of data. Differences were considered significant with * p<0.05.
Results

Phosphodiesterases expression in
human testis

PDEs transcripts have been previously detected in mouse

and rat testis but their expression in human testis has not been

investigated yet. To overcome this gap in literature we firstly

analyze PDEs expression by a QuantiGene Plex Assay (QGPA)

on healthy donor biopsies (Figure 1A). This initial

characterization revealed that all PDEs transcripts analyzed

were detected by QGPA in normal testis samples, even if their

expression level varies profoundly according to the isoforms

(Figure 1A). As previously reported for other species PDE8A was

detected at high level also in human testicular lysates and the

other PDE8 isoform, PDE8B, was slightly detectable suggesting

that the distribution of this isoform was restricted to specific cell

types. Thus, further analyses of expression pattern were

conducted for PDE8A and PDE8B isoforms.
PDE8 isoforms are differentially
expressed in human testis

To deeply investigate PDE8 expression pattern,

immunohistochemistry using specific antibodies for PDE8A and

PDE8B was performed on human testis sections. This analysis

revealed that PDE8A signal was localized within the seminiferous

tubules and in LCs, while PDE8B was exclusively detected in LCs

in sections derived from healthy subject (Figure 1B). Analogous

results were obtained by immunofluorescence experiments. As

shown in Figure 1C, PDE8A immunoreactivity was not restricted

to interstitial cells, as previously reported for mouse testis, but a

specific staining was also detected in germ cells, specifically in

pachytene spermatocytes and in spermatids. Higher magnification

confirmed the expression pattern of PDE8A- enriched in

perinuclear granules of germ cells and diffused in the cytoplasm

of LCs- and of PDE8B whose staining was detected only in the

cytosolic region of LCs (Figure 1C, inset).

Based on pro-acrosin staining (18) all stages of seminiferous

tubules were then analyzed for PDE8A localization. Confocal

images revealed a positive staining in pachytene spermatocytes

from stage VII to stage XII. At stage VII, when pro-acrosin is not

yet detectable in pachytene spermatocytes, PDE8A forms a two

beads perinuclear structure. From stage VIII a spherical PDE8A

case embeds the punctate pattern of pro-acrosin that last until

stage XII (Figure 2A). Later, PDE8A expression in perinuclear

granules gradually increases in round spermatids from stage I to
frontiersin.org
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V and decreases thereafter (Figure 2B). It is worth to note that a

highly dynamic structure was found for PDE8A staining. Indeed,

PDE8A antibody labeles a ribbon shape structure in early round

spermatids (stage I) located perinuclearly. This structure

remains in proximity with the forming acrosome vesicle later

on, but it starts to move apart from the perinuclear region from

stage II up to stage VIII concentrating above the acrosome. Pro-

acrosin staining facilitates the recognition of spermatids until
Frontiers in Endocrinology 04
stage VIII but not in later steps of spermatids development (12).

To better understand the fate of PDE8A in later stages of

spermatid development, we performed co-staining analysis

with Peanut agglutinin (PNA) lectin dye, which recognizes

galactose, that binds to intra-acrosomal glycoprotein, allowing

the visualization of the acrosome in elongating spermatids (20).

PNA staining revealed that in steps IX-X spermatids, PDE8A

immunoreactivity translocate in the caudal part of the cell,
A

B

C

FIGURE 1

PDEs expression analysis in human testis (A) PDEs mRNA expression analysis by QuantiGene Bioplex Assay on human testis biopsies from
healthy subjects. Results, normalized for HPRT1, are expressed as arbitrary units (A.U, (median and 5-95 percentile) and reported in the
histogram bar chart (n=4). (B) PDE8 isoforms expression analysis by immunohistochemistry using commercially available anti-PDE8A and anti-
PDE8B antibodies on human testis biopsies. Scale bars represent 20 mm. (C) Localization of PDE8 isoforms by immunofluorescence analysis on
sections obtained from human testis biopsies of healthy subjects. PDE8 isoforms staining is shown in green and nuclei are shown in blue (DAPI).
Scale bars represent 20 mm except for the insets where they represent 10 mm.
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locating on the opposite side of the formed acrosome

