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maternal tissues and organ
systems, differing mechanisms,
and pathways

Manuel S. Vidal Jr1,2, Ryan C. V. Lintao1,2,
Mary Elise L. Severino1,2, Ourlad Alzeus G. Tantengco1,2

and Ramkumar Menon2*

1Department of Biochemistry and Molecular Biology, College of Medicine, University of the
Philippines, Manila, Philippines, 2Division of Basic Science and Translational Research, Department
of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX,
United States
Survivors of preterm birth struggle with multitudes of disabilities due to

improper in utero programming of various tissues and organ systems

contributing to adult-onset diseases at a very early stage of their lives.

Therefore, the persistent rates of low birth weight (birth weight < 2,500

grams), as well as rates of neonatal and maternal morbidities and

mortalities, need to be addressed. Active research throughout the years

has provided us with multiple theories regarding the risk factors, initiators,

biomarkers, and clinical manifestations of spontaneous preterm birth.

Fetal organs, like the placenta and fetal membranes, and maternal

tissues and organs, like the decidua, myometrium, and cervix, have all

been shown to uniquely respond to specific exogenous or endogenous

risk factors. These uniquely contribute to dynamic changes at the

molecular and cellular levels to effect preterm labor pathways leading to

delivery. Multiple intervention targets in these different tissues and organs

have been successfully tested in preclinical trials to reduce the individual

impacts on promoting preterm birth. However, these preclinical trial data

have not been effectively translated into developing biomarkers of high-

risk individuals for an early diagnosis of the disease. This becomes more

evident when examining the current global rate of preterm birth, which

remains staggeringly high despite years of research. We postulate that

studying each tissue and organ in silos, as how the majority of research has

been conducted in the past years, is unlikely to address the network

interaction between various systems leading to a synchronized activity

during either term or preterm labor and delivery. To address current

limitations, this review proposes an integrated approach to studying
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various tissues and organs involved in the maintenance of normal

pregnancy, promotion of normal parturition, and more importantly,

contributions towards preterm birth. We also stress the need for

biological models that allows for concomitant observation and analysis

of interactions, rather than focusing on these tissues and organ in silos.
KEYWORDS

preterm birth, premature labor, early delivery, pregnancy, parturition, inflammation
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1 Introduction

Human parturition is a complex and perplexing

physiological phenomenon that involves two independent

l ives harmoniously res iding in one body for ~40

weeks. This harmonious state between the mother and her

fetus is established by endocrine mediators, adaptive and

innate immune system components, complement and vascular

biological processes, extracellular matrix and matrix remodelers,

factors involved in cell growth, differentiation, transition,

migration, and invasion, redox and electrophysiologic balance,

and various exocrine and paracrine signalers (1–4). The

maternal systems support fetal growth and development

during this period with a steady supply of all essential and

indispensable compounds, which are selected and supplied to

the fetus without hindrance. Multitudes of physiologic processes

generate a well-balanced and regulated inflammation, primarily

localized to specific feto-maternal tissue and organ systems

function and involves changes in oxygen tension generating

reactive oxygen species radicals. A combination of inflammation

and oxidative stress caused by reactive oxygen species is

necessary for feto-placental growth and pregnancy

maintenance (5). Maternal tissue and organ systems, such as

the cervix, myometrium, and decidua, and fetal organ systems,

such as the fetal membranes (amniochorion) and placenta,

synchronously contribute to pregnancy wellbeing and ensure

protection from all exogenous and endogenous factors. The

gestational period is a ‘lifetime’ for fetal organs where they

grow, develop, and get delivered along with the fetus. On the

contrary, maternal tissues and organ systems repair, remodel

and revert to a non-pregnant state for future reproductive

purposes. This suggests that the fate of these tissues and

organs is vastly different and their physiologic trajectory for

ending their roles leading to parturition is also different.

Towards term, both feto-maternal tissue and organ systems

tend to transition from their quiescent status that maintains

pregnancy to active status to facilitate labor and delivery.

However, this transition is not the same in each feto-maternal

tissue (6–8). Inflammation is the underlying mechanism to

transition from a quiescent state to an active state or to
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remain active once that phase is achieved (5). The initiators,

activators, and effectors contributing to the inflammatory events

transitioning them to a pro-parturition phenotype are different

in each feto-maternal system.

Over the decades, multitudes of factors have been reported to

contribute to transition processes in each feto-maternal system. All

these studies aimed to understand pregnancies that end preterm

(prior to 37 weeks of gestation). The rationale is that understanding

normal term labor and delivery (term parturition) may lead to an

understanding of preterm birth (PTB). The latter is a complex

syndrome initiated by either known (indicated) or unknown

factors (spontaneous) (2). Studies are needed to understand PTB

due to the high rate of its incidence (~12% globally annually),

mortality andmorbidity to mothers and neonates, survivors having

physical and intellectual handicaps, and issues related to fetal

programming contributing to adult-onset diseases (9).

Spontaneous onset of labor leading to PTB is the most difficult

to predict due to heterogeneities associated with various factors

that include, but are not limited to, etiologies, genetic and

environmental interactions, mechanistic pathophysiologies,

biomarkers, and clinical presentations (2, 10). Even with

advancements in clinical management, research, and

development in perinatal medicine and research, spontaneous

PTB (sPTB) remains a major clinical dilemma.

Knowledge gained on the mechanism of normal term

parturition has not been translatable easily to sPTB

mechanisms. This suggests that the initiators of events

culminating in sPTB are not the same as reported in term

parturition, although overlap may be observed between the

two phenotypes in several areas. sPTB has two states of risk

factors that the mother experience. One is static, comprising risk

factors that are generally stable and unlikely to change during

pregnancy. These include maternal race, genetics, geographic

location, environment, socio-economic factors, behavioral

factors, nutrition, and obesity (10, 11). The other is dynamic,

which includes infection, stress, hydramnios, allergies, rupture of

the membranes, and bleeding, to name a few. The interaction

between the static risk factors and pregnancy environment or

exposure to infection-like conditions during pregnancy can

manifest into a pathophysiologic mechanism contributing to a

dynamic risk state (10, 11). The effector pathways of these

interactions resulting in labor and delivery preterm are the

same. So, the question remains – what really results is different

in sPTB, and why do we have great difficulty in understanding

sPTB pathology? It is true that many disease processes

contributing to sPTB syndrome may be initiated in one or a

few tissue and organ systems or called the ‘disease of that specific

system,’ or even more broadly ‘disease of the mother,’ or ‘disease

of the fetus.’ Investigators in the field of perinatal research have

invested in studying these systems in silos and contributed a

tremendous wealth of data to our understanding. Despite the

fact that the previous designations are correct, these can also

contribute to ambiguity – biomarkers and interventions are
Frontiers in Endocrinology 03
siloed to a specific system without considering the

involvement of other systems as well as intersystem

interactions, both of which are essential to maintaining

pregnancy. The collapse of homeostasis in each system is

required to promote labor at term and preterm. Thus, this

review provides an in-depth analysis of various disease

processes in each fetal and maternal tissue and organ system

and how these may manifest in the PTB pathway.
2 Preterm birth is a disease of the
fetal organs

2.1 Preterm birth: A disease of
the placenta

2.1.1 Structure and function of the placenta
during pregnancy

The placenta has been an organ of interest due to its

unique nature of spontaneous formation during pregnancy.

This fetally derived organ develops during the early

implantation period as a mass of inner cytotrophoblasts (CTs)

and outer syncytiotrophoblast (SCT) layer. The SCT forms a

massive sheet of primary syncytium that slowly advances

towards the decidua and gradually invades the tissue space

and the innervating blood vessels to create early maternal-fetal

hematological connection called lacunae (12). A subpopulation

of CTs begins projecting outward to form CT columns called

placental villi, with their core allowing for penetration of fetal

capillaries. Distal villous CTs differentiate into extravillous

trophoblasts (EVTs), allowing for further invasion into the

maternal decidua. The CTs also project laterally, creating an

outer CT shell (13). Eventually, the basal side of the CT shell

regresses, and the apical portion remains as an attached plate to

the decidua (14).

Primarily, the establishment of feto-maternal circulation in

the intervillous spaces is at the heart of the function of the

placenta (15). Maternal blood bathes these spaces, where gas

exchange, nutrient transport, and waste disposal occur

secondary to SCT, and to a lesser extent, to CT functions (14).

