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During the last two decades, nonalcoholic fatty liver disease (NAFLD) has emerged

as the most common hepatic disease in pediatrics, mainly owing to the rising

prevalence of pediatric obesity. Epidemiological studies have shown that the

progressive increase in NAFLD prevalence is associated not only with obesity but

also with changes in dietary habits experienced by all age groups, characterized

by the increased intake of added sugars and certain fatty acids. In this review

article, we focus on the effect of oxidized fatty acids deriving from linoleic acid

and arachidonic acid on the pathogenesis and progression of NAFLD in youth.
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The term nonalcoholic fatty liver disease (NAFLD) is used to define a syndrome

affecting the liver and spanning from the accumulation of triglycerides in the hepatocytes

(steatosis) to cirrhosis and hepatocellular carcinoma with steatohepatitis (NASH) and

fibrosis representing intermediate stages (1–5). From a pathophysiologic point of view,

insulin resistance (IR) plays a key role in the onset of the process and probably also in its

progression (1, 6, 7), but the temporal relationship between these two phenomena is

difficult to untangle. It has been shown, in fact, that youth with NAFLD tend to show a

greater degree of IR than youth with similar degrees of adiposity, visceral fat, and

intramyocellular lipids (8). These data demonstrate the effect of NAFLD on IR, but

longitudinal studies also show that youth with obesity who develop NAFLD over time

tend to have higher degrees of IR as compared with those who do not develop NAFLD (9,

10). Therefore, the relationship between these two entities is rather complex, but it is likely

that IR precedes the onset of intrahepatic fat accumulation and the latter eventually
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contributes to perpetuating IR (9). This is supported by the fact

that youth with NAFLD tend to show a higher prevalence of

conditions related to IR, such as high triglycerides (TGs) and

LDL, and a high prevalence of prediabetes and type 2 diabetes

(T2D) (9, 11–13). This phenotype closely resembles that of

metabolic syndrome; therefore, some authors have proposed

the term metabolic associated fatty liver disease (14) to indicate

the metabolic component of the disease (15, 16). The key issue is

that early onset NAFLD seems to have a faster and more

aggressive progression than the disease in adults. Youth who

develop NAFLD around age 13 have, in fact, have 13.6 times

higher risk than disease-free youth of similar age and gender to

develop end-stage liver disease in their early 20s (17). Moreover,

recently, Simon et al. showed in an ~16-year follow-up study that

early onset NAFLD is associated with higher rates of cancer-,

liver-, and cardiometabolic-specific mortality compared with

matched general population controls (14). These data are in

agreement with earlier data in youth showing that pediatric

NAFLD is associated with an adverse cardiovascular profile

characterized by an increase in small-dense lipoprotein

particles and a decrease in HDL-cholesterol (18).

This may be because inflammation and fibrosis develop

quite early in youth with NAFLD (17). NASH is a key

component of the disease as it drives its progression; NASH is

triggered by free fatty acids (FFA) that are not esterified into TGs

in the liver (19). These FFA bind the TLR-4 receptor on the

membrane of liver macrophages starting a cascade of events that

leads to tissue damage and fibrosis (19, 20). Another important

factor to take into account is that, from a histological point of

view, pediatric NAFLD seems to be slightly different from the

adult type as it is characterized by chronic portal inflammation

(that is absent or mild in adult NASH) and early onset fibrosis

(21). In fact, inflammation in adults is localized mainly in the

centrilobular portion of the hepatic lobule (borderline zone 3),

whereas in youth, the inflammation is localized in the periportal

portion of the hepatic lobule (borderline zone 1) (21). How and

whether this different distribution contributes to the progression

of the disease in youth remains unknown. A reason for this

difference may be the different compartmentalization of the

pediatric liver as compared with the adult liver, but there are

no data supporting this hypothesis.

