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Endometriosis-associated
infertility: From pathophysiology
to tailored treatment

Giulia Bonavina and Hugh S. Taylor*

Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New
Haven, CT, United States
Despite the clinically recognized association between endometriosis and

infertility, the mechanisms implicated in endometriosis-associated infertility

are not fully understood. Endometriosis is a multifactorial and systemic disease

that has pleiotropic direct and indirect effects on reproduction. A complex

interaction between endometriosis subtype, pain, inflammation, altered pelvic

anatomy, adhesions, disrupted ovarian reserve/function, and compromised

endometrial receptivity as well as systemic effects of the disease define

endometriosis-associated infertility. The population of infertile women with

endometriosis is heterogeneous, and diverse patients’ phenotypes can be

observed in the clinical setting, thus making difficult to establish a precise

diagnosis and a single mechanism of endometriosis related infertility.

Moreover, clinical management of infertility associated with endometriosis

can be challenging due to this heterogeneity. Innovative non-invasive

diagnostic tools are on the horizon that may allow us to target the specific

dysfunctional alteration in the reproduction process. Currently the treatment

should be individualized according to the clinical situation and to the suspected

level of impairment. Here we review the etiology of endometriosis related

infertility as well as current treatment options, including the roles of surgery and

assisted reproductive technologies.

KEYWORDS

endometriosis, infertility, pathogenesis, ovarian reserve, endometrial receptivity, in-
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Background

Endometriosis is a complex and systemic clinical syndrome that can negatively

impact on women’s reproductive health and quality of life (1). Chronic inflammation and

hormonal dependance are the main underlying pathophysiologic mechanisms that drive

endometriosis, and the association of these two key biological features make the natural

history of this disease distinct.
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A possible relationship between endometriosis and infertility

was first suggested in the Corpus Hippocraticum, as women

suffering from dysmenorrhea were urged to conceive as quickly

as possible to increase the chance of become pregnant (2).

Today, nearly 10% of women in their reproductive age suffer

from endometriosis and about one third of them experience

infertility, almost twice the rate observed among women without

the disease (3). Up to 50% of infertile women are found to suffer

from endometriosis (4).

Despite the clinically recognized association between

endometriosis and infertility, the mechanisms implicated in

endometriosis-associated infertility are unclear and this

condition is currently considered multifactorial. In addition,

the diagnosis of endometriosis is currently underestimated due

to the almost exclusive reliance on surgical findings, which

delays diagnosis until symptoms require surgical intervention.

The ability to identify endometriosis also critically depend on

surgeon’s expertise and may preclude early recognition and

treatment. The average time to diagnostics ranges from 4 to 11

years is reported in these patients, and this delay has a significant

impact on health-care utilization and costs (5, 6). Indeed, the

absence of macroscopic lesions or clinical features does not

exclude the diagnosis of endometriosis, as infertility is often the

only health concern. Furthermore, only one-half of women with

endometriosis-associated infertility show typical lesions (7). In

women with infertility, an early diagnosis of endometriosis is

crucial from the perspective of fertility because the burden of the

disease could be even more deleterious when compounded by

the effect of increasing age on ovarian reserve.

The focus of this review is to provide an update of

pathophysiology of endometriosis-associated infertility. We

will also discuss current medical and surgical strategies, and

the role of fertility preservation and of assisted reproductive

technologies (ART) in patients with endometriosis.
Pathogenesis of endometriosis

Understanding the pathogenesis of endometriosis is crucial as

it may have meaningful clinical and therapeutical implications. To

date, none of the proposed theories have been able to

comprehensively explain the natural history of the disease and

its associated diverse clinical presentations. The common thread

to all theories is a complex dysregulated hormonal signaling,

enhanced proinflammatory microenvironment that has the

potential to drive the initiation, maintenance, and progression

of the disease (Figure 1).
Retrograde menstruation theory

The most widely accepted pathogenetic hypothesis is based

on retrograde menstruation as proposed by Sampson in 1927 (8–
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10). Viable endometrial tissue moves into the pelvic cavity

through the fallopian tubes at the time of menses, adheres to

the peritoneal mesothelial cells, proliferates, and finally invades

pelvic structures. Retrograde menstruation is a physiological

event that occurs in approximately 90% of women (11–13).

Viable endometrial tissue has been identified in the shed

menstrual endometrium (13). However, the differences in its

morpho-histological, hormonal, and biological composition

compared with the eutopic endometrium of healthy women

still remain matter of investigation. Endometrial reflux seems to

be enhanced in women with endometriosis and possibly driven

by the action of prostaglandins that may cause disorganized

myometrial contraction (14–16). Moreover, the incidence of

endometrial reflux is much higher in women with congenital

anomalies causing menstrual outflow obstruction (17). This

theory has been well supported by animal models of

endometriosis. Normal endometrial tissue placed into the

peritoneal cavity recapitulates the disease, including the effects

on eutopic endometrium, suggesting that an abnormal

endometrium is not a prerequisite for initiation and

development of endometriosis (18–21).

Early age at menarche, long duration and heavy menstrual

flow are all well-recognized epidemiological risk factors for the

development of endometriosis. The anatomical predominance of

endometriosis in the right side of both hemipelvis and

diaphragm, further supports this theory (22). This asymmetry

has been attributed to both a physiological process (the

clockwise intraperitoneal current) and an anatomical factor

(the presence of the sigmoid colon and falciform ligament).