(Figure 2C). This redistribution of PDE8A immunoreactivity

parallels the translocation of the Golgi apparatus in the caudal

region of elongating spermatids (21). The relative morphological

changes of acrosome and PDE8A immunoreactivity are

schematically represented in Figure 2D.
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PDE8A colocalize with the Trans-golgi
apparatus marker Golgin-97

In order to determine the nature of the structure labeled with

PDE8A antibody we decide to perform immunofluorescence co-

staining with known marker of intracellular organelles.
A

B

D

C

FIGURE 2

Localization of PDE8A in different stages of human spermatogenesis (A) PDE8A localization in human spermatocytes, to better show the
differences between them the stages of the whole spermatogenic cycle are arbitrarily sub-divided into three parts. Merged fluorescent channels
DAPI-nuclear staining (blue), pro-acrosin staining (red) and PDE8A fluorescence (green) are shown. (B) PDE8A localization in human spermatids
during the whole spermatogenic cycle are classified according to pro-acrosin staining. Merged fluorescent channels DAPI-nuclear staining
(blue), pro-acrosin staining (red) and PDE8A fluorescence (green) are shown. (C) PDE8A localization in human spermatids during the whole
spermatogenic cycle classified according to PNA staining. Merged fluorescent channels DAPI nuclear staining (blue), PNA staining (red) and
PDE8A fluorescence (green) are shown. (D) PDE8A localization (green/light green) in spermatids in comparison with a schematic representation
of the different phases of acrosome biogenesis (red).
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Giving the similarity of PDE8A structure with Golgi

apparatus, two Golgi probes were used: Golgi Matrix Protein

of 130 kDa (GM130), labeling cis-Golgi, and Golgin-97 labeling

the trans-Golgi apparatus (22). As expected GM130 stains a

compact peri-nuclear structure in round spermatids but do not

co-localize with PDE8A in none of the analyzed stages

(Figure 3A, inlet b). On the contrary, PDE8A (and also

PDE8B, Figure S1, inlet a) co-localizes with the Golgi

apparatus in LCs, as appreciable from co-staining analysis with

GM130 (Figure 3A, inlet a).

In spermatocytes, from stage I to VI, Golgin-97 labels a

crescent-like structure that becomes a dense rounded structure

in the following stages. From stage VIII to XII PDE8A and

Golgin-97 labels the same structure indicating that both proteins

belong to trans-Golgi apparatus (Figure 3B). In round

spermatids the co-localization of these two proteins is null at

stage I, begin to increase from stage II, reaching a perfect

overlapping at stage V (Figure 3C). During the subsequent

steps of spermatids development, the spermatids become
Frontiers in Endocrinology 06
faintly labeled with both by PDE8A and Golgin-97 antibodies,

due to the fragmentation of the structure in smaller vesicles that

start to migrate in the caudal part of the elongating spermatids.
Clinical characteristics of LCTs

Leydig cell tumours (LCTs) represent the most common

non-germ cell testicular tumors accounting for 3–22% of all

testicular neoplasms (23–26). In recent years, a progressive rise

in the diagnosis of LCTs has been observed. One possible

explanation is the growing use of testis ultrasonography in the

screening for various andrological disorders (27, 28). However,

exposure to endocrine disruptors exposure has been claimed for

the impairment of the Leydig cell compartments (29, 30).

Given the finding of PDE8A and PDEB expression in Leydig

cells and their role in steroidogenesis we wonder if their

expression was modified in LCTs where hormone production

is impaired.
A

B

C

FIGURE 3

Co-localization of PDE8A and Golgi apparatus marker in different stages of human spermatogenesis (A) Co-localization analysis of PDE8A and
GM130. Merged fluorescent channel DAPI-nuclear staining (blue), PDE8A (green) and GM130 staining (red) are shown. Scale bars represent 20
mm, except for the inlet (A, B). (B) PDE8A and Golgin97 co-localization analysis in human spermatocytes, to better show the differences
between them the stages of the whole spermatogenic cycle are arbitrarily sub-divided into three parts. Merged fluorescent channels DAPI-
nuclear staining (blue), Golgin-97 (red) and PDE8A (green) are shown. (C) PDE8A and Golgin-97 co-localization analysis in human spermatids; to
better show the differences between them the whole spermatogenic cycle are arbitrary sub-divided in five. Merged fluorescent channels DAPI-
nuclear staining (blue), Golgin-97 staining (red) and PDE8A fluorescence (green) are shown.
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Clinical characteristics of each patient are listed in Table 1.

