
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Wah Yang,
The First Affiliated Hospital of Jinan
University, China

REVIEWED BY

Angelo Di Vincenzo,
University of Padua, Italy

*CORRESPONDENCE

Yan Gu
yangu@shsmu.edu.cn

SPECIALTY SECTION

This article was submitted to
Obesity,
a section of the journal
Frontiers in Endocrinology

RECEIVED 09 August 2022

ACCEPTED 24 October 2022
PUBLISHED 10 November 2022

CITATION

Widjaja J, Chu Y, Yang J, Wang J and
Gu Y (2022) Can we abandon foregut
exclusion for an ideal and safe
metabolic surgery?
Front. Endocrinol. 13:1014901.
doi: 10.3389/fendo.2022.1014901

COPYRIGHT

© 2022 Widjaja, Chu, Yang, Wang and
Gu. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Mini Review
PUBLISHED 10 November 2022

DOI 10.3389/fendo.2022.1014901
Can we abandon foregut
exclusion for an ideal and safe
metabolic surgery?

Jason Widjaja1, Yuxiao Chu2, Jianjun Yang1, Jian Wang2

and Yan Gu1*

1Department of General Surgery, Fudan University Affiliated Huadong Hospital, Shanghai, China,
2Department of Gastrointestinal Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou,
Jiangsu, China
Foregut (foregut exclusions) and hindgut (rapid transit of nutrients to the distal

intestine) theories are the most commonly used explanations for the metabolic

improvements observed after metabolic surgeries. However, several

procedures that do not comprise duodenal exclusions, such as sleeve with

jejunojejunal bypass, ileal interposition, and transit bipartition and sleeve

gastrectomy were found to have similar diabetes remission rates when

compared with duodenal exclusion procedures, such as gastric bypass,

biliopancreatic diversion with duodenal switch, and diverted sleeve with ileal

interposition. Moreover, the complete exclusion of the proximal intestine could

result in the malabsorption of several important micronutrients. This article

reviews commonly performed procedures, with and without foregut exclusion,

to better comprehend whether there is a critical need to include foregut

exclusion in metabolic surgery.
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Introduction

Bariatric and metabolic surgeries have resulted in significant improvements and

remissions in type 2 diabetes mellitus and other metabolic comorbidities (1, 2). However,

the mechanisms underlying these effects remain unclear. The foregut (proximal intestine

exclusions) and hindgut theories are the classic andmost commonly used explanations for the

resolution of type 2 diabetesmellitus observed after metabolic surgeries (3).While the hindgut

theory (rapid transit of nutrients to the distal intestine) has been widely accepted, the foregut

theory is not (4, 5). Several procedures that do not comprise duodenal exclusions, such as

sleeve with jejunojejunal bypass/SG-JJB, sleeve with ileal interposition/SG-II, sleeve with

transit bipartition/SG-TB, and standalone sleeve gastrectomy/SG (Figure 1), have similar
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diabetes remission outcomes when compared with procedures

comprising duodenal exclusions, such as gastric bypass/GB,

biliopancreatic diversion with duodenal switch/DS, and diverted

sleeve with ileal interposition/DSG-II (Figure 2) (6–13).

Furthermore, the complete exclusion of the proximal intestine

may result in significant micronutrient malabsorption. Thus,
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while being a safe metabolic procedure, the need for foregut

exclusion to achieve ideal metabolic outcomes is questioned.

In this article, we briefly review the commonly performed

metabolic procedures with and without foregut exclusion, with

the hope to create a research direction to further comprehend

the mechanisms of bariatric and metabolic surgeries.
A B
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FIGURE 1

Graphical illustrations for procedures that do not bypass the foregut, (A) standalone sleeve gastrectomy (SG), (B) sleeve with ileal interposition
(SG-II), (C) sleeve with transit bipartition (SG-TB), and (D) sleeve with jejunojejunal bypass (SG-JJB).
A B C

FIGURE 2

Graphical illustrations for procedures that completely bypass the foregut, (A) gastric bypass (GB), (B) biliopancreatic diversion with duodenal
switch (DS), and (C) diverted sleeve with ileal interposition (DSG-II).
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Foregut hypothesis

The foregut hypothesis is one of the classic explanations for

the diabetes remission observed after bariatric surgery. This

hypothesis proposes that the exclusion of the proximal small

intestine (duodenum and proximal jejunum) from the transit of

nutrients may prevent the secretion of a “factor” that promotes

insulin resistance and type 2 diabetes mellitus (3, 14, 15).

