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Regulation of Pdx1 by
oxidative stress and Nrf2
in pancreatic beta-cells

Sharon Baumel-Alterzon1,2* and Donald K. Scott1,2

1Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York,
NY, United States, 2Mindich Child Health and Development Institute, Icahn School of Medicine at
Mount Sinai, New York, NY, United States
The beta-cell identity gene, pancreatic duodenal homeobox 1 (Pdx1), plays

critical roles in many aspects of the life of beta-cells including differentiation,

maturation, function, survival and proliferation. High levels of reactive oxygen

species (ROS) are extremely toxic to cells and especially to beta-cells due to

their relatively low expression of antioxidant enzymes. One of the major

mechanisms for beta-cell dysfunction in type-2 diabetes results from

oxidative stress-dependent inhibition of PDX1 levels and function. ROS

inhibits Pdx1 by reducing Pdx1 mRNA and protein levels, inhibiting PDX1

nuclear localization, and suppressing PDX1 coactivator complexes. The

nuclear factor erythroid 2-related factor (Nrf2) antioxidant pathway controls

the redox balance and allows the maintenance of high Pdx1 levels. Therefore,

pharmacological activation of the Nrf2 pathway may alleviate diabetes by

preserving Pdx1 levels.
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Introduction

Since its first introduction into the scientific community in 1945, reactive oxygen

species (ROS) have been the focus of numerous studies (1). ROS are defined as oxygen-

derived atoms or molecules that possess one or more unpaired electrons, making them

highly reactive (2). While the cytoplasm, cell membrane, endoplasmic reticulum (ER)

and peroxisome are capable of producing ROS, up to 90% of cellular ROS (composed

mostly ofH2O2 andO
−
2 ) are generated in the mitochondria due to incomplete reduction of

oxygen to water in the electron transport chain (ETC) (3). High levels of ROS are

extremely toxic to the cell, leading to DNA breaks, lipid peroxidation, protein

aggregation, protein denaturation and protein fragmentation (4). Therefore, most cells

are equipped with a battery of antioxidant genes that have the power to neutralize this

threat, maintaining a fine equilibrium between ROS production and an antioxidant

defense. In cases where ROS levels exceed the cell’s ability to detoxify it and the
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equilibrium is breached, the cell enters into a pathophysiological

condition called “oxidative stress” (5). Oxidative stress takes part

in the etiology of many diseases, contributing to the initiation

and progression of cancer, vascular-related diseases, respiratory

diseases, neurodegenerative disorders, digestive diseases, kidney

diseases, chronic inflammatory disorders, aging and diabetes (5–

7). Diabetes is linked to various cellular stresses that generate

ROS, such as hyperglycemia, hyperlipidemia, hypoxia,

inflammation, and ER stress (8, 9) (Figure 1). Indeed,

pancreatic islets of type-2 diabetic patients often present

increased levels of oxidative stress markers (such as oxidative

DNA damage marker, 8-hydroxy-2′-deoxyguanosine) and this,

at least in part, is due to the fact that beta-cells express low levels

of several antioxidant genes, making them highly vulnerable to

increased ROS levels (7, 10). In line with that, high ROS levels

reduce functional beta-cell mass by increasing beta-cell

apoptosis, reducing beta-cell proliferation, and damaging beta-

cell function (7). Therefore, and perhaps as a compensatory

mechanism, beta-cells protect themselves against oxidative stress

by activating the nuclear factor erythroid 2-related factor (Nrf2)

antioxidant signaling pathway. This activation is performed by

ROS which oxidize critical cysteine in the NRF2 inhibitor,

KEAP1, thus inhibiting NRF2 degradation (7, 11). Remarkably,

apart from providing protection against oxidative stress, NRF2

regulates beta-cell mitochondrial biogenesis and activity, provides

anti-inflammatory effects, promotes beta-cell function and

stimulates beta-cell proliferation (7, 11).