However, the retrograde menstruation hypothesis is not

sufficient to explain the development of rare forms of the disease.
Coelomic metaplasia and mullerian
remnants hypotheses

The coelomic metaplasia and mullerian remnants hypothesis

are both based on the concept that endometriotic lesions

originate in-situ from embryological remnants or by

metaplasia. Based on the mullerian remnants hypothesis

(“mullerianosis”) (23), endometriosis is a consequence of the

aberrant migration and differentiation of embryonic cell rests

originating from the Mullerian ducts during organogenesis. This

hypothesis can explain the presence of endometriosis in in

adolescents before or shortly after menarche and in fetuses

(24–26). Embryological studies (24) support the presence of

Mullerian remnants in the cul-de-sac area, uterosacral

ligaments, and medial broad ligaments. Alternatively, both

germinal ovarian epithelium and peritoneum may undergo a

Mullerian metaplasia and differentiate into endometrium (27).

This latter theory would explain the presence of endometriosis in

ovary, sigmoid colon, appendix, or more distal sites such as the

diaphragm and pleura (28), although direct infiltration through
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diaphragmatic fenestrations is possible. Additionally, both

hypotheses may explain rare cases of endometriosis in women

with Mayer-Rokitansky-Kuster-Hauser syndrome and other

non-obstructive Mullerian anomalies (29–31), in the absence

of menstruation (menopause) (32) and in men (33–36).
Hematogenous and lymphovascular
dissemination

Sampson recognized that retrograde menstruation does not

explain uncommon extraperitoneal locations and diverse clinical

presentations with symptoms remote form the pelvis (37). He

first suggested hematogenous or lymphatic dissemination of

endometrial like-tissue as an alternative theory. This

hypothesis implies that endometrial cells enter the uterine

vasculature or lymphatic system at menstruation, and they
Frontiers in Endocrinology 03
spread to ectopic sites (38). In murine models of surgically

induced endometriosis, endometriosis-derived cells are capable

of migration and micrometastasis to different extra-pelvic

organs including lung, spleen, liver and brain (39). Clinically,

this theory has been supported by the presence of endometrial

tissue in the uterine vasculature (37) and by evidence of emboli

in sentinel lymph nodes (40).
Stem cell theory

In the last few years, it has become clear that altered stem cell

trafficking contribute to the etiology and pathophysiology of

endometriosis. The first evidence on the contribution of bone

marrow derived stem cells (BMDCs) in the regeneration of the

endometrium was reported in 2004 (41); subsequent studies

have confirmed the bone marrow contribution to endometrium
FIGURE 1

Theories of Endometriosis Pathogenesis. SF-1, steroidogenic factor 1;GATA6, GATA binding protein 6;PGE2, Prostaglandin E2;COX2,
cyclooxygenase-2;ESR-2, estrogen receptor alpha; HOXA10, homebox protein A10;PR-B, progesterone receptor isoform B; GATA2, GATA
binding protein 2.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1020827
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Bonavina and Taylor 10.3389/fendo.2022.1020827
(42, 43). Both progenitor cells within the endometrium and

multipotent cells from bone marrow contribute to endometrial

homeostasis. The BMDSCs travel through the circulatory system

and contribute to the composition of eutopic endometrium (41).

After travelling to endometrium these BMDSCs can become

restricted to an endometrial cell lineage, contributing to the pool

of both stromal and epithelial endometrial progenitor cells.

Some become located in the basal layer of the eutopic

endometrium and regenerate on a monthly basis under the

influence of estrogens. Furthermore, women with endometriosis

have a higher number of these pluripotential cells compared

with healthy women during menses (44).

During menstruation, women with endometriosis shed more

basalis cells, including progenitor cells, than healthy individuals,

these cells can more easily generate endometrium in ectopic

locations than differentiated cells and further expand on

Sampson’s theory of retrograde menstruation (45).

BMDSCs can directly differentiate into endometrium

without first being localized in the uterus. Ectopic

differentiation of circulating stem cells has been proposed as a

pathogenetic mechanism of endometriosis. Mesenchymal

extrauterine stem cells derived from bone marrow and other

sources may also be involved in the pathogenesis of the disease

both in the peritoneal cavity as well as distant sites. Their

inappropriate differentiation to endometrial cells at ectopic

locations is likely the principal source of extraperitoneal

endometriosis (46, 47).

The ability of BMDSCs to contribute to endometriotic lesion

and differentiate into endometrial phenotypes help to explain

how ectopic tissue can occur in locations outside the peritoneal

cavity and in non-peritoneal-derived cells, such as lungs (48–50),

central nervous system (51) and in men (33–36). Furthermore,

BMDSC are attracted by eutopic endometrium under injury and

inflammatory conditions (52). Endometriotic lesions, through

the production and release of pro-inflammatory cytokines and

chemokines (47) and under estrogenic influence (53) recruit

more stem cells to further promote lesion growth. Additionally

circulating endothelial progenitor cells contribute to the

vascularization of endometriotic lesions. Stem cells are also

capable of trafficking between endometriotic lesions and the

eutopic endometrium, and therefore likely contribute to the

impaired uterine receptivity in these women (54). These cells,

derived from endometriosis, migrate as mesenchymal stem cells

(MSC), engraft the uterine stroma, however activation epithelial

Wnt signaling that likely distorts the epithelial-stromal dialog

needed for optimal endometrial development and receptivity.
Genetic etiology

Familiar clusters of endometriosis have been found in

humans (55) and nonhuman primates (56, 57). However, no

distinct inheritance pattern has been established and the notion
Frontiers in Endocrinology 04
that multiple genes contribute to endometriosis is widely

accepted. Studies on monozygotic twins show that

endometriosis has an estimated total heritability of

approximately 51% (58–60). Daughters of mothers with

surgically confirmed endometriosis have more than double

risk of developing the disease (61). Moreover, familial

inherited of endometriosis tends to be more severe with an

earlier onset of symptoms compared with sporadic cases (55,

62). Meta-analyses of genome-wide association studies of diverse

populations have identified a robust association of

endometriosis with certain risk loci involved in sex steroid

hormone pathways, indicating a possible role in the

development of advanced stages of endometriosis (63–68).