The SCT also secretes a milieu of canonical steroids (e.g.,

estrogen, progesterone), neurosteroids (e.g., allopregnanolone),

peptides (e.g., corticotropin-releasing hormone (CRH),

oxytocin), and placenta-specific hormones (e.g., human

chorionic gonadotropin (hCG), human placental lactogen

(hPL), to name a few (16, 17). The SCT also provide a

physical barrier against microbes that may be carried through

the maternal blood (18). Thus, the placenta mediates multiple

functions critical to the survival of the growing fetus.

2.1.2 Placental contributions to parturition
Changes in various hormonal cascades become more critical

in the placenta as parturition draws near; in particular, two
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placental hormones are deemed necessary in the bringing forth

the fetus. The first hormone, CRH, appears to be the master

regulator of birth timing. Its production is under control by

cortisol, a glucocorticoid hormone typically denoted as a stress

signal (19, 20). Unlike maternal CRH, which is negatively

regulated by maternal cortisol, placental CRH is positively

regulated by cortisol, providing a feed-forward mechanism

that does not have an “off-switch” as the pregnancy nears term

(21). Placental CRH is locally transported to other feto-maternal

compartments and exerts its local actions through CRH

receptors distributed along with those tissues (22–24). In the

myometrium, CRH enhances the production of cytokines and

chemokines that promote inflammation and increase the output

of contractility-associated proteins; however, multiple studies

are contrasting in terms of how CRH mediates contractility and

relaxation in the term and preterm myometrium (25–28). In the

decidua, early CRH induces decidualization and implantation

via interleukin IL-6 and IL-1b stimulation, while near term,

CRH promotes prostaglandin E2 (PGE2) production

contributing to birth (29–31). In the fetal membranes,

placental CRH actions on various receptor subtypes found in

the amnion epithelium may lead to the production of PGE2

from the membranes secondary to cyclooxygenase-2 (COX-2)

activation (29, 30, 32). Additionally, CRH also induces the

expression of prostaglandin H synthase 2 (PGHS2), which

contributes to local prostaglandin output (33).

Progesterone, the essential hormone for the maintenance of

pregnancy, downregulates placental CRH production without

affecting prostaglandin dehydrogenase (PGDH) expression that

contributes to pregnancy maintenance (34, 35). Progesterone

exerts actions toward its cognate placental receptors PR-A and

PR-C; PR-B expression, on the other hand, appears to be

tonically repressed in human placental cells (36–38). PR-A

inhibits progesterone action in the placenta, directing the

activation of non-canonical NF-kB signaling via NF-kB
inducing kinase (NIK)/RelB/NF-kB2 and subsequently leading

to COX-2 activation (39–42). Fetal exosomes containing

platelet-activating factor (PAF) have been shown to decrease

PR-A expression in term and preterm placentas epigenetically

(42). As placental progesterone appears only to diminish after

placental expulsion, it can be surmised that functional

progesterone withdrawal in the placenta, as pertained to by the

decrease in PR-A: PR-B ratio, may also contribute to parturition

(40). However, the functional progesterone theory still remains

controversial due to its unclear mechanisms; for instance, in

other tissues such as the myometrium, PR-A is observed to

promote inflammatory cascades in contrast to mechanisms in

the placenta (43, 44). Besides, CTs contain progesterone receptor

membrane components (PGRMCs), which play a major role in

progesterone function in a cell. The role of these receptors has

not been fully investigated yet to elucidate functional

progesterone withdrawal. The inhibition of progesterone
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the accumulation of placental CRH (“placental aging”) and may

aid in the progression of labor.

2.1.3 Disease states in the placenta
contributing to sPTB
2.1.3.1 Placental inflammation

Bacteria can hematogenously access the placental

intervillous spaces from the maternal blood flow. However, the

syncytiotrophoblast that outlines the placental villi provide a

physical barrier against infection (18). Additionally, the

branched arrangement of the microvilli , absence of

intercellular junctions, robust physical actin network, and

autophagy initiation may provide additional protection (45,

46). However, some bacteria may cross the placenta by

hijacking the autophagy system or by infecting EVTs on the

placental-decidual interface, which offers less protection

compared to syncytiotrophoblasts (47–50).

It is important to note that even in the absence of a microbial

etiology, sterile inflammation may still occur that can trigger

sPTB (51, 52). For instance, chronic villitis has been described as

pathologic findings in some cases of sPTB, and it was initially

highlighted that a non-infectious etiology can bring about this

pathology (53). Chronic villitis with unknown etiology has been

described as an inflammation secondary to abnormal

upregulation of mediators, resulting to infiltration of

macrophages and T cells (54). It has been suggested that this

is an allograft reaction, not necessarily an epitope-specific

response similar to an immune cell response to viral or

bacterial epitopes (55).

Regardless of infectious or non-infectious etiology, placental

inflammatory responses may lead to immune rejection and failure

of placental adaptation (56, 57). Damage-associated molecular

patterns (DAMPs), or alarmins, are crucial in the inflammatory

response leading to sPTB. Stress signaler p38 mitogen-activated

protein kinase (MAPK) and high-mobility group box 1 (HMGB1)

proteins enhance inflammatory responses in the placenta via

cytokine and uterotonin production (58–63). Cytokine

expression in sPTB is centered around the critical NF-kB

pathway (64). This ubiquitous pathway inhibits the activity of

11b-hydroxysteroid dehydrogenase 2 (11b-HSD2), the enzyme

responsible for converting cortisol to inactive cortisone (65, 66).

Therefore, inflammation provides a feed-forward mechanism that

allows cortisol and CRH to accumulate in the placenta (67–69). In

the canonical setting, NF-kB also positively regulates the

production of pro-inflammatory cytokines tumor necrosis

factor-alpha (TNF-a) and IL-6 from trophoblasts (70–72). IL-8

appears to be upregulated in preterm placenta extracellular

vesicles, indicating chemotactic functions to allow inflammatory

infiltration in the placenta (73). IL-10, an anti-inflammatory

cytokine, is observed to be decreased in human placental

explants in PTB; its actions are thought to occur via selective
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nuclear translocation of an NF-kB homodimer repressor (74, 75).

The importance of IL-10 is highlighted in IL-10-knockout mouse

models , which appear to be more suscept ib le to

lipopolysaccharide-induced sPTB (76). An interplay of

dysregulations in cytokine expression in the placenta may

promote sPTB.

Due to inflammatory activation in the placenta, downstream

effectors of cervical and fetal membrane remodeling may also be

induced by inflammatory mediators produced from the

placenta. Placental production of matrix metalloproteinases

(MMPs) and prostaglandins may be superimposed with the

production of these molecules in other feto-maternal

compartments during PTB (69, 77, 78). In the preterm

placenta, protein and gene expression of MMP-1 and MMP-2

were significantly higher than in the term placenta (79). TNF-a
and IL-6 may also direct the production of PGE2 and the

reduction of PGDH in trophoblasts (71, 72, 80). IL-10

reduction also coincides with a decrease in PGE2 expression in

trophoblasts (74, 75). Increases in PGF2a and PGE2 have been

documented in the preterm setting, thought to occur via an

increase in phosphatidylinositol-3 kinase (PI3K)/protein kinase

B (Akt) signaling; a placental increase in prostaglandin

concentration may contribute to decidual senescence and

further promotes a pro-inflammatory environment (77, 81).

2.1.3.2 Placental endocrine dysfunction

Multiple evidence points out a potential involvement of

endocrine dysregulation in sPTB patients. For instance, CRH

elevation has been consistently implicated as a contributor to

sPTB. Patients who had sPTBs have an almost sixfold increase in

CRH concentrations, observed at 28-33 gestational weeks,

compared to those in term labor (82–85). In patients with

recurrent preterm birth, elevated CRH levels were

demonstrated to have an almost similar area under the

receiver operating characteristic curve compared to a previous

risk of preterm birth (86). Accelerated placental CRH

upregulation may lead to an earlier initiation of myometrial

contractility and cervical ripening that contributes to sPTB (87,

88). Maternal stress has been pointed out as a possible

contributor to abrupt increases in placental CRH, although the

evidence remains conflicted (89). Therefore, mechanisms of

endocrine dysfunction remain to be elucidated.

Some studies have shown alterations in the expression of

progesterone receptors and associated receptors in preterm

placentas. (Papamitsou et al., 2011). PR-A expression is also

observed to decrease in relation to PR-B; however, the low

expression of PR-B posits a question as to the robustness of

monitoring changes in these isoforms in the context of preterm

birth (90). Instead, there is growing evidence to support the

associated receptor progesterone receptor membrane

component 1 (PGRMC1) (90). Polymorphisms in these

receptors may explain their involvement, but other factors

must be considered, including fetal sex and ethnicity (91, 92).
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Nonetheless, the proposed involvement of progesterone receptor

isoforms and subtypes in PTB remains up for debate.