Beta-cells express a unique set of key marker genes that

define their identity and function by contributing to the

expression and secretion of insulin (12). One of these genes is

the duodenal homeobox 1 (Pdx1), a protein that plays many

distinct roles in the life of a beta-cell, including involvement in

beta-cell differentiation, beta-cell function, beta-cell survival and

beta-cell proliferation (13–18). To do so, PDX1 controls the

expression of other genes that play important roles in the beta-

cell fate. These genes include insulin (Ins1, Ins2), neurogenin 3

(Ngn3), SRY-box transcription factor 9 (Sox9), hepatocyte

nuclear factor 6 and 1b (Hnf6, Hnf1b), forkhead box protein

a2 (Foxa2), V-Maf musculoaponeurotic fibrosarcoma oncogene

homolog A (MafA), NK2 homeobox 2 (Nkx2.2), neurogenic

differentiation (NeuroD), solute carrier family 2 member 2

(Glut2, Slc2a2), glucokinase (Gck), islet amyloid polypeptide

(Iapp), NK6 homeobox 1 (Nkx6.1), cyclin D1 (Ccnd1), cyclin

D2 (Ccnd2), and the transient receptor potential cation channel

family 3 and 6 (Trpc3,6) (13, 16, 17, 19). In agreement with these

findings, homozygous Pdx1 knockout (Pdx1-/-) mice exhibit

pancreatic agenesis while heterozygous Pdx1 knockout

(Pdx1+/-) mice present with beta-cell ER stress, beta-cell

apoptosis, impaired insulin secretion, decreased beta-cell

proliferation and reduced beta-cell mass (20–25). Additionally,

tamoxifen-inducible beta-cell specific Pdx1 deletion in adult

mice results in hyperglycemia and transdifferentiation of beta-

cells into alpha-like cells (26). In humans, 5% of diagnosed type-
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2 diabetes patients present with genetic defects in PDX1 and

mutations in PDX1 define a subset of maturity-onset diabetes of

the young 4 (MODY 4) (27, 28).

Defective expression of Pdx1 has been documented in

diabetes and this is attributed to oxidative stress (9, 29–31).

Beta-cell specific deletion of Nrf2 in mice under diabetogenic

situation results in increased oxidative stress and reduced Pdx1

expression. Conversely, activation of NRF2 using genetic or

pharmacological approaches increases Pdx1 expression (11).

These findings suggest that the NRF2 pathway is essential for

preserving PDX1 levels, thus contributing to the maintenance of

functional beta-cell mass. In this review, we aim to bring

together all the current knowledge about the effect of

physiological changes in redox balance on beta-cell fate via

regulation on PDX1 levels.
Regulation of PDX1 levels by
ROS during embryonic
beta-cell development

During embryogenesis, Pdx1 is expressed in two waves. The

first wave begins at early stages of pancreatic development (E8.5

in mouse, gestational week 4 in human), with the appearance of

dorsal and ventral foregut endoderm buds that later transform

into a fully developed pancreas. At that stage, PDX1 is detected

in the pancreas epithelium (13, 32–34). Mutations and deletions

of Pdx1 during the first wave results in pancreas agenesis in both

mice and humans. Accordingly, Pdx1 deletion does not affect the

development of the endoderm buds. Rather, deletion of Pdx1

inhibits the morphogenesis of the buds creating defects in the

development of pancreatic epithelium (13, 20, 35, 36).

Interestingly, the appearance of early premature insulin and

glucagon positive cells in cells that lack PDX1 suggests that

unlike in the second wave of Pdx1 expression, the first wave of

Pdx1 expression is not involved in the development of endocrine

cells (34, 36).

At the second wave of Pdx1 expression, which occurs at late

gestation (beginning at E13.5 in mouse, gestational week 12 in

human), PDX1 stimulates the expression of another

developmental factor, Ngn3. NGN3 levels, which significantly

increase in mouse at E13.5 and reach maximal levels at E15.5, are

responsible for the specification of endocrine progenitors into

endocrine cells that will later form the pancreatic islets (13, 37,

38). Inducible Pdx1 deletion at these ages blocks the formation of

acinar cells and islets in mouse embryos (35). Additionally, beta-

cell specific Pdx1 deletion increases glucagon and somatostatin

positive cells at the expense of insulin positive cells resulting in

diabetes (34). Following the second wave of Pdx1 expression,

PDX1 levels remain constant towards and during adulthood (in

healthy non-diabetic settings). In adults, PDX1 is restricted to

beta-cells where it works to maintain beta-cell maturity and

function (13, 33).
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Some levels of ROS are necessary for normal cellular