Steatohepatitis further worsens the degree of insulin

resistance, and as the inflammation worsens, the prevalence of

prediabetes and T2D increases (11). Importantly, the prevalence

of NAFLD differs among different races and ethnicities, with

Hispanic people showing the highest rates and non-Hispanic

Black (NHB) people showing the lowest rates (9). The latter

group seems to be protected against intrahepatic accumulation

despite the degree of obesity and IR (15). However, when NHB

develop NAFLD (about 13% of NHB with obesity), they show a

more severe degree of IR and higher rates of prediabetes and

T2D than Hispanic people (16).
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Omega-6 polyunsaturated fatty acid
(PUFA)-derived oxylipins

Over the last centuries, the amount and quality of fatty acids

introduced into the diet have changed (22). In particular, there

has been a progressive increase in omega-6 polyunsaturated fatty

acids (n-6 PUFA) (22). The main n-6 PUFA is linoleic acid (LA),

a fatty acid that can be introduced only through the diet and,

therefore, is indicated as an “essential” fatty acid. This is

indispensable for brain development and cell membrane

formation; therefore, human milk is rich in LA (23). There

should be a balance between n-6 and n-3 PUFA, and the ratio

between n-6 and n-3 PUFA should be 1:1 (22). This would be the

ideal, but it is in practice unrealistic, and the American Heart

Association recommends this ratio to be 4:1. Current nutritional

habits, though, are far from what is recommended, and the n-6/

n-3 PUFA ratio in the American diet is much higher (about

15/1) (24, 25). This is important because n-3 PUFA carries more

beneficial effects and are able to counterbalance the detrimental

consequences of an excess of n-6 PUFA (26). The main n-3

PUFA is alpha-linoleic acid (ALA), and it is also an essential

fatty acid. The n-6 and n-3 PUFA go through the same

enzymatic pathway, but the products obtained are different

and have different metabolic effects (27). The main product of

LA is arachidonic acid (AA), which is a key precursor of

prostaglandins, thromboxanes, and leukotrienes (27).

Importantly, under certain conditions, such as the subtle

inflammation present in individuals with obesity, LA and AA

are oxidized through enzymatic and non-enzymatic mechanisms

into oxylipins, such as octadecadenoic and oxo-octadecadenoic

acids, derived from LA (OXLAM), and hydroxy-eicosatetraenoic

acids derived from the oxidation of AA (OXAA).

Studies in youth and adults with NAFLD show that oxylipins

plasma concentrations are associated with liver inflammation

and injury in individuals with NAFLD/NASH. Studies in adults

also show that individuals with biopsy-proven NASH tend to

have higher circulating OXLAM than individuals without NASH

(28). A similar effect is shown in youth with obesity and NAFLD

(29). In fact, in youth with NAFLD and OXLAM are associated

with the plasma concentrations of CK-18 and ALT, two

biomarkers of liver injury, whereas this association is not

present in individuals without NAFLD (29). These data

suggest that oxylipins may contribute to or lead to

inflammation when NAFLD occurs. This is possible because of

the great amounts of n-6 PUFA in the Western diet tend to

accumulate in the liver. To date, though, it is still unclear

whether LA and AA are accumulated in the liver and then

converted into OXLAM and OXAA or if the conversion happens

in the adipose tissue and then the oxidized FFA reache the liver.

Although this was never proven, the latter hypothesis is not

unlikely given the presence of the so-called “sterile

inflammation” (or subtle inflammation) in the adipose tissue
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of individuals with obesity (30). On the other hand, studies

looking at the histology of the liver in individuals with NAFLD

show that the liver of individuals with NAFLD/NASH is

characterized by high concentrations of intrahepatic n-6 PUFA

and a low amount of n-3 PUFA (31). Nutritional studies also

show that the intake of AA is associated with liver fibrosis in

Hispanic youths with NAFLD, and this evidence further

corroborates the link between high n-6 PUFA intake and liver

injury in the context of NAFLD (32).

Genetic background also modulates the association between

oxylipins and NAFLD. In fact, the strongest genetic determinant

of NAFLD, the rs738409 variant (33), affects the association

between oxylipins and NAFLD with individuals homozygous for

the minor at-risk allele (G) showing a strong association between

markers of liver injury and intrahepatic fat content (29). This

association is weaker or absent in the other genotypes (26). On

the other hand, it is of note that oxylipin concentrations are also

dependent on the FADS haplotype (34). FADS is the gene coding

for the fatty acid desaturase, a rate-limiting enzyme in the

processing of the n-6 PUFA. A study in youth shows that the

haplotype associated with lower enzymatic activity (AA)

determines high concentrations of LA and OXLAM and lower

conversion of LA into AA in youth with obesity (34).

Importantly, it is shown that the detrimental effect of

oxylipins in youth with obesity may not be limited to the liver

but may extend to the pancreatic beta cell (29). In fact, plasma
Frontiers in Endocrinology 03
oxylipin concentrations are associated with a lower disposition

index, a biomarker of insulin secretion adjusted by insulin

sensitivity, and that youth with T2D have higher plasma

concentrations of oxylipins (26). This observation may suggest

that oxylipins may be a pathogenic link between NAFLD and

diabetes (Figure 1).