However, the foregut hypothesis fails to explain how several

other bariatric procedures that did not comprise duodenal

exclusion, such as SG-JJB, SG-II, SG-TB, and standalone SG,

still achieved excellent diabetes remission results (6, 7, 10–12).

Furthermore, we are yet to identify the foregut “factor” that

affects the glucose homeostasis. If the exclusion of the foregut is

not required to achieve metabolic improvements, then complete

exclusion of the foregut may be abandoned to achieve the ideal

metabolic procedure.
Importance of foregut inclusion in
bariatric and metabolic surgeries

There are significant drawbacks of excluding the foregut

from nutrient transit. The proximal intestine is a major site of

absorption of several important vitamins and micronutrients.

For example, the risk of vitamin B12 deficiency is higher

following GB than after SG and is attributable to the duodenal

exclusion in gastric bypass (16). Procedures that exclude the

proximal intestine, where most iron absorption occurs, are

expected to increase the risk of iron deficiency (17). Reduced

calcium absorption and vitamin D deficiency were also

frequently observed in procedures that excluded the proximal

intestine, which has the highest concentration of calcium

transporters (18). Furthermore, the proximal intestine is also

indirectly involved in the absorption of liposoluble vitamins and

micronutrients. Procedures that bypass the proximal intestine

result in the reduction of pancreatic enzyme secretion and

alteration in bile salts, leading to alterations in fat assimilation

(19–21).
Procedures that completely bypass
the foregut

GB, DS, and DSG-II are the procedures that are normally

performed according to the foregut hypothesis (bypassing the

foregut). These procedures can incorporate modifications of the

“one-anastomosis reconstruction”; however, such modifications

do not alter the foregut exclusion components.

Multiple randomized controlled trials (RCT) have compared

the efficacy of GB with procedures that do not comprise foregut

exclusion. A meta-analysis of RCTs comparing the outcomes of
Frontiers in Endocrinology 03
GB and SG found that GB resulted in a superior loss of body

mass index (BMI), which persisted at 3 years postoperatively

(22). Interestingly, the study did not find differences in diabetes

remission, hemoglobin A1c (HbA1c) level, and homeostatic

model assessment of insulin resistance levels. Similarly, three

RCTs (Stampede, SM-BOSS, and SLEEVE-PASS trials) found no

difference between GB and SG regarding HbA1c levels and rate

of diabetes remission at 5 years postoperatively (12, 13, 23).

However, GB is associated with a higher risk of nutritional

deficiencies than SG (16, 24). Studies have reported that

reconnecting the foregut back to the configuration can solve

the malnutrition issue in GB without compromising the bariatric

and metabolic outcomes (25, 26).

Another classic bariatric and metabolic procedure is DS,

which is regarded as the most effective procedure (27). An RCT

reported that at 5 years postoperatively, DS resulted in superior

weight loss and glucose improvements compared to those of GB;

however, DS is associated with more nutritional complications

(28). Long-term studies (10 years) have also reported the

nutritional issues associated with DS, particularly with fat-

soluble vitamins (29, 30). Thus, although the effectiveness of

DS is undisputed, it is not commonly performed owing to the

high prevalence of complications (2, 31).

DSG-II and SG-II are among the most complex procedures, as

they require more anastomosis than most metabolic surgeries

(32). Unlike DSG-II, which bypasses the foregut and creates

malabsorption, the SSG-II procedure ensures that there is no

malabsorption. However, limited data are available regarding the

prevalence of nutritional deficiency between the DSG-II and SG-II

procedures. However, DSG-II and SG-II resulted in similar

glucose control improvements, which further questions the need

for foregut exclusion (7, 33, 34). Ileal interposition procedures are

not commonly performed because of their complexity and the

need for a high number of anastomoses, and because a higher

number of mesenteric defects are created in these procedures (32).
Procedures that do not bypass
the foregut

SG, SG-TB, SG-II, and SG-JJB are the procedures that are

not normally performed according to the foregut hypothesis.

Similar to the GB and DS, some of these procedures can

incorporate modifications of the “one-anastomosis

reconstruction”; however, such modifications do not alter the

foregut inclusion components.

