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Contribution of immune cells to
bone metastasis pathogenesis

Ningning He1,2,3 and Jingting Jiang1,3*

1Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University,
Changzhou, China, 2Department of Oncology, Yangzhou University, Yangzhou, China, 3Department
of Oncology, First People’s Hospital of Changzhou, Changzhou, China
Bone metastasis is closely related to the survival rate of cancer patients and

reduces their quality of life. The bone marrow microenvironment contains a

complex immune cell component with a local microenvironment that is

conducive to tumor formation and growth. In this unique immune

environment, a variety of immune cells, including T cells, natural killer cells,

macrophages, dendritic cells, andmyeloid-derived suppressor cells, participate

in the process of bone metastasis. In this review, we will introduce the

interactions between immune cells and cancer cells in the bone

microenvironment, obtain the details of their contributions to the

implications of bone metastasis, and discuss immunotherapeutic strategies

targeting immune cells in cancer patients with bone metastasis.
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Introduction

With the rise in morbidity due to cancer, bone metastasis has become the main

reason for the death rate of people affected by carcinoma. The bone is one of the most

important pathological process organs for various solid neoplasms, such as breast, lung,

and prostate cancer (1). Although improvements have been made in the diagnosis and

therapy of neoplasms, bone metastasis remains insurmountable. The formation and

evolution of bone metastasis include involved communication occurring among tumor

cells, immune cells, and osteocytes (2). In the spinal marrow, osteoblasts or osteoclasts

release numerous growth factors that boost the expansion of metastatic tumors, leading

to incurable osteoblastic or osteolytic lesions (3). The immune system is the primary

defense system against tumor cells, and its effects on spinal metastasis are still unknown.

Earlier studies concentrated on the interaction between tumor cells and bone progenitor

cells, and recapitulating specific tumor cell–bone microenvironment interactions is

lacking in in-vivo models. However, increasing evidence indicates that metastasis

might rely on uncommon constraints in the tumor microenvironment (4). The

antitumor or protumor impact of the immune microenvironment might rely on the
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existence of the regional cytokine milieu, tumor-specific

interplay, and specific types of immune cells (Figure 1).

Within the existing review, the elaborate functions and

impacts of different immune cells on bone metastasis will be

introduced. In addition, the existing therapeutic methods for

bone metastasis will be presented.
Interaction of tumor cells and
immune cells in the bone
microenvironment

The onset of neoplasm invasion of the bone leads to

decoupled bone loss and formation, an essential process

elicited by tumor cells and directed by osteoblasts (OBs) and

osteoclasts (OCs) (5). Osteoblasts and osteoclasts are two major

cell varieties in the bone microenvironment that promote bone

metastasis. Tumor cells release signaling molecules that promote

the differentiation of OCs and OBs (6), thus establishing the

regeneration of the resultant tumor adhesion, proliferation, and

increased bone mass (7). Disseminated tumor cells (DTCs) need

to escape immune tolerance by migrating from the primary

tumor to the bone. Once DTCs enter the bone marrow, they will

proliferate or go dormant (8). In fact, whether DTCs escape from

a dormant state is determined by factors released by the bone

microenvironment (9), physical factors (10), and the activity of

OBs and OCs (11). Evidence indicates that the stem cell released
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by OCs might trigger the nuclear factor-kB (NF-kB) pathway to
induce tumor cell responses (12). Interleukin (IL)-6 plays a

functional role in mediating the crosstalk between primary

tumors and the bone marrow to promote monocyte-dendritic

progenitors to give rise to immunosuppressive macrophages

which, in turn, promote metastasis in vivo (13). An elementary

molecule connected with the immune system and bone is

supported by the specific axis involving RANKL, RANKL, and

osteoprotegerin (14). This interaction of RANK/RANKL

provokes osteoclast generation, whereas osteoprotegerin

(OPG) offsets this impact by interacting with RANK (15).