However, none are common and in total these genetic variants

account for only a small fraction disease risk. In general, a

multitude of genetic variants with only weak individual effects

care likely responsible for the increased hereditary risk of

endometriosis (69).

In the context of infertility associated with endometriosis, a

recent cross-sectional study including 213 infertile women with

endometriosis who underwent IVF procedures, found that single

nucleotide variants of FSHB and FSHR separately interfered

with the hormonal profile (both FSH and LH levels) and

ultimately with the number of oocytes retrieved in these

patients at any stage of the disease (70).
The epigenetic theory

There is a growing body of evidence that epigenetics has a

key role in the pathogenesis of endometriosis. Epigenetic

modifications involve dynamic and reversible changes in the

chromatin structure influencing gene expression in a heritable

fashion. Epigenetic phenomena are likely to have implications

for diagnosis, prognosis and for the possibility of developing

targeted therapeutic strategies. The hallmarks of epigenetic gene

regulation are DNA methylation (hypo and hypermethylation),

histone modifications, and microRNA production, which lead to

expression or suppression of specific proteins. Comparative

studies of both ectopic lesions and eutopic endometrium

stromal cells have provided data on the role of epigenetic

factors in the etiopathogenesis of endometriosis and its related

infertility (19, 71–73).

DNA methylation is one of the most common epigenetic

modifications and active in endometrium. Numerous studies

have revealed a direct correlation with the expression of genes

influencing the implantation process in eutopic endometrium of

women with endometriosis. Homebox protein-A10 (HOXA10)

is a gene that has a well characterized and essential role in

generating a receptive endometrium. Hypermethylation of the

HOXA gene promoter has been demonstrated both in animals

and in the eutopic endometrium of women with endometriosis

compared to healthy controls (19, 74, 75). As promoter
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hypermethylation is generally associated with gene silencing, the

reduced HOXA10 gene expression in the endometrium of

women with endometriosis is, at least in part, responsible for

the impaired uterine receptivity. Conversely, one recent study

(76) found hypomethylation of the HOXA10 gene in the

endometrium of women with a previous history of

endometriosis and under hormonal treatment at the time of

surgery, opening the possibility that long-term therapy may

reverse epigenetic signatures classically seen in the disease.

Aberrant DNA methylation patterns have also been found in

endometriotic tissue compared with eutopic endometrium. The

promoter of progesterone receptor (PR) isoform B gene is

hypermethylated in endometriosis, with subsequent reduced

PR-B expression (77–79) contributing to the relatively

persistent progesterone resistance. Similarly, the different level

of expression and methylation (hypo or hyper) of certain

transcriptional factors (GATA6, GATA 2 and steroidogenic

factor 1(SF1)) may account for estrogen dependency and

progesterone resistance by changing the expression of both

estrogen receptor-beta and progesterone receptor (80–82).

Lastly, the invasive proprieties of endometriotic cells have also

found to be regulated by hypermethylation in endometriosis

(83–85). Let-7 microRNA is hypermethylated in endometriosis

leading to decreased Let-7 expression and disinhibition of KRAS

and other genes that drive endometriosis growth and

invasion (86).

Little is known about the role of histone modifications in the

pathogenesis of endometriosis, and results are often conflicting.

A marked histone hypoacetylation has been shown in

endometriotic stromal cells of both eutopic and ectopic tissue

of affected women compared to healthy endometrium (87) and

HDAC enzymes seems to play a key role in this process (88–91).

Also, acetylation levels of H3 and H4 histones are lower in

ectopic lesions and eutopic endometrium of women with

endometriosis compared with healthy women (92, 93).

MicroRNAs (MiRNAs) are small RNA molecules of

approximately 22 bases. They interact with mRNA and change

gene expression by inhibiting translation or inducing mRNA

degradation. Their increased expression causes repression of

translation from the mRNA while decreased MiRNA expression

can lead to upregulation of protein production from mRNA.

They also target and regulate both methylation and acetylation

processes, thereby modifying the epigenome. Unlike other

epigenetic mechanisms, miRNAs regulate gene expression at a

post-transcriptional level, and they are found both intra- and

extracellularly (94). They target genes involved in hormone

metabolism, cell cycle proliferation, migration, and invasion,

immune- inflammatory response, epithelial-mesenchymal

transition (EMT), apoptosis and angiogenesis (95). Differential

expression of more than 100 miRNAs has been found in paired

endometriotic lesions and eutopic endometrium of women with

and without endometriosis (96, 97). In addition, different

expression profiles were detected and reported as characteristic
Frontiers in Endocrinology 05
to each lesion subtype (ovarian, superficial, and deep infiltrating

endometriosis) (98). Moreover, miRNA signatures in

endometrium are likely to change with the respect of the

different phases of the menstrual cycle (99, 100). The most

frequently detected miRNA both in endometriomas and

endometriotic lesions, found to be downregulated in six

studies was miR-200 family, known to play a crucial role in

the EMT, a relevant process in the establishment of

endometriotic lesions (101, 102). Other miRNA reported to be

differentially regulated (up- or downregulated) in endometriotic

lesions in more than two studies were miR-1, -29c, -34c, -100,

-141, -145, -183, -196b, -200a, -200b, -200c, -202, -365, and -375

(103). Several of these are also known to be involved in EMT, as

well as, cell proliferation, cell adhesion, invasion and

angiogenesis and demonstrating binding to target mRNAs is

an important step to validate their role in the pathogenesis of the

disease. Extracellular miRNAs are found in all body fluids,

including the circulation (both serum and plasma) (104).