Hormonal data revealed a trend toward increased FSH levels,

suggesting an initial tubular defect. In all LCT patients’ serum

tumour markers (b-human chorionic gonadotropin - b-HCG,

placental alkaline phosphatase - PLAP, alpha-fetoprotein - AFP,

carcinoembryonic antigen - CA, ferritin, and lactate

dehydrogenase - LDH) were negative. LCTs were histologically

confirmed by pathology analysis (not shown), according to Kim’s

criteria (31). Immunochemistry for inhibin and calretinin were

used as confirmatory markers for the diagnosis of LCTs. Mean size

of the LCTs analyzed was 1.0±0.4 (cm±SD).
PDE8A and PDE8B expression in LCTs

QGPA assay on LCT biopsies using, as reference tissue, human

testis biopsies from healthy subjects revealed that PDE8A expression

was comparable to non-tumoral (NT) tissue. On the other hand, a

marked increase of PDE8B was observed in LCTs compared to

healthy testis (NT) (Figure 4A). To confirm this finding, RNA

extracts were assayed for PDE8 isoforms by qPCR. According to

the results obtained with QGPA, we found that PDE8B mRNA

expression level was increased by 10-fold in LCTs compared to

normal testis, while PDE8A levels were almost comparable between

the two sample groups (NT vs LCTS) (Figure 4B).

Histological evaluation and immunohistochemistry analysis

was performed on available LCTs sections (Figure 4C and Figure

S2). When PDE8A and PDE8B staining was applied on LCTs

samples, a more intense signal was appreciable for PDE8B isoform

compared to non-tumoral tissue (Figure 4C) indicating that the

up-regulation of the transcript is accompanied by a protein

increase in dysfunctional tissue.
Discussion

Several, if not all, PDEs have been shown to be express in

rodent testis and their expression patterns and enzymatic

characteristics have been shown to differ each other (32–38).
Frontiers in Endocrinology 07
Substantial evidence for the regulatory function of PDEs in

Leydig cells has been reported as a stimulatory effect of a pan-

PDE inhibitor on testosterone release by primary LCs (39),

indicating that one or more PDEs might be active in Leydig

cells to modulate the intensity, duration and the desensitization

of the LH-stimulated hormonal response (39). Indeed later on, it

was demonstrated that Leydig cells express transcripts for several

cAMP-specific PDEs such as Pde4a, Pde4b, Pde4d, Pde7a,

Pde7b, Pde8a, and Pde8b, most of them contributing to Leydig

cell response through LHR-cAMP signaling (40, 41). Among the

cyclic guanosine monophosphate (cGMP) specific PDEs,

PDE5A expression was found in Leydig and myoid cells of

prepuberal and adult rat testis (38, 42). Both mRNA and protein

levels of PDE5 significantly increased in isolated Leydig cells

after testosterone treatment and were normalized by androgen

receptor blockade, suggesting that testosterone may

downregulate steroid synthesis by reducing cGMP production.

The increased levels of PDE9 in Leydig cells isolated from

testosterone-treated rats also confirm an active role of other

cGMP-specific PDEs in degrading nitric oxide (NO)-stimulated

cGMP (42). Regarding the role in germ cells, using specific

inhibitors, have been suggested that PDE4 is involved in sperm

motility, PDE1 would be involved in capacitation-associated

modifications that occur in the acrosomal/head region of

spermatozoa, PDE11 in sperm activation and PDE5 in

motility, capacitation but not in acrosome reaction. Although

PDE3 is detected in the postacrosomal region of the human

sperm head, no specific role for this PDE in sperm function has

been proposed so far (16, 17).

Scarce information regarding the presence, specific function

and subcellular location of the PDE subtypes in human testis are

available. In the present study we determined hPDEs expression

in testis lysates using the QuantiGene Plex 2.0 assay (43, 44).

This technique combining branched DNA (bDNA) signal

amplification and multi-analyte profiling beads technologies

enable the detection and quantitation of multiple mRNA

targets simultaneously and the results obtained are more

reliable since it reduces signal variability due to sample

preparation, sample input inconsistency and/or overall, well/
TABLE 1 Clinical features of LCTs cohort.