SG can be considered the foundation of most bariatric and

metabolic surgeries, as many of the procedures consist of SG.

Standalone SG is currently the most commonly performed

procedure worldwide, with excellent results (2, 31). As

mentioned previously, when compared with GB, SG was found

to be comparable regarding metabolic improvements as well as
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having a lower risk of nutritional deficiency (12, 13, 16, 23, 24).

However, in the longer term, SG is complicated by several issues,

such as weight regain, diabetes relapse, and reflux (35).

Therefore, revisional surgery after SG is becoming a

common practice.

SG-TB is a procedure that has been gaining significant

attention in recent years (particularly its one-anastomosis

form, the single-anastomosis sleeve ileal bypass/SASI).

Proposed as a modification of the DS procedure, SG-TB

eliminates the need to completely bypass the duodenum. The

5 year result of SG-TB was reported to be 74% excess BMI loss

and 86% diabetes remission (5). SG-TB has been shown to have

comparable weight loss and diabetes remission results, while

having lesser risks for nutritional deficiencies when compared to

GB (11, 36). When compared with DS, SG-TB was reported to

have lesser weight loss results; however, there was no difference

in the rate of diabetes remission (10). The authors further noted

that SG-TB showed real benefits in reducing the side effects and

malnutrition risks compared with DS (10). When compared

with DSG-II, SG-TB showed similar weight loss and diabetes

remission results; however, the differences in nutritional

deficiencies between the two procedures has not been

reported (9).

The SG-II procedure has been described and discussed in the

previous section. Moreover, in the case of severe malnutrition after

the DS procedure, conversion to SG-II (without bypassing the

foregut) solved the malnutrition issues without compromising the

bariatric and metabolic results (37). In conclusion, although more

studies are needed, the SG-II and DSG-II demonstrated comparable

weight loss and diabetes remission results; thus, questioning the

need for foregut exclusion.

Other procedures that do not bypass the foregut have been

reported. SG-JJB was reported to have comparable weight loss

and diabetes remission rates to GB (6). A rodent model of

jejunal-ileal loop bipartition has also been described, showing its

effectiveness in improving glucose control (38).

SG-TB, SG-JJB, and SG-II procedures are still lacking

comparative studies as well as RCTs; thus, further studies are

warranted in this regard in the future. However, the results to

date have been promising with regard to the notion of

abandoning foregut exclusion.
Mechanisms related to the effect of
bariatric surgery

Glucagon-like peptide-1 (GLP-1) is secreted by intestinal

enteroendocrine L-cells and several brain cells in the brainstem

following food consumption (39). GLP-1 is an incretin having

the ability to enhance insulin secretion. In the brain and the

stomach, GLP-1 also can promote satiety, reducing food intake.

Per the hindgut theory (rapid transit of nutrients to the distal

intestine), bariatric procedures that resulted in the rapid
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transient of nutrients showed significantly elevated GLP-1

levels following food consumption (39). A recent meta-

analysis reported that postprandial GLP-1 levels were also

increased following SG, possibly due to increased gastric

emptying (40).

Similarly, peptide YY (PYY) was also reported to be elevated

in bariatric procedures with or without duodenal exclusion (40).

PYY is also secreted by the L-cells and has the ability to reduce

appetite and promote satiety.

After bariatric surgery, several studies have shown that the

increased level of bile acids can promote insulin secretion,

increase energy expenditure, and alter the gut microbiota (41).

Bile acids play a role in metabolic regulation mediated through

several receptors, such as the farnesoid X receptor (FXR) and G

protein-coupled bile acid receptor 1 (also known as TGR5) (41).

Stimulation of FXR in insulin-resistant obese mice was shown to

reduce hyperinsulinemia and improved glucose control (42). In

response to bile acids, TGR5 activation promotes GLP-1

secretion in animal and human studies (43, 44). Increased bile

acids can increase energy expenditure through TGR5 in the

skeletal muscle and brown adipose tissue (45, 46). Bile acids and

gut microbiota are affected and altered by bariatric surgery.

Increased bile acid concentrations can kill and promote certain

gut bacteria strains (41).