Circulating microRNAs can potentially impact endometriotic

lesion development by mediating intercellular communication

between eutopic endometrium and ectopic implants (105).
Pathophysiology of endometriosis
associated infertility

Translational animal models of
endometriosis associated infertility

Considering the limited knowledge of endometriosis

pathophysiology, research has long focused on finding animal

models to study suspected pathogenic mechanisms and to find

novel targets for therapy. As with human endometriosis, animal

models of endometriosis reveal an impact on fecundity in terms

of impaired folliculogenesis, ovulation, fertilization,

implantation or embryonic developement (106). Non-human

primates have been extensively used as experimental models for

endometriosis because of their phylogenetic proximity to

humans. They menstruate cyclically and therefore they can

develop endometriosis spontaneously, resembling the human

disease based on retrograde menstruation. To date, 11 species of

menstruating non-human primates have been reported (107).

Ectopic lesions are laparoscopically and histologically identical

and at a similar pelvic sites (108). However, spontaneous

endometriosis develops slowly, at a lower rate compared to

humans and might be multifactorial. Therefore, alternative

methods of artificially induced endometriosis have been

introduced in these species: cervical repositioning (109),

cervical occlusion (110) or surgical induction (18, 21). The use

of the non-human primate model of endometriosis, either

inducible or spontaneous, seems to provide an excellent tool to

investigate not only the pathogenesis of disease but also its
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associated infertility and impaired endometrial function. These

models offer the opportunity to investigate the effect of

endometriosis on the eutopic endometrium because of their

similar reproductive physiology and endometrial pattern

compared to humans. However, high costs, restricted facilities

and ethical challenges are limiting their use for experimental

purposes. Conversely, rodents do not menstruate and therefore

they do not develop endometriosis spontaneously. Only

homologuos models of surgically induced endometriosis have

been used so far in this setting. Heterologous mouse models

consisting of immunodeficient mouses do not seem offer obvious

advantages in the study of endometriosis associated infertility.

Ectopic transplanted tissue grows and behaves in a hormone-

dependent manner, and they exhibit similar histological patterns

compared with human endometriotic lesions (106). Despite of

these limitations, the rodent model offers a low cost option and

the opportunity to perform studies on large homogeneous

groups of genetically similar animals. Transgenerational and

long-term studies can also be performed because there is no

rejection of the transplanted ectopic tissue. For an accurate

model of the human condition, an intact hypothalamic-

pituitary-ovarian axis in the animal recipient is essential for

the evaluation of endometriosis and its related infertility.

Another challenge is the difficulty in developing models that

recapitulate all subtypes of endometriotic disease and therefore

individualize and target. For example, there is a lack of specific in

vivo models which resemble characteristics of ovarian

endometriosis and its related infertility. To date, few animal

models of ovarian endometriosis have been successfully

implemented (108, 111, 112). Spontaneous ovarian

endometriosis in non-human primates is also not as common

as in humans (108). Lastly, a major limitation of these models is

the concomitant establishment of other subtypes of the disease

within the peritoneal cavity causing potential confounding

effects. To capture the full extent of human disease it is

possible to transplant human endometriosis into an

immunodeficient mouse. This model may best recapitulate

human disease (113).

Role of pain
For a successful natural conception, the feasibility of sexual

intercourse is an important prerequisite, and one that is often

neglected, however this is a potentially relevant mechanism

involved in endometriosis-associated infertility. Pain may be a

factor involved in endometriosis-related infertility when

superficial dyspareunia (pain occurring in or around the

vaginal introitus) makes intercourse difficult to achieve or deep

dyspareunia makes intercourse difficult to sustain, leading to

avoidance to sexual activity. However, only a few studies have

focused on the relationship between superficial dyspareunia and

endometriosis and is often concomitant with deep dyspareunia

(114, 115). One cross-sectional study conducted on 300 women
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with histologically confirmed endometriosis reported that the

severity of superficial dyspareunia was associated with increased

odds of infertility concerns (116). Endometriosis is associated

with a 9-fold increased risk of deep dyspareunia mostly due to

the infiltrative form and severe stages of the disease affecting the

posterior vaginal fornix, the pouch of Douglas, the uterosacral

ligaments, and the rectum (117–119). Although relatively

frequent, dyspareunia, is not the exclusive sexual complaint in

women with endometriosis. Systematic reviews have highlighted

that about two thirds of women with endometriosis have some

form of sexual dysfunction not limited to deep dyspareunia

(120–122). Chronic, nonmenstrual pelvic pain associated with

the disease might influence sexual life by reducing desire,

frequency of sexual intercourse, arousal, or orgasm. This will

have a significant negative impact on intimate relationships,

emotional well-being, and quality of life in general. In this

regard, a holistic approach, rather than just a mechanistic

approach, is mandatory given the complex nature of

human sexuality.
Mechanical factors
Pelvic adhesions and anatomical distortion potentially affect

the conception process in endometriosis. Inflammation, fibrosis,

adhesions, and surgical sequela are the main pathophysiologic

processes involved. Anatomical distortion and mechanical

factors may impair oocyte release from the ovary, inhibit tubal

ovum pick up or ovum transport, and/or block sperm transfer

into the fallopian tube. Interestingly, no term pregnancies

occurred in a non-human primate animal model of induced

endometriosis when adnexal adhesions were noted on the same

side as the ovulation occured (123).
Ovarian reserve
The ovary is the most common location of endometriosis.