function. For example, moderate levels of ROS (up to ~100

nM H2O2) are needed for stem cells to maintain their ability to

go through cell differentiation and to keep their “stemness”. The

underlying mechanism involves the oxidation of tyrosine and

cysteine residues which activates protein kinases, protein

phosphatases, and signaling factors that take part in cell

differentiation (39). This might explain the formation of
Frontiers in Endocrinology 03
moderated ROS levels (starting at E12.5 and peaking at E15.5)

by NADPH oxidase 4 (Nox4) activity during the development of

embryonic mouse pancreas (40). Nevertheless, accumulation of

higher ROS levels (above ~100 mM H2O2) may lead to cell

senescence or death (39). Furthermore, prompt increase of

oxidative stress may pose a risk on normal pancreatic

development since PDX1 levels are negatively regulated by

ROS (for further details on the mechanisms see Figure 1 and
FIGURE 1

Oxidative stress-dependent pathways affect Pdx1 levels during diabetes. Type-2 diabetes is associated with various pathological conditions that
generate ROS, such as hyperglycemia, hyperlipidemia, hypoxia, inflammation, and ER stress. This results in oxidative stress. Oxidative stress
reduces the expression level of PLUTO lncRNA, stimulates JNK-dependent FOXO1 activation, inhibits mTOCR signaling, increases SHP
expression and reduces FAM3A levels, all of which results in decreased PDX1 levels. On the other hand, in order to maintain ROS at appropriate
levels, oxidative stress also serves as a signal for Nrf2 activation by inhibition of Keap1 and by activation of the ERK signaling. This results in
increased expression of the Nrf2 target genes, Sod1 and Gpx, which restore PDX1 levels. This figure was generated using BioRender.com.
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Table 1 below) (41–45). This highlights the need to maintain

ROS at appropriate levels to support pancreatic development

and differentiation without damaging the cells. Surprisingly two

NRF2 antioxidant target genes, catalase (Cat) and superoxide

dismutase 1 (Sod1), are upregulated during pancreatic

development (40). This suggests that NRF2 helps maintaining

the required redox balance in the embryonic pancreas, a theory

that has not been tested yet. In support of that, SOD1 stimulates

Pdx1 expression by increasing the expression of Forkhead Box

Protein A2 (Foxa2), one of the main Pdx1 transcriptional

regulators (46). SOD1 can also support Pdx1 transcription by

increasing H3 acetylation and H3K4 methylation on the Pdx1

promoter, thus providing an open active chromatin (46).

Intriguingly, during pancreatic development, ROS activates the

ERK signaling pathway which can further activate the NRF2

pathway and increase Pdx1 expression, resulting in

differentiation of endocrine progenitors into beta-cells (47–49).

Overall, these findings suggest that by maintaining normal redox

balance, the NRF2 pathway supports appropriate PDX1 levels

that promote normal pancreatic development.
Regulation of PDX1 levels by ROS
during postnatal ages and adulthood

After birth, both mouse and human neonates exhibit a sharp

burst of beta-cell proliferation. This peak of proliferation, which

is temporary, substantially declines with age (50). Weaning is

believed to be the main trigger for the loss of beta-cell

proliferative capabilities, and it coincides with the gradual

maturation of beta-cells (51, 52). Mechanistically, the

transition from fat-rich maternal milk to carbohydrate-rich

diet inhibits the proliferative factor, mammalian target of

rapamycin complex1 (mTORC1) and activates 5’-adenosine

monophosphate–activated protein kinase (AMPK), which

promotes beta-cell maturity. On the other hand, continuous

supplementation of milk-fat rich diet to mice during weaning

into adulthood maintains high mTORC1 levels and beta-cell

proliferation (53). Consistent with these findings, beta-cell

specific deletion of mtorc1 in mice leads to impaired beta-cell

proliferation, reduced beta-cell survival and decreased beta-cell

mass (54), while activation of mTORC1 stimulates mouse beta-

cell proliferation by increasing cyclin D2 expression (55).