2.1.3.3 Uteroplacental insufficiency

Uteroplacental insufficiency may also contribute to preterm

labor, such as those occurring in patients with placental

implantation abnormalities or Müllerian anomalies that

manifest as lesions of malperfusions in the placenta (93, 94).

Patients with placental implantation abnormalities, such as

shallow invasion in the decidua or placenta previa, have been

shown to have higher rates of preterm delivery and serve as an

independent risk factor for subsequent sPTB (95, 96). Patients

with Müllerian anomalies may lead to aberrant implantation due

to decreased uterine muscle mass that somehow poorly controls

placental invasion (94, 97). In this setting of blood flow

insufficiency, the renin-angiotensin pathway may play a role in

the pathophysiology leading to sPTB. The vascular tone of

uteroplacental arteries is under the control of this pathway,

and increased activity of this in the decidua may induce

vasoconstriction and eventual blood flow insufficiency in the

placental unit (98, 99) with subsequent increase in vascular

reactivity, mediated by the renin-angiotensin signaling pathway

and PI3K/Akt/phosphatase and tensin homolog deleted on

chromosome 10 (PTEN) pathway. This pathway has been

extensively discussed in the context of preeclampsia, with

PTEN upregulation via the NF-kB pathway inhibiting proper

trophoblast invasion and Akt downregulation leading to

endothelial dysfunction; as this is another pathway involved in

angiogenesis apart from the canonical vascular endothelial

growth factor (VEGF), PI3K/Akt/PTEN pathway may play a

role in uteroplacental insufficiency in preterm patients (100–

102). Moreover, placental endothelial cells also displayed a

reduction in VEGF staining with a concomitant increase in

receptor tyrosine kinase with immunoglobulin and epidermal

growth factor homology domains-2 (TIE-2) staining in placentas

with PTB (103). Placental insufficiency may serve as a stress

signal that increases CRH levels, as seen in preeclamptic patients;

and may lead to CRH-specific downstream effects; however, as

the placenta adapts by altering its vasculature to accommodate

under perfused areas, it remains to be seen whether a histological

diagnosis of insufficiency is a risk factor for sPTB itself (93,

101, 104).

2.1.4 Summary
Overall, dysregulations in CRH and progesterone expression

and receptor action may be critical players in the role of the

placenta in sPTB; mechanisms leading to these phenomena are

still unclear, and genetic and epigenetic studies and their

interaction with various risk environments or other

endogenous environments may shed light on susceptibility in

the general population. Nonetheless, placental inflammatory

response involving mainly the NF-kB pathway appears to be

the primary disease state contributing to sPTB. (Figure 1).
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2.2 Preterm birth: A disease of the
fetal membranes

2.2.1 Fetal membrane structure and function
The fetal, or amniochorionic, membranes are often

considered mere appendages of the placenta or dead tissues at

delivery (105). However, recent investigations on fetal

membranes show that they are highly specialized and essential

for protecting the fetus, maintaining pregnancy, and signaling

the initiation of parturition (106–108) The fetal membranes are

composed of the amnion, a single cell epithelial layer that forms

the innermost layer of the intrauterine cavity, and the chorion, a

trophoblast layer that includes the feto-maternal interface

barrier connected to the maternal decidua. The two layers are

connected by a collagen-rich extracellular matrix (ECM)

containing amnion and chorion mesenchymal cells (109, 110).

The membrane performs vital mechanical, biochemical,

immunological, and endocrine functions throughout gestation—

the amnion layer functions as structural and mechanical support

for the fetus. Layers of the collagen matrix and cells form a

protective barrier and a water-tight seal around the fetus and

amniotic fluid (111). Stromal mesenchymal cells form the

fibroblast layer and secrete collagen types I, III, and V,

providing a fibrous skeletal framework and reinforcing amnion
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integrity (112). Along with viscoelastic elastin andmicrofibrils, the

membranes withstand stretch from the gradually increasing

hydrostatic pressure from the amniotic fluid (113) sudden

impacts, strains, and compressions from fetal movement.

Additionally, the amnion might also be involved in amniotic

fluid homeostasis by converting bicarbonate to CO2 with human

carbonic anhydrase isoenzymes, abundantly expressed in amnion

epithelial cells (AECs), allowing for pH regulation and fluid

turnover (9). Furthermore, the membranes protect the fetus

from environmental or endogenous sources of physical,

chemical, and biological hazards (114). The amniochorion

protects the fetus from pathogens in several ways, one being

structurally impermeable to pathogens, and by expression of

antimicrobial peptides (AMPs) that target microorganisms in

the membrane or amniotic fluid.

As a supplementary endocrine organ, the fetal membranes

are rich sources of prostaglandin and cortisol (115, 116). The

amnion epithelium is a significant site of prostaglandin synthesis

and metabolism (117, 118). The amount of prostaglandins that

reach the myometrium is dependent on the expression and

activity of (1) PGHS in the amnion, and to a lesser extent, in

the chorion and decidua for prostaglandin biosynthesis; and (2)

PGDH in chorion trophoblast for prostaglandin inactivation

(119–121). Fetal contributions to the overall prostaglandin pool
FIGURE 1

Disease states in the placenta contributing to preterm birth. Placental inflammation, endocrine dysfunction, and uteroplacental insufficiency
can lead to inflammatory activation and propagation of inflammatory mediators towards other gestational tissues. CRH may play the
predominant role in these placental disease states, with inflammation providing a feed-forward mechanism. This figure was created with
BioRender.com.
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confirm the importance of fetal membranes in parturition as a

source of mediators for remodeling the ECM causing fetal

membrane weakening and eventual rupture, particularly in the

area overlying the cervix (122–125). Moreover, the membranes

also appear to have the highest capacity to convert biologically

inactive cortisol into active cortisol in late gestation among fetal

tissues (126, 127). Fetal membranes express 11b-HSD1

abundantly, and its expression is under feed-forward induction

by cortisol potentiated by pro-inflammatory cytokines (128,

129). Expression of 11b-HSD1 in fetal membranes increases

with gestational age, and cortisol is further increased during

parturition (130, 131). Altogether, fetal contributions to cortisol

and prostaglandin pool are significant factors for the progression

of labor (132).

2.2.2 Fetal membrane mechanisms
in parturition

As the fetal membrane cells grow and multiply, they undergo

telomere-dependent cellular senescence resulting in an aging

phenotype with concomitant changes in biochemical, molecular,

and morphological signatures. Increased oxidative stress in term

membranes leads to an irreversible cell fate (senescence) and

generate senescence-associated secretory phenotypes (SASPs).

SASP comprises of a unique set of biochemicals constituting

sterile inflammation leading to membrane deterioration and

rupture as part of the final preparatory stages for eventual

delivery (133–135). In vitro and animal models of amnion

epithelial cells have shown that oxidative stress accelerates

senescence and the development of SASPs (108, 136). Senescent

fetal membranes also release damage-associated molecular

patterns (DAMPs), cellular markers that represent cellular

injury and tissue damage considered as endogenous danger

signals that induce potent inflammatory responses during sterile

inflammation (137). DAMPs such as HMGB1, heat shock

protein-70 (HSP-70), histone H3, IL-33, and cell-free fetal

telomere fragments (cffTFs) are released in senescent amnion

cells (135, 138).

Both SASPs and DAMPs are paracrine signalers from the

fetal membranes which propagate inflammatory signals to other

feto-maternal compartments to promote parturition (105).

These signals are effectively propagated via extracellular

vesicles, specifically by exosomes and microvesicles (139–141).

Amnion cells were previously shown to produce exosomes and

microvesicles with distinct inflammatory cargo (142). AEC-

derived exosomes and microvesicles elicit inflammatory

reactions in maternal tissues while having distinct cargo and

surface protein profiles (143, 144). Senescent amnion cells

exposed to oxidative stress conditions produce contain

HMGB1 and cffTFs (145). Aside from local feto-maternal

routing, as established by exosome trafficking in animal

models (146, 147), systemic routing is also possible, as

established by exosome presence in maternal blood (146, 147).
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2.2.2.1 Microfracture development and failure of
membrane remodeling

The fetal membranes are also sites of microfractures

formation. Microfractures are channels or tunnels created by

cellular shedding or puckering with degradation of the basement

membrane and matrix collagen as a result of the remodeling of

membrane cells (148, 149). These microfractures sites allow for

cellular recycling and membrane remodeling via localized

inflammation (148). Epithelial to mesenchymal transitions

(EMT) facilitate cellular migration, while mesenchymal-to-

ep i the l ia l t rans i t ion (MET) al lows remodel ing of

microfractures and cellular gaps in the amnion layer via

PGRMC2 and c-Myc mediation (150). However, inflammation

and oxidative stress counter-regulate this mechanism and

promotes EMT secondary to p38 MAPK activation to increase

microfractures along the membranes (151–154). These events

also reduce PGRMC2 expression preventing MET, leading to

accumulation of mesenchymal cells in the ECM that are highly

sensitive to oxidative stress and inflammation.