There is proof that interferon-g (IFN-g) created by stimulated

CD4+ T cells might repress the common activity of osteoclasts

(16). In contrast, activated regulatory T cells (Tregs) and type 17

T helper cells (Th17 cells) induce a protumor effect via immune

repressions and osteoclast differentiation via RANKL (17).
Effect of immune cells
on bone metastasis

T cells

T cells are derived from hematopoietic stem cells and

lymphoid precursors kept in the spinal marrow. The thymus is

the place where T cells experience early differentiation and are

then kept in secondary lymphoid organs, where they are aroused
FIGURE 1

The interaction of immune cells, tumor cells, and osteocytes during bone metastasis. Cytotoxic CD8+ T cells release TNF-a and IFN-g to
eliminate tumor cells. Regulatory T cells (Tregs) promote tumor cell to bone metastasis through the RANK/RANKL axis. Tumor-associated
macrophages (TAMs) promote tumor cell to bone metastasis through CCL2/CCR2 or CSF-1/ CSF-1R signaling. Natural killer cells (NK cells) can
destroy tumor cells by secreting TNF-a and tumor necrosis factor-related apoptosis-inducing ligand. Dendritic cells (DCs) and TAMs suppress
the cytotoxic capacity of CD8+ T cells via TGF-b, and interleukin-10 (IL-10) to promote tumor progression. Myeloid-derived suppressor cells
(MDSCs) release chemokines, including vascular endothelial growth factor (VEGF) and CCL2/CCR2 signaling, to promote cancer progression
and bone metastasis. IL-17 can also increase bone metastases, while IFN-g and IL-4 secreted from Th1 and Th2 cells, respectively, can inhibit
osteoclast formation and limit bone metastases. NK cells and CD4+ T cells support or repress the production of OCs controlled by the release
of TNF-a or IFN-g.
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by antigen presentation. Classical T helper 1 (Th1), 2 (Th2), or

17 (Th17) cells or induced T regulatory cells (Tregs) are distinct

subsets polarized by naive CD4+ T cells (Th0), as demonstrated

by the cytokines they will be recruited to (18). In CD4+ T cells, as

latent immune inhibitors, Tregs play a vital role in the balance of

the immune system (19). Interestingly, a salient increase in Tregs

in the spinal marrow was observed following potential contact

with metastatic prostate cancer, which is perceived to inhibit

osteoclast formation and bone resorption (20). In addition to

having immunological disorder functions, FOXP3+ Tregs are

indisputably a significant source of RANKL (21). RANKL is the

vital cytokine needed for osteoclast differentiation and tumor

cell migrating to the bone (22), indicating that RANKL+ Tregs

might stimulate DTC recruitment. Evidence suggests that

tumor-specific Th17 cells can promote osteoclast activation

and produce RANKL to induce osteolytic bone lesions (17). IL-

17 can also increase bone metastases, while IFN-g and IL-4

secreted from Th1 and Th2 cells, respectively, can inhibit

osteoclast formation and limit bone metastases (23). CD8+ T

cells can destroy tumor cells by secreting cytotoxic proteins

(perforin and granzyme) through the Fas–Fas ligand axis

mediating apoptosis (4). Furthermore, non-activated T cells

increase osteoclastogenesis, whereas activated T cells are

essential effectors in the protective impact against skeletal

metastasis (24, 25).

The spinal marrow is a repository for the recruitment of

memory CD4+ T cells (26) and CD8+ T cells (27), in which bone-

derived cytokines, such as IL-7, influence them. Under the

control of IL-7, the bone marrow induce the differentiation of

CD4+ and CD8+ T cells from effector to memory T cells. (28).

Feuerer et al. suggested that the number of memory CD4+ and

CD8+ T cells in the spinal marrow of people with breast

neoplasms is increased compared with that in healthy

individuals (29).
Macrophages

Macrophages are derived from spinal marrow progenitor cells

derived from the yolk sac (30). Similarly, polarized macrophages

with a pro-remodeling M2 or pro-inflammatory M1 phenotype

were assessed (31). Inflammatory macrophages are attracted to

the tumor microenvironment, are referred to as tumor-associated

macrophages (TAMs), and are related to unfavorable prognoses in

solid cancers (32). T-cell immunoglobulin and mucin domain-

containing protein 4 (Tim4+) on TAMs could trap and inhibit

CD8+ T-cell cytotoxicity and proliferation for promoting

metastasis (33, 34). Macrophages are a major component in the

tumor microenvironment arising from spinal marrow-derived

monocyte differentiation in response to CC chemokine 2

(CCL2/CCR2) (35) and colony-stimulating factor 1 (CSF-1/

CSF-1R). Furthermore, CSF-1 has been verified to be involved
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in macrophage-driven bonemetastasis (36). Cellular adhesion and