Interestingly, branched chain amino acids can activate the

mTORC1-Rab1A axis to maintain PDX1 protein stability and

increase its nuclear localization (56, 57). Moreover, beta-cell-

specific overexpression of kinase-dead mTOR mutants results in

decreased Pdx1 mRNA and protein levels (58). These findings

link mTOR-stimulated beta-cell proliferation during postnatal

ages with PDX1 activity. Oxidative stress and conditions that

generate ROS such as ER stress and hypoxia, can inhibit mTOR

signaling (59). In postnatal Akita mice, ER stress inhibits
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mTORC1 leading to reduced beta-cell proliferation, as well to

decreased PDX1 protein levels and downregulation of PDX1

target genes. However, restoration of mTORC1 activity in these

mice did not affect PDX1 protein levels, suggesting that ER stress

affects PDX1 levels by mTORC1-independent mechanisms (60).

Although the exact mechanism by which mTORC1 regulates

Pdx1 is unknown, mTORC1 can control NRF2 levels by p62-

dependent degradation of its inhibitor, KEAP1 (7, 61),

suggesting that NRF2 might be involved.

PDX1 binding sites are found in several genes that are

associated with cell replication, such as Nasp, Bard1, Mnx1,

andMcm7 (17). This suggest that PDX1 on its own can stimulate

beta-cell proliferation. Accordingly, overexpression of Pdx1 in

primary rat islets increases beta-cell proliferation by

upregulation of cyclin D1 and D2 expression (16), which are

essential for beta-cell proliferation during postnatal ages (62, 63),

over-nutrition (64, 65), and pregnancy (66). Interestingly,

oxidative stress reduces cyclins D1 and D2 expression while

activation of the NRF2 antioxidant pathway increases cyclin D1

(9, 11). On the other hand, mice expressing mutated PDX1

develop diabetes at weaning concomitantly with reduced beta-

cell proliferation and beta-cell area (17). Thus, regulation of

redox-balance is important for PDX1-stimulated beta-

cell proliferation.

During adulthood, PDX1 switches roles and takes part in

beta-cell identity and maturation. For example, PDX1 controls

insulin gene transcription by forming a transcriptional

activation complex with neuronal differentiation 1 (Neurod1)

and by upregulation of MafA and Ngn3 expression, which are

needed for insulin transcription (13). MAFA can further

enhance glucose-stimulated insulin secretion (GSIS) to

maintain glucose homeostasis (67). PDX1 can also upregulate

the expression of other factors that are necessary for GSIS, such

as Glut2 and glucokinase (28). Indeed, two missense mutations

in the Pdx1 transactivation domain inhibit GSIS (68). Lastly, as

previously mentioned, PDX1 positively regulates the expression

of various beta-cell identity genes (13, 16, 17, 19). This might

explain why beta-cell specific Pdx1 deletion results in an altered

transcriptional profile that resembles alpha-like cells. This

includes downregulation of Ins1 and Glut2 genes while

upregulation of Gcg (glucagon) and MafB (26). These findings

suggest that physiological situations that increase oxidative stress

may inhibit PDX1 from maintaining beta-cell identity and

function, and eventually lead to diabetes (as described in part 4).
Regulation of PDX1 levels by ROS in
beta-cells during diabetes

One of the major mechanisms for beta-cell dysfunction in

type-2 diabetes involves the inhibition of Pdx1 by oxidative

stress (41–44). For example, chronic exposure of syrian hamster
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islet cell line HIT-T15 to high glucose concentrations reduces

Pdx1 mRNA and protein levels (44, 69). Additionaly, type-2

diabetic rodent models, such as db/db mice as well as mice and

rats fed on high fat diet (HFD), display reduced Pdx1 mRNA

and/or protein expression as well as decreased PDX1 nuclear

localization (53, 70–72). Similarly, beta-cell specific deletion of

Nrf2 in mice fed on HFD results in increased oxidative stress,

reduced Pdx1 mRNA levels and inhibition of PDX1

translocation into the nucleus (11). Conversely, treatment of

obese diabetic C57BL/KsJ-db/db mice or Zucker diabetic rats

with antioxidant agents restores PDX1 nuclear localization and

PDX1 transcriptional activity (73, 74). Likewise, overexpression

of glutathione peroxidase 1 (Gpx1), a Nrf2 antioxidant target

gene, increases Pdx1 mRNA and protein levels in mouse beta-

cells (75).