2.2.3 Preterm birth as a disease of the
fetal membranes
2.2.3.1 Premature senescence as a mechanism of
membrane-associated sPTB

Senescence and sterile inflammation are physiologic

processes in parturition. However, premature activation of

inflammatory and oxidative stress pathways is implicated in

the pathogenesis of sPTB and prelabor rupture of membranes, a

condition associated with 40% of all sPTB. Premature activation

increases oxidative stress and accelerates senescence causing

SASP/DAMP-associated inflammation in fetal membranes.

This has been proven by in vitro models exposed to cigarette

smoke, an oxidative stress inducer (133, 155, 156),

environmental pollutants (134, 151), non-infectious (i.e.,

sterile) inflammation, and infection (157). Overwhelming

redox imbalance from risk factors compromises the ability of

the membranes to detoxify reactive oxygen species and repair

oxidative damage from these highly reactive molecules (158),

leading to telomere shortening (159), p38 MAPK activation,

senescence, and inflammation (155, 160). Premature aging

propagates inflammatory signals to other fetomaternal

tissues and increases the overall inflammatory load, while also

promoting membrane dysfunction as demonstrated by increased

microfractures that lead to rupture of membranes (148).

2.2.3.2 Chorioamnionitis

Chorioamnionitis, also known as intrauterine infection, is the

most common cause of disturbance in the balance of inflammatory

processes in the membrane. Chorioamnionitis is a major cause of

PTB and commonly results from an ascending infection from the

lower genital tract reaching the intrauterine cavity with concomitant

infiltration and activation of immune cells (161–166). Neutrophils
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usually are the predominant infiltrating population in the amnion

and choriodecidua (163, 167) which is likely due to increased

neutrophilic chemotactic factors such as IL-8 in the amnion

(168). These neutrophils release several inflammatory mediators

such as IL-8, TNF-a, and macrophage inflammatory protein

(MIP)-1b/chemokine (C-C motif) ligand 4 (CCL4) (169, 170)

and MMPs (171–175). In combination with a compromise in

antimicrobial properties, immune function, inflammatory

homeostasis, and membrane structural integrity are detrimental

to the pregnancy as it allows for microbial invasion from the genital

tract (176) and activation of host inflammatory response leading to

collagenolysis-mediated mechanical disruption (173, 177, 178). The

resulting membrane weakening predisposes the membranes to

rupture (107, 179). More important is that anti-apoptotic signals

towards these neutrophils are upregulated, providing a feed-forward

mechanism that allows them to persist longer and continue

inflammatory signaling (168, 170). Other innate immune cells are

also recruited and play a role in the rupture of membranes as

macrophages release several MMPs (180–182) and mast cells

secrete several modulators (183–185). Alteration in these

immunological signatures or function may lead to activation of

pro-inflammatory pathways and disruption of immune tolerance

which can induce preterm labor (186–188).

2.2.3.3 Fetal membrane pathology secondary to
uterine overdistension

Conditions that lead to overdistension of fetal membranes

include polyhydramnios and multi-fetal pregnancies. Several lines

of evidence suggest a role for overdistension in sPTB.

Polyhydramnios or the excessive accumulation of amniotic fluid

in pregnancy, and multi-fetal pregnancies are associated with an

increased risk of preterm labor and delivery (189–191). Static

stretch induces p38 MAPK activation but does not induce

senescence or MMP-9 activation which suggests that static stretch

contributes to fetal membrane remodeling and growth but not to

labor-associated changes (192). Biomechanical studies of human

fetal membranes show that stretch induces IL-8 and collagenase

activity (193). Overdistension of fetal membranes results in

increased production of cyclooxygenase-2 and prostaglandins

(194, 195) and induction of terminal pathways in parturition

(196, 197). Preterm membranes have a higher sensitivity to

external forces and have higher mechanical property

heterogeneity compared to term membranes (198). The

biomechanical properties of membranes may be a potential factor

for increased microfracture formation and premature aging in

preterm membranes. Thus, physical stressors such as mechanical

stretch also impact membrane function and have a significant

contribution to membrane weakening.

2.2.4 Summary
The pathophysiology of these diseases centers around

premature activation of pro-inflammatory pathways,
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disruption of immunologic function, and dysfunction in fetal

membrane remodeling. Fetal membrane senescence, and

inflammatory and oxidative stress pathways are pivotal to

early rupture which inevitably leads to sPTB. Paracrine signals

comprised of endocrine and inflammatory mediators are

propagated to other feto-maternal compartments to promote

parturition. Therefore, disease and dysfunction of the fetal

membranes are paramount in the pathophysiology of sPTB as

shown in Figure 2.
3 Preterm birth as a disease of the
maternal tissues and organs

3.1 Preterm birth: A disease of
the decidua

3.1.1 Structure and function of the decidua
during pregnancy

The decidua is a modified mucosal lining of the

endometrium comprised of terminally differentiated

endometrial stromal cells, newly generated maternal vascular

cells, and maternal immune cells (199). Decidualization occurs

after ovulation during the secretory phase of the menstrual cycle

due to increased progesterone levels. Decidualization triggers an

influx of decidual leukocytes, mainly specialized uterine natural

k i l ler (uNK cel ls) and dendrit ic cel ls , faci l i tat ing

immunosuppression to prevent fetus rejection and acting as

regulators of spiral artery remodeling and endometrial stromal

cell differentiation (200). During endometrial stromal cell (ESC)

differentiation, the cells undergo phenotypic and functional

changes, altering appearance from fibroblast-like to epithelial

cell-like due to accumulation of glycogen and lipid droplets, and

producing cytokines, growth factors, molecules like insulin-like

growth factor-binding protein 1 (IGFBP1) and prolactin, and

ECM proteins such as fibronectin and laminin (201). During

pregnancy, the decidua facilitates nutrient transport to the

placenta, protects the embryo from the immunological

responses of the mother, and regulates trophoblast invasion.

3.1.2 Decidual contributions to parturition
During normal labor, the decidua undergoes a series of

anatomical and biochemical events in a process called

“decidual activation,” where there is an increase in

prostanoids, mainly PGF2a and PGE2, proinflammatory

cytokines and chemokines; increase in MMP activity leading

to ECM protein degradation; and apoptosis (2). Failure to

suppress prostaglandin synthesis in the decidua has been

associated with adverse pregnancy outcomes (202). In mice,

increased synthesis of prostanoids is sufficient to trigger PTB in

the absence of progesterone withdrawal. One of the mechanisms

for this phenotype in mice is uterine-specific p53 deletion, which
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activates PI3K/Akt signaling and induces premature decidual

senescence via mammalian target of rapamycin complex 1

(mTORC1), leading to increased expression of PGF2a via

activation of COX-2/PGF synthase/PGF2a pathway (81, 203).

Another mechanism is a partial loss of function in the gene

encoding for 15-hydroxyprostaglandin dehydrogenase (15-

HPGD), as evidenced in a hypomorphic mouse model for 15-

HPGD, leading to prematurely increased levels of PGF2a and

PGE2 (204). Decidual activation eventually weakens the

decidual-placental interface, leading to the physical separation

of the decidua from the placenta and the fetal membranes (2,

205). Decidual infiltration by immune cells in addition to

activation of resident immune cells precedes myometrial

infiltration, suggesting that decidual activation facilitates

inflammatory events in the myometrium which eventually

leads to contractions (206). PGF2a produced by decidual cells

upregulate the expression of contraction-associated proteins

(CAPs) such as ion channels that increase calcium influx,

oxytocin, and prostaglandin receptors, and gap junction

proteins such as connexin 43 (Cx43), thus promoting

myometrial contractility (207–209). Although mainly
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produced by the fetal membrane, PGE2 produced by the

decidua contributes to cervical ripening due to the proximity

of tissues and interaction between cells (210). Apoptosis in the

amnion membrane causes an increase in prostaglandin levels,

leading to MMP-promoted apoptosis; this results in a positive

feedback loop that further drives decidual activation (211).