Ovarian reserve is one of the main prognostic factors regarding

fertility and is in large part related to a woman’s age. Ovarian

reserve is defined as the supply of non-growing, unrecruited

primordial follicles (124); currently, a clinical tool that accurately

predicts ovarian reserve does not exist. Despite concerns over

their role and its specificity in clinical practice, antral follicle

count (AFC) and serum anti-Mullerian hormone levels (AMH)

are currently the most widely used indices of ovarian function

(125). AMH is best used in identifying women who may be poor

responders to gonadotropin stimulation in the setting of assisted

reproductive technologies (ART) (126). AMH concentrations

are not greatly affected by the menstrual cycle or oral

contraceptives, making measurement possible at any time.

At present, the pathophysiologic mechanism of diminished

ovarian reserve in endometriosis remains unclear. Nevertheless,

there is a growing molecular, histological, and morphological

evidence that endometriomas have a detrimental effect on
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ovarian function. Whether the endometrioma reduces the

amount of functional tissue available by space-occupying effect

(mechanical stretching damage) or by a direct toxic effect

remains unknown.

An endometrioma is a peculiar benign cyst without a real

capsule; therefore, there is exchange of cysts contents with the

adjacent healthy ovarian cortex. Unlikely other benign cysts, the

fluid of endometriotic cyst is able to induce oxidative stress in

viable cells and potentially cause damage to healthy tissue.

Molecular comparative analysis of the cystic fluid revealed

high concentrations of free iron which is able to mediate the

production of reactive oxygen species (ROS) that are highly

diffusible through cellular compartments. An increase in the iron

concentration in the follicular fluid from follicles in contact with

the endometrioma was found in comparison with the

contralateral healthy ovary (127). Moreover, proteolytic

enzymes, inflammatory and adhesion molecules were also

found in the endometriotic cyst fluid microenviroment (128).

Thus, the release of toxic cysts contents in the adjacent ovarian

parenchyma may lead to oxidative stress, fibrosis, loss of cortical

s troma, smooth musc le ce l l metaplas ia , impaired

vascularization, and, at later stage, reduced follicular

maturation and atresia in early follicles (128). Notably, the

demonstration of increased oxidative stress affecting the

normal ovarian cortex surrounding an endometrioma strongly

suggest a ROS-induced fibrogenic response, leading to inhibition

of angiogenesis and to follicular damage (129).

Maneschi et al. (130) first found a reduced follicular number

and activity prior to surgery compared in histopathological

specimens of endometriomas compared to other benign cysts;

these findings were later confirmed in other similar studies

eva lua t ing fo l l i cu la r dens i t y (131–133) . Another

histopathological study also found increased fibrotic tissue

surrounding endometrioma in comparison with that of other

benign cysts (134). Interestingly, focal inflammation in the

ovarian cortex of affected ovaries was suggested to cause

enhanced follicular recruitment and atresia as a result of

fibrosis and loss of cortex-specific stroma that maintains the

follicular niche (135). Hence, excessive primordial follicle

activation was proposed as a mechanism of “burn-out” of the

follicular reservoir in ovarian endometriosis (136). Primordial

follicle activation is an irreversible process and results in

follicular depletion. The PI3K/PTEN/Akt/FOXO3 and PI3K/

Akt/mTOR signaling pathways are the best-characterized

regulators of primordial follicle activation during the initial

recruitment. Takeuchi et al. (136) demonstrated that the

number of primordial follicles was diminished, whereas

primary, secondary, antral and growing follicle numbers

increased in human ovaries with endometrioma, and this effect

was mediated by the PI3K-PTEN-Akt-Foxo3 pathway. Similarly

luteinized granulosa cells of women with endometriosis are

characterized by increased apoptosis (137), however the

specific putative mechanism leading to cell loss has not been
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yet identified. One recent study (138) found that proteins

involved in apoptotic pathways were significantly increased in

cortical tissue surrounding small endometriotic cysts (<3cm) but

not in those surrounding other benign cysts.

Clinical findings confirm this trend; one recent, large,

prospective cohort study including 106,633 premenopausal,

laparoscopically confirmed endometriosis patients found

higher risk for early natural menopause compared to those

without endometriosis, especially in nulliparous women and in

those who never used oral contraceptives (139). In two recent

meta-analysis both serum AMH and AFC were found to be

reduced in patients with unoperated endometriomas compared

to patients with other benign ovarian cysts without

endometriosis (140, 141). Moreover, in a prospective

longitudinal study, a time-dependent effect was recently where

serum AMH decline in women with untreated endometriomas

faster than in age-matched healthy controls (142). Five meta-

analyses (143–146) evaluating reproductive outcomes of women

with endometrioma who had not undergone previous adnexal

surgery found a reduced responsiveness to ovarian stimulation

as measured by higher cycle cancellation rate, lower number of

oocytes retrieved and lower number of formed embryos despite

similar pregnancy and live birth rates. Besides their overall effect,

important questions have been raised concerning endometrioma

and the effect of size and bilaterality. Indeed, several comparative

studies (147–150) in patients with unilateral endometriomas

undergoing IVF showed that the affected and the healthy ovary

produce a similar number of codominant follicles and oocytes

perhaps indicating more than a local effect in the affected ovary;