motility in macrophages are regulated by CCL2–CCR2 signaling

(37). Breast tumor cells expressing CCL2 bind to monocyte-

derived CCR2+ stromal cells, including macrophages and

preosteoclast cells, to promote colonization in the lungs and

bone (38). In prostate cancer, TAMs promote the invasion of

tumor cells via CCL2–CCR2 signaling (39). In addition, recent

studies have demonstrated that bone tumor growth can be

weakened by the repression of macrophage-recruiting factors

and TAM reprogramming from M2 to M1 (40). TAM-derived

transforming growth factor-b (TGF-b) could facilitate the

invasion of colorectal cancer cells (41). On the other hand, the

final TAMmolecular theories in the impetus of skeletal metastasis

have not yet been represented. Simultaneously, another type of

macrophage, called metastatic-associated macrophages (MAMs),

is vital to motivate the generation of growth factors and inhibit T-

cell antitumor responses (42).
NK cells

NK cells experience upgrowth and become divided from

CD34+ progenitors in the spinal marrow. The FcgIII− receptor

(CD16) is expressed by most NK cells, which pushes NK cells to

mediate antibody-dependent cellular cytotoxicity (ADCC). NK

cells can destroy tumor cells by secreting TNF-a and tumor

necrosis factor-related apoptosis-inducing ligand (43), or

cytokines, which are capable of reducing tumor cell

proliferation and accelerating the inflammatory response, such

as IFN-g. In addition, NK cells are able to secrete chemokines to

attract T cells, dendritic cells, and monocytes (44), leading to a

specific crosstalk in the adaptive antitumor response (45).

Leukemia cells can inhibit NK cells via RANKL signaling (46).

However, OCs can be stimulated by NK cells via motivating the

RANKL pathway under inflammatory conditions (47). NK cells

support or repress the production of OCs controlled by the

release of TNF-a or IFN-g, respectively (48). Furthermore, NK

cells appear to produce IFN-g in response to a target

combination of foreign cytokines such as IL-2, IL-12, IL-15,

and IL-18.
Dendritic cells

DCs originate from common myeloid progenitors (CMPs),

which differentiate into common dendritic cell progenitors

(CDPs) in the absence of the transcription factor Nur77,

resulting in the generation of plasmacytoid DCs (pDCs) and

conventional DCs (cDCs) (49). The transportation of cDCs,

which are divided into cDC1 and cDC2, to lymph nodes and the

production of a systemic antineoplastic immune response are

controlled by C-C chemokine receptor 7 (CCR7) expression
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(50). The cDC1 subset has the unique capability to cross-present

a foreign antigen, thereby activating Foxp3+ CD8+ Tregs (51,

52). cDC2s are responsible for presenting foreign antigens to

CD4+ T cells and shaping the polarization of cells (53).

Essentially, a consanguineous correlation between cDC2

abundance and non-Treg CD4+ T-cell infiltration into head

and neck squamous carcinomas is demonstrated. For example,

longer progression-free survival was associated with supernal

cDC2s and poor Treg infiltration (54). pDCs seem to be

primarily tolerated in the background of cancer and are

associated with a negative prognosis (55). The upregulation of

MHC molecules and costimulatory molecules is induced by

enabled pDCs, which can still activate CD4+ and CD8+ T cells.

It has also been found that tumor-infiltrating DCs and TAMs

suppress the cytotoxic capacity of CD8+ T cells via the

production of TGF-b and IL-10 (2). Similarly, pDCs recruit

other immunonegative immune cells involving Tregs, and

myeloid-derived suppressor cells (MDSCs) promote, but do

not protect, tumor progression and metastasis (56).

Subsequently, Sawant et al. reported an increasing number of

pDCs in the spinal marrow of mice inoculated with breast 4T1

carcinoma cells (57); thus, therapeutically targeting pDCs might

hold promise for treating bone metastasis.
MDSCs

As a heterogeneous group of immature myeloid cells, MDSCs

are derived from the spinal marrow. MDSCs are made up of two

large groups: granulocytic or polymorphonuclear MDSCs (PMN-

MDSCs) and monocytic MDSCs (M-MDSCs). Importantly,

breast, ovarian, and gastric human neoplasms cultured in vitro

secrete CCL2, and MDSCs from these patients express the

relevant CCR2 and migrate toward these chemokines in vitro

(58). Deletion of CCL2 in a mouse model of spontaneous

colorectal neoplasm diminished the number of colonic MDSCs

(59). PD-L1+ M-MDSCs can differentiate into osteoclasts and are

potent suppressors of T-cell activation (25). In addition to effector

T-cell groups, these data suggest that MDSCs might affect the

expansion and activation of Tregs and conversely mediate

immunosuppression. MDSCs from the bone microenvironment

with bone metastases can subsequently differentiate into

functional osteoclasts, and without bone metastases, they fail to

differentiate into osteoclasts, which illustrates that tumor cells

residing in the bone microenvironment lead to an increased

quantity of activated osteoclasts (60, 61). Enhanced levels of

MDSCs were found in the blood of patients with breast (62)

and prostate neoplasms (63), which is correlated with the tumor

stage. The higher the level of circulating MDSCs in patients with

breast and prostate cancer, the lower the overall survival (64).