Indeed, it has been posited that the decidua has a role in

determining the length of gestation–the so-called “decidual

clock” (208).

3.1.3 Disease states of the decidua contributing
to sPTB
3.1.3.1 Deciduaitis

Infection and inflammation have been identified as a

significant risk factor for sPTB, with clinical and/or histologic

evidence of chorioamnionitis seen in 35% of women with early

sPTB (28-34 weeks) and 47% of women with very early sPTB

(20-28 weeks) (212). In response to infection, the decidual blood

vessels have been demonstrated to serve as first responders via

Toll-like receptor-4 (TLR4) sensing (213). Endothelial-specific

deletion of Tlr4 results in amelioration of preterm birth rates in
FIGURE 2

Disease states in the fetal membranes contribute to preterm birth. Premature membrane senescence, chorioamnionitis, and uterine
overdistension can all lead to dysfunctional membrane remodeling, generation of danger signals (senescence-associated secretory phenotype
[SASP], and damage associate molecular pattern markers [DAMPs], and chemotaxis and immune cell activation. The localized presence of
danger signals provides greater contributions toward untimely membrane rupture, while immune cell activation in the presence of danger
signals may cause myometrial activation. This figure was created with BioRender.com.
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https://www.BioRender.com
https://doi.org/10.3389/fendo.2022.1015622
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Vidal et al. 10.3389/fendo.2022.1015622
lipopolysaccharide (LPS)-treated mouse models (213). Resident

immune cells in the decidua, relegated as secondary responders

instead of being primary targets during infection, become

activated upon exposure to pro-inflammatory cytokines (168,

170, 214, 215) and enhance p38 MAPK-mediated MMP release

(deciduaitis) (216).

Deciduaitis is one of the conditions associated with sPTB.

The established inflammation provides a feed-forward

mechanism that allows for intense decidual neutrophil

infiltration (217) and monocyte/macrophage infiltration.

Inhibition of NF-kB and p38 MAPK attenuates this response

(218). IL-1b also inhibits decidual expression of nuclear PRs and

enhances decidual expression of COX-2, PGE2, and PGF2a, and
in combination with MMP release, may be a summative

mechanism in chorioamnionitis-associated PTB (219).

3.1.3.2 Premature decidual senescence

Still, many cases of sPTB occur without placental abruption

or infection, leading to alternative hypotheses as to how the

decidua may mediate a sterile inflammatory process. Premature

decidual senescence as a mechanism for sPTB has been seen in

humans, wherein decidua basalis collected from the placenta of

women following vaginal delivery at preterm showed increased

expression of senescence markers (e.g., senescence-associated

beta-galactosidase and phosphorylated histone protein gH2AX)

as well as increased expression of COX-2 and phosphorylated

ribosomal protein S6, a marker for mTORC1 signaling (220). In

a study involving whole-genome microarray analyses on

decidual tissues, multiple differentially expressed genes were

found among term, preterm in labor, and preterm not in labor

tissues (221) Among the top enriched pathways in preterm labor

samples were “complement and coagulation cascades” and

“cytokine-cytokine receptor interaction,” highlighting the role

of inflammatory signaling in preterm labor. Genome-wide

association studies (GWAS) showed three loci in maternal

GWAS (EBF1, EEFSEC, AFTR2) and zero loci in infant

GWAS associated with PTB (222–224)Integration of results

from GWAS of gestational duration with transcriptome,

epigenome, open chromatic, and chromatic interaction

annotations of cultured decidual cells uncovered a novel causal

locusHAND2 (Heart And Neural Crest Derivatives Expressed 2)

and refined annotation of a previously identified locus that

suggests GATA2 as a likely gene target (224). Despite no

statistical differences in immune cell proportions in term and

preterm laboring and non-laboring women, the expression of

CD1D (Cluster of differentiation 1 D) encoding for the non-

classical major histocompatibility complex (MHC) CD1d

implicated in invariant NK T (iNKT) cell activation, was

upregulated in preterm laboring women, implying different

iNKT activation status in preterm labor (221, 225).

Understandably, high inter-patient variability presents

challenges in characterizing decidual immune cell populations
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in term versus preterm labor, as seen by various conflicting

results (221).

3.1.3.3 Decidual hemorrhage

Decidual hemorrhage, either as vaginal bleeding or

retroplacental hematoma formation, is also implicated in

sPTB. Abnormal bleeding from placental abruption, poorly

transformed spiral artery, and/or defective decidual hemostasis

allows decidual tissue factors to initiate thrombin production

(226). Thrombin then binds to protease-activated receptors

PAR1 and PAR3 to stimulate myometrial contractility (227),

upregulate MMP expression (228), inhibit decidual nuclear

progesterone receptor expression (226), and induce decidual

IL-8 production leading to sterile neutrophil infiltration in the

decidua (229).

3.1.4 Summary
In summary, evidence points to the decidua as a vital tissue

mediating the onset of labor via decidual activation. Decidual

activation is primarily enhancement of inflammation, where

resident immune cells and immune cell-like decidual cells

contribute to a dysregulation of decidual inflammatory

homeostasis before term leading to PTB, as shown in Figure 3.
3.2 Preterm birth: A disease of
the myometrium

3.2.1 Structure and function of the
myometrium during pregnancy

The uterus undergoes substantial remodeling and adaptation

throughout the course of pregnancy. The myometrium, the

middle muscular layer of the uterus, stays quiescent

throughout gestation until mechanical and endocrine signals

stimulate its coordinated contraction at term culminating in

labor and parturition (230, 231). Therefore, it can be imagined

that the uterine myometrium serves as another terminal

destination for signals from the other feto-maternal

compartments that lead to its awakening.
3.2.2 Myometrial contributions in parturition
Functional progesterone withdrawal may allow the

myometrium to adopt a contractile phenotype for laboring,

either in term or preterm labor (232, 233). Shortly before and

during human labor, the PR-A/PR-B mRNA ratio increases,

resulting in increased expression of estrogen receptor alpha

(ERa) and homeobox A10 (HOXA10) (234). Since

progesterone inhibits the expression of ERa and HOXA10,

this indicates that functional progesterone withdrawal is linked

to increased expression of PR-A relative to PR-B. PR-A

expression is promoted by co-factor Krueppel-like factor 9

(KLF-9) and i s r egu l a t ed a t the ep igene t i c and
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posttranslational levels (235). Jumonji AT-rich interactive

domain 1A (JARID1A), a histone H3 lysine 4 (H3K4)

demethylase, occupies the promoter of PR-A during gestation,

resulting in lower H3K4me3 levels compared to laboring

myometrium and transcriptional repression of PR-A (236).

Histone deacetylase 1 (HDAC1) was also reported to bind to

the PR-A promoter, resulting in decreased PR-A mRNA levels

(237). When these epigenetic regulators are downregulated

during labor, they increase PR-A levels. Post-translationally,

PR-A degradation by proteasomes is decreased in response to

IL-1b, thus leading to sustained PR-A levels (43). In addition,

there is upregulation of 20a-hydroxysteroid dehydrogenase

(20a-HSD) in the placenta of mice and humans which

converts progesterone into inactive 20a-dihydroprogesterone
(238–240). This causes progesterone to be unbound from the

PR-A, resulting in PR-A translocation from the cytoplasm to the

nucleus. PR-A then interacts with Fos-related antigen-2 (Fra-2)/

Jun heterodimers, another type of activator protein 1 (AP-1)

transcription factor, at the promoter region, thus resulting in

Cx43 expression (233). These changes have been seen in both

term and preterm labor, suggesting that functional progesterone

withdrawal may be a joint promoter of labor in preterm and

term birth (233).

Contraction that follows progesterone withdrawal supports

the classical process ascribed to the myometrium that
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contributes to labor and parturition. The functional unit of the

myometrium, the uterine smooth muscle cell (SMC),

orchestrates contraction via the expression of CAPs such as

oxytocin receptors, connexin 43, and COX-2 (230). The classic

hormone implicated in contraction is oxytocin, a nanopeptide

produced primarily by the paraventricular nucleus of the

anterior pituitary but is also locally produced by the decidua,

placenta, and fetal membranes (241). Its cognate receptor, the

oxytocin receptor (OXTR), acts via phospholipase C (PLC)

coupling leading to inositol 1,4,5-triphosphate (IP3) and

diacylglycerol (DAG) formation and the canonical calcium

deployment from the sarcoplasmic reticulum (241). PR-A

stimulation induces the formation of gap junction via Cx43

that promotes synchronization of myometrial signals for

contraction (242). COX-2 is required for the eventual

formation of prostaglandins crucial for a physiological

immunological response (243).