Individuals with obesity exhibit an altered gut microbiota as

compared to lean controls, comprising of a decline in

Bacteroidetes and an increase in Firmicutes in obese

individuals (47). On the other hand, bariatric surgery resulted

in the alteration of gut microbiota composition (decrease of

Firmicutes/Bacteroidetes ratio), which contributes to fat mass

regulation and reduced utilization of carbohydrates as energy

fuel (48).

Several studies have shown that bariatric surgery induces

changes in adipose tissue and improves systemic inflammation

(49). Bariatric surgery induces changes in the levels of several

microRNAs from the adipocyte-derived exosomes, which are

correlated to the improved insulin signaling following the

surgery. Several inflammatory factors, such as C-reactive

protein, tumor necrosis factor-a, and interleukin-6, the

hallmark for the initiation of insulin resistance, were also

reduced following bariatric surgery.

Several other hypotheses explaining the mechanisms of

bariatric surgery exist (41). However, all of these hypotheses

can be justified through the anatomical changes leading to the

distal intestine or as changes in general after bariatric surgery,

further questioning the foregut hypothesis.
Discussion

The era of bariatric and metabolic surgeries has been

evolving continuously. In the past, malabsorption and

restriction were the primary targets of bariatric surgery for
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achieving an ideal healthy weight (50). However, in recent years,

the era of pure metabolic surgery has been initiated, focusing on

improving the metabolic potency of bariatric surgery, hence the

name “metabolic surgery” (51–53). To improve the metabolic

potency of a procedure, we must comprehend the mechanism of

the metabolic improvements observed following metabolic

procedures. However, metabolic surgery appears to have a

highly complex mechanism, and more time may be needed to

better understand it. Moreover, recent surgical innovations have

provided us with the knowledge that could be used to improve

the safety of metabolic surgery.

Classic and significant metabolic procedures, such as GB and

DS, resulted in excellent metabolic outcomes (54–57). However,

they also resulted in unwanted effects, such as excessive nutrient

malabsorption (58). In contrast, several metabolic procedures (such

as SG-JJB, SG-II, SG-TB, and SG) that maintain the foregut (either

completely or partially) have been demonstrated to have efficacy

that is not inferior to foregut exclusion procedures (6–13). It is

imperative to acknowledge that the SG procedure has been the most

performed bariatric procedure worldwide in recent years,

surpassing RYGB (31). Furthermore, several RCTs have shown

that SG (without duodenal exclusion) could result in comparable

bariatric and metabolic outcomes compared to RYGB (with

duodenal exclusion) (12, 13, 23).

Although procedures such as SG-JJB, SG-II, and SG-TB,

differ in intestinal reconfiguration, they have common

consequences: 1) foregut inclusion and 2) expediting nutrient

flow to the distal intestine (hindgut theory). It has been recently

proposed that foregut exclusions may not be necessary as long as

strong stimulus to the ileum is provided (59). However, we need

better comparative studies to understand not only the metabolic

efficacy but also the safety of these foregut inclusion procedures.

With the foregut hypothesis being the focus of this article, it

is imperative to discuss the use of duodenal-jejunal bypass liner

as a treatment alternative for metabolic diseases. While it has

been reported that the duodenal-jejunal bypass liner resulted in

significant improvements in type 2 diabetes, the underlying

mechanisms remain elusive (60). In contrast to foregut

exclusion, a previous study showed that preserving foregut

transit in GB and DS models still resulted in significant weight

loss and glucose control improvements (25, 26, 37). Therefore,

these findings created another notion, “Is bypassing the foregut
Frontiers in Endocrinology 05
necessary? Or as long as there is enough exclusion, regardless of

the site of exclusion, would we still observe excellent metabolic

improvements?” The goal of bariatric and metabolic surgery

should be to improve the patients’ quality of life as well as

improving their weight status and comorbidities, i.e. not to focus

solely on the weight loss outcomes.

In conclusion, with the available studies, we cannot deny the

credibility of foregut exclusion for excellent metabolic outcomes.

However, the idea of abandoning complete foregut exclusion has

some credibility, and more comparative studies are needed to

prove this idea. Such studies should focus mainly on whether: 1)

foregut inclusion resulted in non-inferior metabolic outcomes

than after foregut exclusion and 2) foregut inclusion delivers

better safety regarding micronutrient malabsorption than that

following foregut exclusion.
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29. Ballesteros-Pomar MD, González de Francisco T, Urioste-Fondo A,
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