The mechanisms behind ROS-dependent reduction of PDX1

levels vary (Figure 1 and Table 1). For example, oxidative stress

can lead to activation of forkhead box protein O1 (FOXO1) by c-

Jun N-terminal kinase (JNK) or by acetylation of FOXO1. As a

result, FOXO1 goes through phosphorylation, nuclear

translocation and subsequent activation (76, 88). FOXO1 then

mediates inhibition of FOXA2-transcriptional activation of Pdx1
Frontiers in Endocrinology 05
and inhibits PDX1 nuclear translocation (76, 89–91). Moreover,

islets from mice fed on HFD exhibit nuclear exclusion and

reduced activity of FOXA2 (92) and db/db mouse islets show

reduced levels of family with sequence similarity 3 member A

(FAM3A), a factor that upregulates PDX1 levels via activation of

CaM-FOXA2 pathway (85). Oxidative stress can reduce PDX1

levels by additional mechanisms. For example, during

conditions that generate ROS, such as high glucose

concentrations, ER stress and treatment with streptozotocin

(STZ) (7), orphan nuclear receptor small heterodimer partner

(SHP) downregulates Pdx1 at the mRNA levels (78, 82, 84). In

addition, mutations in Klf11 transcription factor which are

associated with maturity-onset diabetes of the young 7

(MODY7), lead to promoter repression of the antioxidant

gene catalase 1 (Cat1), and to a reduction in Pdx1

transcription in beta-cells (93, 94). Saturated fatty-acids, such

as palmitic-acid, can stimulate the production of H2O2 in beta-

cells, leading to beta-cell death (95). Interestingly, recent

findings show that incubation of beta-cells with palmitic acid

leads to sequestration of PDX1 into stress-granules. This

sequestration prevents PDX1 from translocating to the nucleus

and transcribing its target genes. Moreover, inhibition of the
TABLE 1 Ros-dependent mechanisms that reduce Pdx1 levels and activity during diabetes.

Diabetic situations
associated with oxida-
tive stress

Mechanisms Reduced
Pdx1 RNA

levels

Reduced
PDX1

protein levels

Reduced PDX1
nuclear locali-

zation

Reduced PDX1
transcriptional

activity

Citations

Hydrogen peroxide (H2O2) • Phosphorylation of PDX1 Serine
61/66 by GSK3.
• Reduced H3 and H4 histone
acetylation in Pdx1 promoter.
• Activation of FOXO1 inhibits
FOXA2.

X X X (75–77)

Chronic exposure to high
glucose concentration

• Hypermethylation at CpG sites on
Pdx1 promoter.
• Phosphorylation of PDX1 Serine
268 by Gsk3.
• Reduced PDX1-P300 interaction.
• Reduced Pdx1 and p300 expression
by SHP.

X X X (44, 53, 69,
78–80)

Palmitic acid • Sequestration of PDX1 into stress-
granules in a PI3K/EIF2a dependent
manner.

X (81)

Streptozotocin (STZ) • Reduced Pdx1 expression by SHP. X (82)

High fat diet (HFD) • Reduced PDX1-CHD4 interaction. X X X (70, 71, 83)

ER stress • Reduced Pdx1 expression by SHP. X (60, 84)

db/db diabetic mice • Phosphorylation of PDX1 Serine
269 by GSK3.
• Reduced Fam3a expression
inactivates CaM-FOXA2 pathway.

X X X (53, 72, 73,
85)

Type 2 diabetic human islets • Hypermethylation at CpG sites on
PDX1 promoter.
• Reduced PLUTO lncRNA.
• Reduced PDX1-CHD4 interaction.
• Reduced expression of p300.
• Reduced PDX1-SWI/SNF
interaction.

X X (79, 80, 83,
86, 87)
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stress-granules formation in HFD fed mice results in increased

PDX1 nuclear localization and improved glucose tolerance as

well as GSIS (81).

At the post-transcriptional level, oxidative stress increases

activity of glycogen synthase kinase 3 (GSK3), a known NRF2

inhibitor, which then phosphorylates PDX1 serine 61 and/or serine

66 resulting in PDX1 protein degradation (7, 77). Additionally,

INS1e rat beta-cell-like insulinoma cells and human islets

chronically exposed to high glucose display GSK3-mediated

phosphorylation of PDX1 serine 268, resulting in PDX1

degradation and reduced expression of PDX1 target genes (53).