Aside from a contractile phenotype, SMCs appear to have

other phenotypes as well enriched for neutrophil and IFN-g
response that allows for inflammation sensing within the local

environment (244). During early phases of labor, there is no

evidence of activation of pro-inflammatory transcription factor

NF-kB and no inflammatory cell infiltration of the myometrium,

suggesting that myometrial inflammation is a consequence of

labor rather than a cause (245). Consequently, during the
FIGURE 3

Disease states in the decidua contribute to preterm birth. Deciduitis, decidual hemorrhage, and premature decidual senescence all eventually
converge towards premature decidual activation characterized by leukocyte activation, inflammatory mediator production, and decidual apoptosis.
This figure was created with BioRender.com.
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contractile phase of the myometrial transformation, there is an

associated upregulation of pro-inflammatory cytokines (246,

247), cellular adhesion molecules (248, 249), and infiltration of

macrophages, leukocytes, and neutrophils (246, 249) leading to

activation of NF-kB and downstream signaling, suggesting that

uterine inflammation is a physiologic phenomenon in the

process of labor (250, 251). Other mediators, such as deglycase

DJ-1 encoded by Parkinson protein 7 gene (PARK7) (252),

nuclear factor erythroid 2–related factor 2 (NRF-2) and heme

oxygenase 1 (HO-1) (253), Rho/Rho-associated protein kinase

(ROCK) signaling (254), GRK-Interacting Protein 2 (GIT2)

(255), dimerization partner, RB-like, E2F and multi-vulval

class B (DREAM) complex (256), and neuromedin-U receptor

2 (NmU-R2) (257) have been suggested to play roles as well in

propagating inflammation within the myometrium.

In mouse models, it was observed that preterm labor and

term labor shared around 60% of similarly regulated genes, with

two waves of gene expression changes corresponding to tissue

remodeling and contractility activation, respectively (258).

Consistent with these findings, myometrial inflammation is

relatively rare in preterm labor parturients compared to term

parturients (259). Therefore, myometrial inflammation in itself

is not a requisite for preterm labor, and so its interplay with

contractility as a cyclical feed-forward mechanism is perhaps a

crucial process toward sPTB (260, 261).

3.2.3 Disease states in the myometrium
contributing to sPTB
3.2.3.1 Progesterone receptor dysregulation

The progesterone and PR signaling is integrated into a

regulatory network via miRNA targeting of the zinc finger E-

box binding homeobox (ZEB) which culminates into the NF-kB
pathway. Reduced progesterone signaling leads to a reduction of

ZEB1/2, which derepresses the expression of miRNA-200b/429

and results to a feed-forward mechanism that further negatively

regulates ZEB1/2 expression (239, 262). This leads to the

expression of OXTR and Cx43, which leads to myometrial

activation. Other miRNAs have also been explored that may

regulate PR, ER, and ZEB expression as well (263, 264). More

importantly, epigenetic dysregulations in ZEB1/2 expression as

shown via a multigenerational stress model suggests that a

familial predisposition towards PTB may be a causative

mechanism (265). Nonetheless, these miRNAs may serve as

local mediators only, as other systemic miRNAs may offer a

more predictive function despite the relative paucity of

mechanistic evidences for these systemic miRNAs (266, 267).

3.2.3.2 Uterine overdistension

Mechanical forces may also play contributory roles toward a

PTB phenotype. Uterine overdistension arising from multifetal

gestation, polyhydramnios, large-for-gestational-age pregnancy,

and maternal stature disproportionate to uterine load size has
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also been associated with sPTB and pPROM (11, 268, 269).

Contraction-associated proteins such as gap junction proteins

Cx43 and Cx26, oxytocin receptors, PGHS-2, and PGE were

upregulated in myometria of pregnant rats and primary human

uterine myocytes as a result of uterine stretch (270–272). Aside

from mechanical signals, the myometrium also takes cues from

endocrine signals, given that stretch-induced expression of Cx43

in rat myometria is facilitated by progesterone withdrawal (273).

Increased expression of cytokines IL-1b, TNF-a, IL-6, IL-8 and

CCL2, and prostaglandins PGE2 and PGF2a was also observed

in a non-human primate model of uterine overdistension, which

correlated with preterm labor (274). Aside from gap junction

proteins and inflammatory molecules, genes involved in tissue

remodeling and muscle growth were differentially expressed in

both non-human primate models and in pregnant women with

either polyhydramnios or twins (274). Specifically, there is

increased collagenase activity in the lower uterine segment due

to uterine stretch, thus facilitating the ripening of adjacent

cervical tissue (193). These findings imply that when there is

sufficient uterine stress from overdistension, the myometrium

responds with an inflammatory pulse that contributes to early

labor initiation (Kumar et al., 2016).

3.2.3.3 Myometrial hemorrhage

Hemorrhages may also trigger myometrial contractions via

thrombin-mediated signaling (275–277). Although myometrial

bleeding is only expected postpartum, this may be important in

the setting of other pathologies such as spontaneous bleeding

secondary to placenta previa, placenta abruptio, or miscarriages.

The coagulation factor thrombin and its associated receptor

protease-activated receptor 1 (PAR1) is expressed in myometrial

cells circumscribing the hemorrhage, with concomitant

upregulation of myosin, COX-2, PGE2, and PGF2a (277). It

has been proposed that thrombin-antithrombin III (TAT)

complex be utilized as a prognostic marker for preterm

delivery. However, this remains to be seen if this can be

improved in combination with other biomarkers for increased

sensitivity (275).

3.2.3.4 Oxidative stress in the myometrium

Oxidative stress specifically occurring from environmental

insults and behavioral risk exposures may lead to PTB via

induction of inflammation and preterm progesterone

withdrawal in the myometrium. Various metal toxicants also

increase 8-hydroxyguanosine (8-OHdG), a marker of oxidative

stress, and some metals were positively associated with sPTB;

however, the exact mechanisms may involve a separate pathway

activated by oxidative stress or another factor (278). It is unclear

if myometrium is the primary target for toxicants or if the

observed changes are secondary to insults from other tissues

responding to various exposures. Oxidative stress also induces

exosome production in myometrial cells, and these exosomes
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may be transported to amnion epithelial cells and chorion

trophoblast cells resulting in the local production of IL-6 and

TNF-a (279). Interestingly, IL-10 was also significantly

upregulated in chorion trophoblast cell cultures post-exposure

to myometrial exosomes, a counteracting mechanism to provide

relief to acute inflammation (171, 279).

3.2.4 Summary
Overall, myometrial inflammation resulting from uterine

overdistension, hemorrhage, and, to a lesser extent oxidative

stress, is a key contributor to PTB. It is important to note that

myometrial inflammation alone is not a requisite for sPTB, but

other concomitant processes in other gestational tissues may tip

the balance towards a cascade of signaling that will lead to

preterm delivery as shown in Figure 4.
3.3 Preterm birth: A disease of the cervix

3.3.1 Structure and function of the cervix
in pregnancy

Cervix is a firm cylindrical structure located at the lower pole

of the uterine corpus (280). It is composed of the cervical

epithelial layer (ectocervix, transformation zone, and

endocervix), which protects the underlying cervical stromal
Frontiers in Endocrinology 13
layer formed of mesenchymal cells, smooth muscle cells,

immune cells, and ECM proteins such as collagen and elastin

(280–283). ECM proteins in the stromal layer and the cervical

smooth muscle cells provide robust rigidity (284–286). The

cervical epithelial layer contains junction proteins that seal

intercellular space between adjacent cells and maintain apical

and basolateral polarity (287, 288). The endocervical epithelial

cells also produce a mucus plug that further seals the cervical

canal (289, 290). As such, the cervix serves as a barrier protecting

the developing fetus in the uterine cavity from potential

pathogens present in the vaginal canal (289, 291, 292).

Additionally, antimicrobial peptides such as cathelicidin,

elafin, human b-defensin-3, and human neutrophil elastase are

also expressed in the cervical mucus (293–295). The cervix can

also mount an immune and inflammatory response to prevent

ascending infection, via upregulation of IL-1b, IL-6, and IL-8 in

the cervical mucus (295–298). Counter-regulatory measures to

prevent massive inflammation also exists via the expression of

IL-4, IL-10, and IL-13 (296, 299, 300).