ID Patient Race Age (years) FSH (mUI/ml)r.r 1.38-9.58 LH (mUI/ml)r.r 1.8-8.16 Total Testosterone (nmol/l)r.r 10.4-38.2

#1 Caucasian 24 18.6 3.3 16.7

#2 Caucasian 64 7.4 5.8 9.9

#3 Caucasian 49 4.4 5.1 22.1

#4 Caucasian 18 2.2 2.9 15.1

#5 Caucasian 40 16.9 3.5 15.3

#6 Caucasian 59 16.1 5.7 10.1

#7 Caucasian 61 15.6 4.1 19.3

#8 Caucasian 21 1.5 2.3 18.2

#9 Caucasian 29 4.4 3.9 17.9
FSH, follicle stimulating hormone; LH, luteinizing hormone; r.r, reference range.
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plate/experimental effects. The analyzed data confirmed that all

PDEs transcripts tested were expressed, at different level, in

human testis endorsing their fundamental role in testicular

functions. Since, the highest expression level was observed for
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PDE8A we sought to better characterize PDE8 family expression

and localization.

PDE8A and PDE8B, are transcribed from two different genes,

which encode for two enzymes responsible for the highest affinity
A

B

C

FIGURE 4

PDE8 expression analysis in LCTs (A) PDE8A and PDE8B mRNA expression analysis by QuantiGene Bioplex Assay on human testis biopsies from
healthy subjects (NT) and LCT patients. Results, normalized for HPRT1, are expressed as arbitrary units (A.U, (median and 5-95 percentile) and
reported in the histogram bar chart (n=4). (B) PDE8 isoforms mRNA expression analysis by qPCR, normalized for HPRT1, on human testis
biopsies from healthy subjects (NT) and LCT patients. Results are reported as fold increase vs NT (mean ± SEM, n=9) in the histogram bar chart.
*p<0.05. (C) PDE8 isoforms expression analysis by immunohistochemistry using commercially available anti-PDE8A and PDE8B antibodies on
normal testis biopses (NT) and LCTs. Negative control (NC) is represented in the right panels. Scale bar are depicted beneath the panels.
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with the substrate among the cAMP-specific PDEs (45) and they

play an important role in most of steroidogenic tissue (41, 46, 47).

Northern blot analysis with a PDE8A probe on mRNA isolated

from different murine tissues showed it is highly expressed in testis

followed by liver, kidney, skeletal muscle, heart, eye, ovary, lung

and brain, in descending order (48). In human, the same analysis

showed the higher abundance in testis, ovary, colon and small

intestine (49) indicating a similar but not totally overlapping

expression pattern between human and mouse tissues. These

differences can be attributable to the 80% sequence homology of

PDE8A between the two species. For example, hPDE8A contains a

REC domain that is not present in mPDE8A, nor in other PDEs,

suggesting a unique regulation mechanism; on the other hand,

mouse PDE8A protein, unlike the human enzyme, contains a

nuclear localization consensus sequence (50). Soderling and co-

workers described for the first time the presence of PDE8

transcripts in mouse testis revealing a stage-specific expression

of this enzymes by in situ hybridizations in spermatocytes (48);

only several years later PDE8A or PDE8B proteins was

demonstrated to be expressed in murine Leydig cells (51). The

authors taking advantage of the PDE8-selective inhibitor PF-

04957325 and PDE8 knockout mice, revealed that the

inhibition/deletion of PDE8 is accompanied by an increase in

steroids production in in these cells. They also found that PDE8A

is largely associated with mitochondria, whereas PDE8B is broadly

distributed in the cytosol and for this reason they are able to

control different cAMP pools cooperating to regulate steroids

production (51). They also suggested that the use of PDE8

specific inhibitor could represent a functional strategy to restore

normal steroidogenesis in human dysfunctional LCs.