More recently, some studies have pointed out that maternal

PUFA plasma concentrations affect the liver metabolism of

infants. In fact, Wahab et al. show that maternal low n-3

PUFA and high n-6 PUFA plasma concentrations during

pregnancy are associated with the accumulation of fat in the

liver during early childhood in the offspring (35).
Mechanisms linking oxylipins to liver
injury: The role of inflammasomes

Although oxidative stress is recognized as a key mechanism

contributing to hepatocyte injury during NASH development,

the direct mechanisms by which oxylipins contribute to liver

injury in this context remain incompletely understood. In a

recent study (36), we used three different isocaloric high-fat diets

containing different amounts of LA (low and high) or enriched

with oxylipins to mechanistically understand their impact on the

development of liver injury. We further aimed to test whether

oxylipins directly modulate the oxidative stress response and
FIGURE 1

The figure depicts the mechanism through which excess n-6 PUFA and lack of n-3 PUFA in the diet may predispose to NAFLD, diabetes, and
cardiovascular disease.
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innate immunity. The findings identified a role of oxylipins in

the activation of the NLRP3 inflammasome linking lipid

metabolism with innate immune responses, cell death,

and inflammation.
Reversing oxylipins ameliorates
NAFLD phenotype and
insulin resistance

Given the association between oxylipins and NAFLD/

NASH, some studies have targeted these compounds to try to

ameliorate NAFLD/NASH. In a clinical trial, Zein et al. show

that pentoxifylline is effective in reducing the plasma

concentrations of OXLAM and OXAA (37). In particular, the

authors enrolled 47 subjects in a 12-month double-blind

placebo-controlled clinical trial (37). Of them, 21 were given

pentoxifylline, and 26 were given placebo (37). Individuals

taking pentoxifylline showed a marked reduction of OXLAM

and OXAA, although changes in their progenitors, the LA and

AA, respectively, were not different between the groups (37).

More interestingly, changes in OXLAM and OXAA were

associated with an improvement in liver fibrosis and

inflammation evaluated through liver biopsy (37). Despite the

interest generated by these data, to date, it is still unclear how

pentoxifylline acts. One theory is that it could reduce oxidation

occurring during inflammation, reducing the generation of

oxygen-derived free radicals and OXLAM and OXAA (37).

It has also been observed that pentoxifylline has an

inhibitory effect on hepatic macrophage M1 polarization in

high fat diet–induced NAFLD, thus suggesting a potential

molecular mechanism by which it could ameliorate fatty liver

disease (38).

More recently, a proof-of-concept dietary intervention

aimed at reducing the ratio between n-6 and n-3 PUFA in the

diet has been published (39). Seventeen youth with obesity and

NAFLD underwent a low n-6/n-3 PUFA diet for 12 weeks (39).

The study showed that an n-6/n-3 PUFA ratio in the diet of 1 to

4 for 12 weeks is associated with the decline in OXLAM

(measured in plasma every 4 weeks) and an ~32% reduction of

intrahepatic fat content (39). Interestingly, this study showed

also an improvement in insulin sensitivity and glucose tolerance.

In fact, three out of the four youth with prediabetes reverted

their clinical condition at the end of the intervention (39). A

follow-up study has also shown that lowering the n-6/n-3 PUFA

ratio causes the amelioration of insulin clearance independent of

changes in the hepatic content (40). This further strengthens the

assumption that changes in OXLAMs can directly affect insulin

metabolism. Despite this evidence, also for the dietary
Frontiers in Endocrinology 04
intervention, it is unclear what could be the mechanism

leading to these changes. It can be hypothesized that lowering

the intake of the substrate (LA) may reduce the formation of

OXLAM and also that, when the n-6 PUFA concentration is not

overwhelmingly higher than the n-3 PUFA concentration, the

latter may better counterbalance the proinflammatory effect of

n-6 PUFA.
Conclusions

The data present in the literature about the role of n-6 PUFA

in the pathogenesis of NAFLD and T2D clearly suggest that

therapeutic efforts should be conducted to reduce plasmatic n-6

PUFA and possibly to reduce n-6 PUFA intake in order to

prevent those diseases.
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