3.3.2 Cervical processes in parturition
As the pregnancy progresses to labor, the cervix undergoes

gradual remodeling and softening, and during parturition, it ripens

and dilates to allow safe passage of the fetus in combination with

uterine contractions (301, 302). Several underlying mechanisms are
FIGURE 4

Disease states in the myometrium contribute to preterm birth. Uterine overdistension and myometrial hemorrhage, and to a lesser extent,
oxidative stress, may all lead to myometrial activation that produces contractions. This figure was created with BioRender.com.
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fendo.2022.1015622
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Vidal et al. 10.3389/fendo.2022.1015622
associated with the cervical remodeling process. Some of the known

mechanism involves an influx of immune cells such as neutrophils

and macrophages (247, 303), an increase in inflammatory

mediators including cytokines (296, 301, 303–305), activation of

NF-kB, platelet-activating factor, and prostaglandin synthases

COX-1 and COX-2 (305, 306). Other mechanisms such as

changes in steroid hormone receptors (71, 307–309), increase in

oxidative stress and derangements in antioxidant enzymes (310–

313), apoptosis and necrosis (309, 313–315), and epithelial-to-

mesenchymal transition in resident cervical cell types (315–319)

have also been reported. The mechanical stretch from the

developing fetus also increases pressure, reduces blood supply,

and promotes hypoxia in the cervix. Elevated levels of hypoxia-

inducible factor-1a (HIF-1a) in the cervix promote cervical

ripening and dilation via inflammation in a feed-forward

mechanism (281, 282, 320).

Dynamic changes in ECM proteins, mainly collagen,

decorin, elastin, glycosaminoglycans, and hyaluronic acid,

occur in cervical remodeling in labor (302, 321–324).

Proteomic studies have shown that highly cross-linked

collagens were replaced by newer, less cross-linked collagen

during parturition (324), resulting in increased tissue

compliance in cervical ripening. Aside from collagen,

hyaluronic acid is essential due to its role as a component of

the ECM. Loss of hyaluronan synthesis may also alter cell

transitions among cervical epithelial cells (325). As

demonstrated in a mouse model, knockout of hyaluronan

synthase leads to the cycling of basal goblet cells with

concomitant intracellular sequestering of Olfm4 and a striking

loss of Serpina1e proteins, which are proteins that limit

inflammatory processes in target tissues (326, 327). Overall,

hyaluronan loss decreases the immunoprotective barrier

function provided by the cervix, increasing vulnerability to

ascending infection and, consequently, preterm birth (325,

328). However, these mechanisms need to be further studied

in humans.

Steroid hormones, such as estrogen and progesterone, play a

key role in regulating the timing of cervical remodeling (307–

309, 316, 322, 329). The local levels of these hormones influence

cervical collagen and elastic fiber synthesis, assembly, and

turnover, influencing ripening (322). During pregnancy, 17b-
hydroxysteroid dehydrogenase (17b-HSD) production by

glandular epithelial cells increases and catalyzes the conversion

of estradiol to estrone and cervical stroma-derived 20a-
hydroxyprogesterone to progesterone (330). Progesterone

upregulates nitric oxide production in the uterus, promoting

uterine quiescence, and downregulates nitric oxide production

in the cervix, maintaining suitable cervical rigidity to maintain

pregnancy (305, 331–333). During parturition, 17b-HSD2 is

downregulated in endocervical cells, increasing estrogen levels

and creating a favorable microenvironment for cervical ripening.
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In addition, functional progesterone withdrawal via PR-A

preferential expression may also contribute to cervical

ripening, since it was demonstrated that an increase in PR-A

isoform in the cervical stromal cells promotes a local withdrawal

of progesterone effects (307, 308). Any aberration in this

physiological process may lead to adverse birth outcomes such

as miscarriage or sPTB (283, 334, 335).

3.3.3 Disease states of the cervix contributing
to sPTB
3.3.3.1 Cervical insufficiency and short cervix

Cervical insufficiency resulting in a short cervix is a leading

cervical cause of preterm birth. This pathology can be either

congenital, as a consequence of Ehlers-Danlos syndrome, or

Marfan syndrome, but may also be secondary to non-syndromic

forms of mild collagenopathies (336). This may also be an

acquired condition, as those occurring from cervical trauma

such as cervical lacerations from childbirth (337, 338) and

previous cervical surgery such as conization and loop

electrosurgical excision procedure (291, 339, 340). In the

absence of a bacterial etiology, cervical insufficiency leading to

a short cervix can be thought of as a consequence of premature

cervical ripening, which occurs via upregulation of

inflammation in the preterm period (341). Pathological states

that lead to abrupt progesterone withdrawal have been proposed

as a mechanism for this phenomenon leading to a decrease in

collagen stability. Other non-leukocyte-dependent mechanisms

such as complement activation, macrophage-mediated MMP

release, and 15-prostaglandin dehydrogenase inhibition may

also contribute to its pathophysiology (88, 341, 342).

Nevertheless, more studies are needed in order to establish a

non-infectious etiology for cervical insufficiency.

Another potential cause of cervical insufficiency is the

presence of a dysregulated cervicovaginal microbiota. Multiple

studies have demonstrated that an abnormal microbiota is

positively associated with a shortened cervix and PTB,

especially in situations wherein Lactobacillus dominance is

disrupted and is predominated by both aerobic and anaerobic

bacteria (343–345). Aerobic vaginitis and Mycoplasma hominis

were also associated with cervical shortening, although their

presence is not requisite in bringing about PTB (343). An

abnormal microbiota may have implications for cervical

remodeling leading to a short cervix, but studies need to be

carried out to provide definitive evidence for this.

Regardless of etiology, cervical insufficiency may potentially

result to (1) a weakened epithelium that favorably allows

cervicovaginal microbes to break through the cervical barrier

and promote ascending infection, and/or (2) compromised

cervical support that increases the pressure on the fetal

membranes and potentially exposes them to the external

environment via an open internal os (334, 346–349). Both
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processes can lead to downstream inflammatory responses that

trigger sPTB.

3.3.3.2 Cervicitis

Cervical infections have been shown as risk factors for

prematurity and is an independent risk factor for PTB for

some infectious agents, irrespective of treatment status (291).

Inflammation secondary to infection may alter the cervical

epithelial barrier via actions of pro-inflammatory cytokines

(315, 350, 351).

Since the cervix does not operate in silo, propagation of

localized inflammation in the cervix may impact the upper

gestational tissues as well and result to activation of

inflammatory cascades. These inflammatory signatures have

been recently shown to be carried out via paracrine signaling

via extracellular vesicles (EV), such as exosomes and

microvesicles. EVs also serve as a mechanism for intercellular

interaction of the cervix with other feto-maternal cells. Cervical

cells can also produce exosomes that elicit an inflammatory

response in feto-maternal interface tissues that promote

parturition and vice-versa (140, 279, 352, 353).
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3.3.3.3 Conditions leading to a weakened
cervical epithelium

Despite the presence of multiple defense mechanisms,

commensal and pathogenic bacteria and viruses can still

compromise the cervix, ascend into the amniotic cavity, infect

the fetus, and promote fetal-maternal inflammation and sPTB

(291, 354–357). Any condition that can compromise the

epithelial barrier of the cervix can allow for potential invasion

from these microbes. Damage to the cervical mucosa secondary

to chemical (e.g., irritants) or mechanical (e.g., cervical trauma

from lacerations, abrasions, or previous surgeries such as

conization and excision procedures) predisposes the cervix to

infection and increases PTB risk (292, 337, 338, 358–360).

Epigenetic changes induced by microRNAs may also

contribute to a decrease in the tightness of the epithelial

barrier (361).

Ascending infection may be established via direct seeding;

however, recent studies have shown that cervical exosomes could

transport intracellular bacteria (e.g., Chlamydia trachomatis and

Ureaplasma parvum) and bacterial proteins from infected cells

to uninfected cells. This can be a possible mechanism for
FIGURE 5

Disease states in the cervix contribute to preterm birth. Cervical insufficiency and cervicitis may lead to localized inflammatory responses that
can propagate towards other tissues. Similarly, a weakened epithelium may allow passage of bacteria leading to ascending infection, which also
causes inflammation in seeded gestational tissues. This figure was created with BioRender.com.
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breaching the cervical barrier and establishing ascending

infection to the amniotic cavity (362, 363). Supracervical

infections in the decidua, fetal membranes, and less commonly

in the placenta, can lead to localized inflammation depending

on the location, and lead to inflammatory processes

as aforementioned.