Oxidative stress also reduces H3 and H4 histone acetylation in the

Pdx1 promoter, leading to transcriptional silencing due to tightly

packed chromatin (75). Islets from type-2 diabetic donors show

higher methylation status at ten CpG sites on the PDX1 promoter.

This is associated with reduced PDX1 mRNA levels. The same

phenomenon is observed in rat insulinomabeta-like cells (INS 832/

13) incubated chronically at high glucose concentrations (19, 79).

Additionally, treatment of human stem cells with the DNA

methylation inhibitor, 5-aza-2′-deoxycytidine, increases PDX1

nuclear levels (19, 96). Human and mouse pancreatic islets

express hundreds of long non-coding RNAs (lncRNAs), some of

which are playing important roles in beta-cell differentiation and

function. One of the most characterized ones is a beta-cell specific

lncRNA called PLUTO, which positively regulates PDX1

transcription. PLUTO, exhibits a marked reduction of expression

in islets from type-2 diabetic donors, positioning it as another

mechanism for reducing PDX1 levels under ROS-associated

pathological conditions (86).

Apart from affecting PDX1 abundance, conditions

associated with increased ROS can affect PDX1 transcriptional

activity by targeting coactivator complexes associated with

PDX1 (97). For example, decreased interaction between PDX1

and the chromodomain helicase DNA-binding 4 (CHD4)

ATPase subunit of the NuRD complex is observed in both

islets of type-2 donors and in mice fed on HFD (83). Similarly,

in human type-2 diabetic beta-cells, there is a significant

reduction in PDX1 binding to the ATP-dependent SWI/SNF

chromatin remodeling complex, a complex that is needed for

pancreas development and beta-cell identity (87, 98). PDX1 also

interacts with histone acetyltransferases p300 and CBP (p300/

CBP) to stimulate expression of PDX1 target genes, including

insulin (99). INS-1E cells incubated in high glucose

concentrations and islets from type-2 donors display reduced

levels of p300 due to protein degradation (80), a situation that

may hamper PDX1 transcriptional activity.

Based on their ability to reduce hyperglycemia and body

weight, the U.S. food and drug administration (FDA)

approved the use of Glucagon-like peptide-1 receptor (GLP-

1R) agonists as a treatment for type-2 patients (100).

Interestingly, treatments of islets from a rat model of

intrauterine growth retardation (IUGR) or from a “catch up

growth” Wistar rat model with the GLP-1R agonists, Exendin 4
Frontiers in Endocrinology 06
and Liraglutide, increase Pdx1 transcription by increasing H3

histone acetylation, increasing H3K4me3 levels and by reducing

H3K9me2 levels in Pdx1 promoter (101, 102). Additionally,

GLP-1 itself stimulates PDX1 nuclear translocation via cAMP-

dependent PKA pathway and activates NRF2 through the PKA-

dependent ERK activation pathway, suggesting that NRF2 might

be involved in this regulation (7, 103).
Concluding remarks

To conclude, published data indicate that alteration in redox-

balance leads to dysregulated PDX1 levels and activity, which can

result indiabetes.Expressionof severalNRF2 target genes, aswell as

treatment with CDDO-Me, an NRF2 pharmacological activator,

maintain PDX1 abundance by reducing oxidative stress (11, 40, 75,

104). These findings suggest that activation of the NRF2 pathway

may alleviate diabetes by preserving PDX1 levels. Additional

studies are needed to further explore the role of NRF2 in

maintaining PDX1 levels during embryonic, postnatal and adult

life. Interestingly, CDDOderivatives were also shown to contribute

to themaintenance offunctional beta-cellmass by promoting beta-

cell proliferation, reducing beta-cell oxidative damages, increasing

islet cell viability, improving insulin content, stimulating insulin

secretion and reducing secretion of proinflammatory cytokines (7,

11). Furthermore, treatment of db/db and streptozotocin-induced

diabetic mouse models with CDDO derivatives improves diabetes

outcome (105–107) and these compounds have been tested under

several clinical trials to improve chronic kidney disease in diabetic

patients (7).This places NRF2 as a potential therapeutic target for

type-2 diabetes.
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