Considering the potent impacts of MDSCs on destroying host

immunity and quickening bone damage, MDSCs might become a

latent therapeutic target for bone metastasis.
Frontiers in Endocrinology 04
Potential of modulating
the immune system in the
treatment of bone metastasis

Targeting T cells

T cells can express receptors, such as cytotoxic T

lymphocyte-associated protein 4 (CTLA-4) or apoptotic

process protein 1 (PD-1), and when they interact with ligands,

T cells lose activity. The monoclonal antibodies that intercept

CTLA-4, PD-1, or PD-L1 show significant clinical results in

patients with multiple neoplasms involving advanced melanoma

(65) and non-small cell lung neoplasms (66). The anti-CTLA-4

antagonists and anti-PD-1 antibody nivolumab can block the

inhibitory function of Tregs in vitro, as demonstrated in mice

(67). Tim-4 inhibition significantly improves antitumor

effectiveness in mouse models of anti-PD-1 treatment (34).

Emerging data suggest that the androgen receptor is a negative

regulator of CD8+ T cells in responding to anti-PD-1/PD-L1

treatment (68). Moreover, the usage of sunitinib and sorafenib

which aims at VEGFR2 decreases the percentage of Tregs in

foreign blood (69). To boost the immune response against

tumors, CD8+ T cells are stimulated by vaccination or

engineering T cells to express tumor-specific T-cell receptors

(TCRs) or chimeric antigen receptors (CARs) (4). Engineered T

cells were still detectable 9 months after transplantation in three

patients in a phase I trial, and the number of cancer cells in two

patients with refractory advanced myeloma was reduced. This

result highlights the feasibility and therapeutic capacity of

engineering cancer-specific T cells to attack cancer in the bone

microenvironment (70). Clinical studies have not shown

whether bone metastases can be reduced or eliminated by

engineered T cells.
Targeting macrophages

In view of the crucial character of macrophages in

influencing bone metastasis, targeting macrophages would be

an essential approach for skeletal metastasis therapy. Several

therapeutic antibodies and molecules alone or in combination

with other treatments are used to target TAMs. These treatments

include depletion, reprogramming, and molecular targeting.

Inhibiting CSF-1/CSF-1R signaling and using liposomes

containing clodronate are the most studied therapeutic

approaches to remove TAMs from the tumor microenvironment.

Anti-CD115 antibody (CSF-1R antibody) treatment reduced the

number of TAMs and bone destruction in a breast neoplasm

mouse model (71). TGF-b1 and VEGFA in tumor cells were

downregulated when we depleted macrophages in squamous cell

carcinoma models (72), which demonstrated that VEGFA-

dependent angiogenesis was reduced after TAM ablation.
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Overwhelming studies have suggested that targeting the NF-

kB/CCL2 signal might be beneficial for blocking TAM

recruitment (73). In agreement with this, the use of celecoxib

to suppress NF-kB and the downregulation of CCL2 attenuated

TAM recruitment and increased the apoptosis of tumor cells in

malignant glioma (74).

Oligonucleotide delivery technology is another common

method to reshape TAMs, involving charge-altering released

transporters and other nanoparticles. To restore the negative

effects of TAMs, sunitinib and sorafenib aimed to limit STAT3

or STAT6 in macrophages, subsequently distorting macrophage

polarization (75, 76).
Targeting NK cells

The selection of NK-cell sources and the means of

enhancing NK-cell function in vivo are the key factors

influencing NK-cell therapy. IL-2 and IL-15 are viewed as

essential cytokines that upregulate the viability of NK cells.

Treating human foreign blood mononuclear cells with IL-2

results in the expansion of a group of lymphokine-activated

killer (LAK) cells, which consist primarily of T cells and NK

cells and are highly cytotoxic to tumor cells (77). Furthermore,

IL-2 decreased the amount and size of metastases in mouse

models of pulmonary osteosarcoma when injected repeatedly

at low doses following adoptive LAK cell transfer (78). In initial

studies in syngeneic mouse models of several neoplasms,

recombinant IL-15 was well tolerated and expanded NK and

CD8+ T-cell groups, which promoted tumor suppression and

reduced metastasis (79).
Targeting dendritic cells

The capability of DCs to elicit robust and direct adaptive

immune responses has been exploited for neoplasm
Frontiers in Endocrinology 05
immunotherapy, and targeting DCs may provide a way to

improve immune responses. There is evidence that antibodies

against vascular endothelial growth factor enhance antitumor

immune responses by offsetting DC suppression (80, 81).