a single visible endometrioma maybe a marker of bilateral

disease or alternatively there may be a systemic effect of the

single endometrioma on both ovaries. Women with bilateral

endometriomas demonstrate an even lower response to

stimulation, however clinical pregnancy rate are not affected

(151–153), likely overcome by the availability of multiple eggs

and embryos

Another key concern is whether surgery has a negative

impact on residual ovarian function. Despite the many studies

that have been performed to evaluate the impact of surgical

treatment of ovarian endometrioma on ovarian reserve, the data

are still inconclusive. The potential detrimental impact of

adnexal surgery on ovarian reserve has been elucidated in

several histological studies confirming that cystectomy is

generally associated with inadvertent removal of healthy

ovarian tissue and primordial follicles adjacent to the cyst’s

pseudocapsule (154, 155); this effect increases proportionally

with cyst diameter (156), and ultimately is poorly correlated with

the level of expertise in reproductive surgery (157, 158). Unlike

other benign cysts, in which a well-defined capsule is present,

endometrioma is not surrounded by a capsule (154) and

technical difficulties may arise due to the absence of a clear

cleavage plane. However, the damage inflicted by surgery may

also be due to the related local inflammation or vascular
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compromise secondary to excessive manipulation of the cortex

with subsequent tearing, bleeding, and the need for

electrosurgical coagulation (159). Five meta-analyses showed a

significant reduction in serum AMH concentrations after

surgical treatment of endometriomas (160–162) and this effect

is persistent post-operatively up to 18 months (162) and more

pronounced in case of bilateral adnexal surgery (163–165). In

contrast, two meta-analyses showed that ovarian reserve

evaluated by AFC is not decreased after surgical treatment of

endometriomas (162, 166). Concerning reproductive outcomes

following IVF treatment, two recent meta-analyses (167, 168)

showed a lower number of oocytes retrieved in women who had

surgical treatment for endometrioma compared to women with

expectant management; this finding was previously confirmed

separately in case of unilateral treatment, compared with the

contralateral normal ovary without endometrioma in the same

patient (144). However, two meta-analyses (144, 169) concluded

that women who had surgical treatment before IVF/ICSI had a

similar live birth rate, clinical pregnancy rate, miscarriage rate,

number of oocytes retrieved, and cancellation rate per cycle

compared with those with untreated endometrioma. Lastly,

according to a recent cohort study (170), the SAFE (surgery

and ART for endometriomas) trial, about 50% of women with

endometrioma were able to conceive spontaneously within 6 to

12 months after surgery. On the other hand, higher FSH and LH

levels between the 2nd and the 5th day of the cycle prior to IVF

required higher doses of gonadotropins for ovarian stimulation,

and lower number of oocytes were retrieved after surgery for

endometrioma in the remaining cohort of patients addressed for

IVF, compared with women with unexplained infertility.

Despite all these efforts, further clinical analysis

implementing standardization of endometrioma size,

bilaterality, surgical technique, post-operative time-interval

evaluations and clinical measurements are needed to help in

elucidating both contributions and the magnitude of the effect.
Oocyte quality, embryo transport, sperm
function and motility, sperm-oocyte
interaction

The possible effect of ovarian endometriosis on oocyte

quality is still under debate. Deeper understanding of the

impact of the disease on oocyte quality is crucial as fertility

preservation techniques are gaining attention in the counseling

and treatment of this patients. Only few studies have investigated

the impact of endometriosis on embryological competence. A

recent meta-analysis including 22 studies indicate that

endometriosis does not affect embryo morphology: Women

with endometriosis have comparable high-quality embryo rate,

cleavage rate, and embryo formation rate, regardless the stage of

the disease (171). Results from several meta-analyses analyzing

IVF outcomes, are controversial due to the high heterogeneity of

the included studies (172–175). One recent large cohort study
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fertilization rate and embryo quality, despite a reduction in

viable pregnancy rate. Conversely, one recent retrospective

analysis using time-lapse technology observed altered relative

kinetics in embryos from patients with endometriosis,

supporting poorer embryo quality (176). Lastly, from the

oocyte donation perspective, reduced pregnancy and

implantation rates are observed when oocytes come from

donors with endometriosis (177–179), supporting an effect of

endometriosis on embryo quality. In contrast no difference was

seen in recipients of donated oocytes based on the presence or

absence of endometriosis. However, the cases used in these

studies do not reflect the general population of women with

endometriosis. The recipients in oocyte donation programs are

relatively older compared with the majority of women with

endometriosis seeking for pregnancy. With diminishing ovarian

reserve and menopause endometriosis typically resolves. A

history of endometriosis in a recipient of donor oocytes may

not reflect current disease status. Therefore, use of results from

oocyte donation does not provide a valid model to evaluate

implantation and pregnancy rates in young women with

infertility related to endometriosis.