In the present study, our immunohistochemistry results on

human testis section clearly show that PDE8A and PDE8B are

localized in the cytosol in granular structure in Leydig

cells recapitulating what was already observed in mouse testis

proposing an analogous role of these enzymes in steroidogenesis

in the same fashion as in murine testis. Expression, localization and

functional study on primary human cryopreserved Leydig cells

would be helpful to confirm this hypothesis. PDEs overexpression

has been already described in several cancer types (52–61); and their

pharmacological inhibition has been shown to affect progression,

migration, angiogenesis and differentiation in a large spectrum of

tumor cells suggesting a potential application of PDE inhibitors as

anticancer agents (62). Despite the fundamental role of cAMP and

cGMP in regulating steroidogenesis and cell transformation, to the

best of our knowledge, PDE8 role in LCs dysfunction was not

evaluated so far. By comparing PDE8 isoform expression in human

testis and LCTs, we have demonstrated by different approaches that

PDE8B, but not PDE8A, is selectively increased in dysfunctional

LCs. Since both isoforms are equally expressed in normal LCs, we

are confident that the up-regulation of PDE8B is not due to an

increased abundance of Leydig cells in LCTs compared to healthy

tissue, but it is specifically due to a miss regulation of this enzyme in
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tumoral tissue. While PDE8B is increased in these sample we

cannot ascertain if this result parallel with an increase of its

activity. Owing to the difficulty in collecting LCTs tissue, the

sample size was limited and the pathological role of PDE8B and

its involvement in Leydig cells transformation need to be extended

in future studies.

One of the most peculiar events occurring during

spermatogenesis is spermiogenesis, the functional and

structural changes that from round spermatids generate,

elongated spermatids leading to spermatozoa production. A

key event of this transformation is the acrosome biogenesis that

starts in pachytene spermatocytes with the fusion of

proacrosomal granules (21). During the “Golgi phase” the

acrosomal vesicle tightly attaches to one pole of the nuclear

envelope and grows thanks to the continuous arrival and fusion

of new Golgi-derived vesicles; during the later stage “the cap

phase” the granule initially enlarges becoming a flat cap that

covers two-thirds of the nuclear envelope. During the

maturation phase the acrosome spreads over the entire

nuclear membrane while Golgi apparatus are eliminated as

cytoplasmic droplets prior to spermiation in a region that is

opposed to the formed acrosome. In this complex scenario

become clear that Golgi apparatus and its associate protein

hold a fundamental role of good-quality gametes production

able to effectively fertilize the egg. Our immunofluorescence

analyses reveal that PDE8A is expressed in round spermatids in

the perinuclear region, close to acrosome but not coexisting

with it, and associates with trans-Golgian region in specific

stages (as revealed by Golgin-97 co-staining). In this context, it

may support and sustain the trafficking of the vesicles

originating from the Golgi apparatus for the acrosome

biogenesis. Indeed, cAMP/PKA signaling pathway has been

recognized as an outstanding member of signaling molecules in

regulating Golgi stability and biogenesis. Its role in modulating

the budding of transport vesicle has been elegantly

demonstrated in several cell types (63). Additionally, using

PF-04957325 on LCs, several modification of phosphorylation

status of regulators of Golgi assembly/reassembly were

identified (64), reinforcing the hypothesis that PDE8A can

modulate these processes. Human PDE8 enzyme has high

hydrophilicity and surface probability existence and its

possible membrane localization is further supported by

several potential sites for myristylation and palmitoylation

(50) that can favor the interaction with Golgi membranes.

A vast array of specific proteins is involved in acrosome

biogenesis and any defect may result in malformation of the

acrosome and eventually lead to infertility. For example, has been

demonstrated that deficient mice for Gopc (Golgi-associated

PDZ- and coiled-coil motif-containing protein) that is a Golgi-

associated protein and for Agfg1, that is required for docking and/

or fusion of pro-acrosomic vesicles during acrosome biogenesis,

are infertile due to globozoospermia (65). It would be interesting
frontiersin.org

https://doi.org/10.3389/fendo.2022.1010924
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Campolo et al. 10.3389/fendo.2022.1010924
to identify mutation on PDE8A gene related to patients affected by

globozoospermia or other infertility defects.

This is the first study analyzing the expression of PDEs in

normal and tumoral human testis. Using different experimental

approaches, our findings suggest that 1) a specific pool(s) of

cAMP is/are regulated by PDE8A during spermiogenesis pointing

out a possible new role of this PDE8 isoform in key events

governing the differentiation and maturation of human sperm

and 2) PDE8B can be involved in Leydig cell transformation.
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