3.3.4 Summary
Overall , inflammatory processes govern cervical

contributions toward PTB. The cascade of inflammation may

either result from infection secondary to a compromised cervical

barrier, or potentially from sterile premature cervical ripening

secondary to mechanisms yet to be elucidated as shown

in Figure 5.
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4 Discussion and conclusions

Studying each tissue and organ system has educated us on

their disease states and respective contributions to generating

pathways leading to PTB. Current preventive interventions that

are partly effective in a small subset of high-risk populations

include progesterone (possibly targeting PR dysfunction and

inflammation in the myometrium, placenta, and cervix), and

cerclage and pessary application (targeting cervical insufficiency)

(364, 365); however, these approaches cannot be simply

administered to the general population and are not universal

intervention strategies. In the context of active uterine

contractions, various pharmacologic agents have been explored

as therapeutics, including beta-adrenergic receptor agonists,
FIGURE 6

An integrated model for PTB. Static risk factors may provide susceptibility to inherited dysregulations in the fetal and maternal tissues. An
interaction with ‘pregnancy environment’ can contribute to dynamic risk factors, such as those from acquired disease states as discussed per
tissue subsection, may occur throughout the pregnancy. Inflammation, and oxidative stress, provides the central tenet for PTB as they are
inseparable in this process. As inflammation may propagate across different feto-maternal tissues, and tissue cross-talk may occur via various
mechanisms, multiple contributions from affected tissues will eventually culminate to PTB. PTB is not a disease of a single system acting in silo
but contributed by systems working together to produce an outcome. This figure was created with BioRender.com.
frontiersin.org
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calcium channel blockers, magnesium sulfate, COX inhibitors,

nitric oxide donors, and oxytocin receptor antagonists (366).

However, terminating uterine contractions does not equate to

resolving preterm delivery, and patients may still deliver

prematurely even with tocolytic agents (366). In summary,

extensive knowledge on various organs have led us to develop

each organ system based intervention strategies to reduce the risk

of sPTB; however, this approach alone has not reduced sPTB rates

because each organ system generate their own unique mechanistic

pathways in response to various exposures but they also impact

other tissues to react and respond. So, a systemwide knowledge is

required to effectively mitigate the risk of sPTB.

However, it is also obvious that tissue and organ-specific

knowledge alone is insufficient to fully understand sPTB, or even

develop biomarkers to predict sPTB at an early stage. Although we

have tissue- and organ-specific interventions, these are relegated to

specific indications only; thus, there is still a need to develop

management strategies to definitively reduce risk and, potentially,

provide a cure for sPTB. Investigators have associated in vitro

model findings (2D cell culture, trans well multi-cell systems, and

explant culture systems) and developed multisystem prediction

models over the years, primarily explaining how one mechanistic

event in a cell or tissue may lead to a sPTB pathway in another

tissue as we described above. Many of the mechanistic events in

each system have been validated using animal models confirming

data related to a specific tissue/organ system and highlighted

limitations (367–369). The sustained rate of sPTB suggests that

current studies examining a single system (maternal or fetal) or

translating cell culture data into animals do not always reflect sPTB

pathophysiology. An integrated model that can incorporate all the

interactions between various systems as seen in utero (Figure 6) is

difficult to replicate in real-time using current approaches.

Fortunately, recent advances have been developed that allow

for the incorporation of multiple cell lines from various systems

to simulate a live organ using microphysiological systems. Using

cells, matrix, immune system, and vasculature from a source

tissue or organ, and placing these on an organ-on-a-chip (OOC),

a biomimetic microfluidic system, researchers are recreating an

organ’s architecture in vitro (370). These integrated OOC

models allow simultaneously testing the responses and

interactions between multiple systems. Various OOC models

have already been developed, including a human-on-a-chip that

has incorporated various organ systems including the heart,

liver, lungs, gut, and kidney (371). Understanding PTB,

developing biomarkers, and testing new drugs require an

integrated model system where feto-maternal units can

communicate and generate coordinated responses as expected

in utero (370, 372). Several OOC models are being developed

and are currently being tested in the reproductive biology field,

and we concur that the next decade likely will shift from using

traditional model systems to integrated chip models utilizing

human tissues and cells (373). OOC models developed are now
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being used for preclinical testing and their utility has been

recognized by various regulatory agencies that are demanding

the reduction of unnecessary use of animal models in such

studies (370). Hopefully, in the nearest future, these advances

can address the lack of reliable and cost-effective animal models

to evaluate potential pharmacologic interventions for preterm

birth and elucidate molecular mechanisms closer to the human

pathophysiology. This will reduce the use of animal models,

improve our knowledge of pregnancy and parturition, and

reduce the incidences of preterm parturition.
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173. Vadillo-Ortega F, González-Avila G, Furth EE, Lei H, Muschel RJ, Stetler-
Stevenson WG, et al. 92-kd type IV collagenase (matrix metalloproteinase-9)
activity in human amniochorion increases with labor. Am J Pathol (1995) 146:148–
56.
frontiersin.org

https://doi.org/10.1210/en.2016-1406
https://doi.org/10.1210/jc.2002-021915
https://doi.org/10.3389/fphys.2020.594313
https://doi.org/10.1016/j.ajpath.2014.02.011
https://doi.org/10.1016/j.ajog.2015.05.041
https://doi.org/10.1016/j.ajog.2015.05.041
https://doi.org/10.18632/aging.100891
https://doi.org/10.1371/journal.pone.0083416
https://doi.org/10.4110/in.2018.18.e27
https://doi.org/10.1371/journal.pone.0113799
https://doi.org/10.3389/fendo.2017.00196
https://doi.org/10.1038/s41598-018-37002-x
https://doi.org/10.1111/aji.12788
https://doi.org/10.1371/journal.pone.0157614
https://doi.org/10.1093/biolre/ioab088
https://doi.org/10.1016/j.ajog.2018.08.021
https://doi.org/10.1016/j.ajog.2018.08.021
https://doi.org/10.1016/j.jri.2017.08.003
https://doi.org/10.1096/fj.201601146r
https://doi.org/10.3389/fphar.2016.00432
https://doi.org/10.1016/j.ajpath.2017.08.019
https://doi.org/10.1016/j.placenta.2017.03.017
https://doi.org/10.1016/j.ajpath.2018.05.019
https://doi.org/10.1111/aji.12496
https://doi.org/10.1111/aji.12496
https://doi.org/10.1530/rep-20-0283
https://doi.org/10.1126/scisignal.aay1486
https://doi.org/10.1007/s00281-020-00808-x
https://doi.org/10.1016/j.placenta.2018.05.008
https://doi.org/10.1016/j.placenta.2018.01.009
https://doi.org/10.1111/aji.12790
https://doi.org/10.1016/s0955-0674(03)00002-4
https://doi.org/10.1038/ncomms1708
https://doi.org/10.1038/ncomms1708
https://doi.org/10.1093/biolre/ioy135
https://doi.org/10.1016/j.placenta.2007.06.002
https://doi.org/10.1016/j.ajog.2006.10.908
https://doi.org/10.1016/j.ajog.2006.10.908
https://doi.org/10.1016/j.ajog.2015.08.040
https://doi.org/10.1016/j.ajog.2015.08.040
https://doi.org/10.1515/jpm-2015-0045
https://doi.org/10.1111/aji.13171
https://doi.org/10.3389/fbioe.2021.691522
https://doi.org/10.1016/j.siny.2011.08.003
https://doi.org/10.1172/jci.insight.98306
https://doi.org/10.1515/jpm-2016-0225
https://doi.org/10.1095/biolreprod.114.124420
https://doi.org/10.1111/j.1600-0897.1997.tb00510.x
https://doi.org/10.1111/j.1600-0897.1997.tb00510.x
https://doi.org/10.3109/14767059909052049
https://doi.org/10.3389/fendo.2022.1015622
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Vidal et al. 10.3389/fendo.2022.1015622
174. Maymon E, Romero R, Pacora P, Gomez R, Athayde N, Edwin S, et al.
Human neutrophil collagenase (matrix metalloproteinase 8) in parturition,
premature rupture of the membranes, and intrauterine infection. Am J Obstet
Gynecol (2000) 183:94–9. doi: 10.1067/mob.2000.105344

175. Helmig BR, Romero R, Espinoza J, Chaiworapongsa T, Bujold E, Gomez R,
et al. Neutrophil elastase and secretory leukocyte protease inhibitor in prelabor
rupture of membranes, parturition and intra-amniotic infection. J Maternal-fetal
Neonatal Med (2009) 12:237–46. doi: 10.1080/jmf.12.4.237.246

176. DiGiulio DB, Romero R, Kusanovic JP, Gómez R, Kim CJ, Seok KS, et al.
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