Dysregulation of steroidogenesis and alterations of

i n t r a f o l l i c u l a r m i c r o env i r onmen t a r e th e ma in

pathophysiological processes investigated in the context of

endometriosis. E2 is crucial for follicular maturation and

oocyte competence; follicular fluid also plays an important role

in the reproductive performance of oocytes. Alterations in the

normal physiology of the granulosa cells such as increased

apoptosis and dysregulations of molecular pathways involved

in its development and have been intensively studied. Granulosa

cells of women with endometriosis are characterized by a

decreased expression of P540 aromatase, a key enzyme in

estrogen production. Similarly, some evidence also indicates an

altered progesterone secretion from granulosa cells that might

affect normal oocyte maturation (180, 181). Symmetrical lower

E2 levels and higher progesterone levels were found in the

follicular fluid of patients with endometriosis compared to

controls (182). Moreover, follicular fluid has been shown to be

subject to an important oxidative stress (183–188). An

imbalance in ROS and antioxidant systems in the oocyte

microenvironment could promote abnormal oocyte

development, causing DNA damage, which would result in

lower oocyte quality. In another study, cryopreserved human

oocytes exposed to endometriotic fluid from patients with

advanced stages of the disease had excess cel lular

fragmentation of derived embryos that may lead to impaired

embryo development by inducing apoptosis in surrounding

blastomeres or by altering blastomere division (189).

An altered systemic and peritoneal immune and

inflammatory profi le that characterize women with

endometriosis has also been proposed to directly influence the

follicular fluid composition. Altered levels of pro-inflammatory
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cytokines and growth factors (IL1B, TNFa, IL2, IL8, IL12, IL6,

RANTES) have been reported in the follicular fluid of women

with endometriosis compared to controls (190–192). Follicular

fluid is released into the peritoneal cavity at each ovulation.

Three studies have shown spindle and chromosome damage

after incubating murine (193, 194) and bovine (185, 195) oocytes

in metaphase II with both peritoneal fluid and follicular fluid

derived from infertile women with endometriosis. A reduced

implantation rate in normal rabbits was observed when the

peritoneal fluid from rabbits with surgically induced

endometriosis was transferred (196). On the other hand,

intraperitoneal injection of peritoneal fluid from women with

endometriosis significantly reduced implantation rates in rabbits

as well as in hamsters (197, 198).

Gamete transport is also affected by the inflammatory

microenvironment, anatomical distortions and uterotubal

dysperistalsis associated with endometriosis (15). The

endomet r i o t i c p ro - inflammatory pe r i tonea l flu id

microenvironment may also affect sperm function (199–201)

by inducing sperm DNA fragmentation (201), disrupt sperm

membrane permeability or integrity (202), reduced sperm

mobility (203), impaired sperm-oocyte interaction (204) and

abnormal sperm acrosome reaction (205).
Impaired ovulation
Clinical data concerning spontaneous ovulation rate in these

women is poor and controversial (206, 207). Prolactin levels are

significantly higher in women with endometriosis when

compared to those of women without endometriosis.

Hyperprolactinemia prevents luteinizing hormone pulsatility

and interferes with hypothalamic function by blocking

estrogen receptors, thus producing anovulation. Another

potential cause of ovulation failure in women with

endometriosis is the luteinized unruptured follicle syndrome

(208), a condition challenging to estimate in clinical settings in

which the dominant follicle undergoes luteinization but fails to

rupture at or to release the oocyte. Altered patterns of estrogen

and progesterone secretion leading to an abnormal luteal phase

may also compromise ovulation in these women (209). An

association between endometriosis, luteinized unruptured

follicle syndrome, and impaired fertility was observed in non-

human primates animal models of endometriosis (123, 210) as

well as in a mouse model of surgically-induced endometriosis

(211, 212).
Endometrial receptivity
The implantation rate is clearly diminished in women with

endometriosis during both natural cycles and ART treatments,

even in patients with minimal disease (213–215). However, data

from clinical studies suggesting that endometriosis leads to

implantation defects implicating the endometrium is still
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conflicting (216, 217). Two recent reports showed similar

outcomes in terms of implantation rates through ART cycles

when compared to healthy controls (218, 219).

Defective implantation could be due to a reduced endometrial

receptivity or decidualization capacity in these women.

The eutopic endometrium of women with endometriosis

displays several molecular and functional, abnormalities

compared to healthy women’s endometrium (220–223). Gradual

and profound alterations have also been detected in the

endometrium of endometriosis-induced baboons (224, 225).

However, the mechanism and specific signal that leads to

alterations in the endometrial microenvironment of women with

endometriosis is not fully characterized and is still unknown

whether changes in the endometrial pattern are the cause for the

infertility and for presence of ectopic lesions or vice versa.

Endometrial receptivity and decidualization is dependent

upon hormonally regulated molecular processes. Estradiol (E2)

and progesterone (P4) responsive signaling pathways are

regulated in an epithelial and stromal compartment-specific

manner in the endometrium. Progesterone is the main

hormone responsible for the transient receptive endometrial

phenotype, essential for embryo implantation. The

endometrial response to P4 is characterized by inhibition of

estrogen-dependent proliferation of epithelial cells, secretory

maturation of the glands, and transformation of stromal cells

into specialized decidual cells. Functional dysregulation of

steroid hormone signaling in endometriosis, such as

upregulation of E2-induced cell proliferation, inflammation

and progesterone resistance, seems to play an important role

in impairing endometrial receptivity in these patients (226, 227).

The shift toward estrogen dominance promotes inflammation,

angiogenesis, cell proliferation, and immunosuppression. Both

total endometrial PR expression and PR-A/PR-B isoforms ratios

are dysregulated in the endometrium of women with

endometriosis (222, 228–230) and in mice with induced

endometriosis (19). Moreover, progesterone receptor

expression levels are lower in women with endometriosis

associated-infertility (231), whereas estrogen receptor 1 (ESR-

1) levels are increased in the mid- secretory phase endometrium

of these women compared to controls (232, 233).