DC vaccination is the injection of mature DCs loaded with

tumor antigens ex vivo into cancer patients. Whether this is

clinically feasible has not been established, especially given the

lack of circulating mature cDC1s in human foreign blood (55,

82). In glioblastoma, a phase III trial (NCT00045968) will

evaluate the efficacy of a whole-cell DC vaccine unified with

tumor resection, temozolomide, and radiotherapy, which

showed safety and potential efficacy in earlier results (83).

Unlike injecting exogenously expanded and activated

cDCs, injecting an incremental number of cDCs within

tumors is another method to increase the cumulative

function of the group. Preclinical studies have shown that

systemic injection of Flt3L results in systemic expansion of

the cDC1 population, enhances the number of these cells

within B16 melanomas, and prominently destroys tumor

growth (84). The anti-CD123-directed diphtheria toxin

tagraxofusp-erzs was able to eliminate the pDC population in

acute myeloid leukemia (85). This means that it is being

studied clinically in several types of tumors, including

metastatic breast cancer and non-Hodgkin’s lymphoma

(NCT03789097, NCT01976585).
Targeting myeloid-derived
suppressor cells

Several lines of evidence manifest a close connection

between MDSC accumulation and clinical outcome in cancer

patients (86). The frequency of M-MDSCs is conversely

interrelated with the treatment effect of chemotherapy in

cervical and colorectal neoplasms (87, 88). The number of

PMN-MDSCs is negatively correlated with the response to

chemotherapy in colorectal cancer (88). In patients with
TABLE 1 The interaction of immune cells, tumor cells, and osteoclasts in the bone microenvironment and their therapeutic strategies.

Immune
cells

Tumor cells Osteoclasts Therapeutic strategies References

CD8+ T cells Perforin, granzyme RANKL Vaccination or engineering T cells to express tumor-specific T-cell receptors or chimeric antigen
receptors

(4)

Tregs RANKL RANKL Anti-CTLA-4 antagonists, anti-PD-1 antibodies nivolumab, sunitinib, and sorafenib (65–69)

Macrophages CSF-1, CCR2 – Depletion by CSF-1 inhibitors or CCL2 inhibitors, reprogramming by sunitinib and sorafenib,
molecular targeting

(71–76)

NK cells IFN-g, TNF-a,
TRAIL

IFN-g, IL-4 IL-2 and IL-15 are essential cytokines that upregulate the liveness of NK cells (77–79)

Dendritic cells CCR7, TNF-b – VEGF inhibits DC maturation and DC vaccination and increases the number of intratumoral
cDCs

(81–85)

MDSCs CCR2, VEGF2 RANKL Targeting of MDSCs by chemotherapy, ipilimumab (anti-CTLA-4), and the PDE-5 inhibitor
tadalafil

(87–93)
fr
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unresectable melanoma, the percentages of circulating M-

MDSCs and PMN-MDSCs are inversely associated with

objective clinical responses to ipilimumab (anti-CTLA-4) (89,

90). Recent studies in mouse tumor models indicate that

inhibition of MDSCs during immunotherapy improves the

treatment effect (91, 92). Lu et al. supplemented a combination

of low-dose adjuvant epigenetic modifiers in a mouse model of

lung metastasis, which disrupts the formation of the pre-

metastatic microenvironment by suppressing the migration of

MDSCs and promoting MDSC differentiation into an interstitial

macrophage-like phenotype (86). Fewer circulating MDSCs with

lower iNOS and arginase expression and a greater number of

spontaneously generated tumor-specific T cells are found in

head and neck cancer and multiple myeloma patients who are

treated with tadalafil (90, 93).
Conclusions

In conclusion, the complex interactions among tumor cells,

immune cells, and osteocytes in the spinal marrow

microenvironment demand further research into the

mechanisms that trigger bone metastasis. The function and

number of immune cells in the bone microenvironment

influence the efficacy of the anticancer immune response

(Table 1). A comprehensive understanding of the roles and

functions of T cells, macrophages, NK cells, DCs, and MDSCs in

the bone microenvironment is essential for more effective

treatments for bone metastasis and brings new promise to

patients with bone metastasis.
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