From a histological perspective, Noyes et al. in 1950 have been

proposed eight morphological criteria to evaluate endometrial

receptivity, and for many decades they were adopted as the main

diagnostic tool for detection of endometrial receptivity defects.

However, these criteria have been questioned in recent years and

several randomized control trials (RCT) (234, 235) have

invalidated their use based on data demonstrating that

histological dating of the endometrium does not discriminate

between fertile and infertile women. Similarly, the negative

predictive value of the endometrial thickness and the

endometrial pattern as ultrasonographic parameters (236–239)

in predicting endometrial receptivity are insufficient (240).
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A transition from an anatomical and histological to a

molecular perspective led to the genome-wide screening of all

transcribed genes. Transcriptomic analysis of both eutopic and

ectopic endometrium from women with or without

endometriosis found dysregulations of selected genes that are

implicated in the implantation process (241). Interestingly,

HOXA10 is a progesterone target in the endometrium. The

homebox gene family is critical in the development of the female

reproductive tract during embryonic stages as well as in the

regulation of endometrial receptivity during adulthood in

response to steroid hormones (242). Decreased HOXA10 and

HOXA 11 expression has shown to be involved in impaired

endometrial receptivity, resulting in decreased implantation

rates (75, 243). Patients with endometriosis do not show the

normal physiologic rise in HOXA10 and HOXA11 during the

mid-luteal phase of the menstrual cycle (75, 243, 244). HOX

gene expression is also subjected to epigenetic modifications that

leads to long-lasting alterations in endometrial receptivity (245).

HOXA10 hypermethylation is an important mechanism

responsible for its diminished expression (74). Both murine

and baboon endometriosis models showed hypermethylation

of the promoter region of HOXA10 and decreased expression of

HOXA10 genes in the eutopic endometrium (19, 246). In

humans, hypermethylation of HOXA10 was also identified in

the endometrium of women with endometriosis (71, 74). Lastly,

under normal conditions, high expression of the HOXA10 gene

suppresses the transcription of the EMX2 gene, which is also

essential in regulating endometrial receptivity and implantation.

With the diminished expression of HOXA10 in endometriosis,

the increased level of endometrial EMX2 directly affects

endometrial cell proliferation and function during the peri-

implantation period, resulting in aberrant implantation (247).

Integrins are cell adhesion molecules expressed in the

endometrium during the receptive window and therefore

involved in successful implantation. Interestingly, B3-integrin

subunit is a direct downstream target gene of both HOXA10 and

ESR-1 (248) and its aberrant expression have been described in

the endometrium of women with endometriosis. Moreover, in

the clinical setting, ART is less effective in patients with lower

expression level of B3-integrin in the eutopic endometrium

(249). Other transcriptional factors involved in regulation and

mediation of progesterone signaling (IGFBP1, GATA2, FOXO1,

ARID1A, NOTCH1and WNT4), required for successful

implantation are also reduced in endometrium of women with

endometriosis. In human endometrial stromal cells, silencing of

GATA2, diminishes markers of decidualization (82) and

interestingly the expression level is significantly reduced in the

endometrium of women with endometriosis (80). Defects in

decidual response have been also investigated in the eutopic

endometrium of women with endometriosis. Compromised

decidualization of cultured stromal cells was found in fresh

shed endometrium as well as in the eutopic endometrium of

women with endometriosis compared with matched healthy
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controls (250, 251). Several pathways have found to be

aberrant in endometriosis (251–256) contributing to the

unfavorable environment and promoting aberrant effects on

the maternal/embryo interface. Increased activation of PI3K/

AKT (252) pathway and decreased NOTCH signaling (256)

contributes to inactivates FOXO1, an important mediator of

decidualization involved in the progesterone signaling.

Moreover, AKT pathway has been shown to downregulate and

upregulate ESR-2 and ESR-1, respectively, with the net effect of

promoting estrogen dominance (257, 258). Lastly, IGFBP1, a

downstream target gene of HOXA 10 and a marker of

decidualization, is reduced in the endometrium of women with

endometriosis (251), and it is also downregulated in the eutopic

endometrium of mice with induced endometriosis (19).

I t i s s t i l l poorly understood how the immune

system contributes to and influences the endometrial

microenvironment and the implantation window. Data is

conflicting on the immune cell population of both ectopic and

eutopic endometrium of women with endometriosis and controls,

especially regarding absolute numbers, markers, activation states

and cycle dependence due to heterogeneity of studies (259).

Eutopic endometrium microenvironment of women with

endometriosis seems to be more pro-inflammatory than

controls and aberrant functions of certain immune population

may lead to an inhospitable environment for embryo

implantation. Interestingly, type I classically activated

macrophages, that secretes proinflammatory factors, are the

main population in eutopic endometrium of women with

endometriosis, across all cycle phases, compared with normal

controls (260–262). This proinflammatory predominance may

decrease embryo nidation. The relative less cytotoxicity of natural

killers together with their higher immaturity in the eutopic

endometrium of women with endometriosis was significantly

correlated with the infertility status in the same group (263).

Concerning the role of B cells, anti-endometrial antibodies may

also play a role in impaired implantation by affecting directly

endometrial function for embryo receptivity (264). Finally,

circulating and endometrial/decidual regulatory T cells (Tregs)

have shown to be reduced in women with recurrent pregnancy

loss, recurrent implantation failure and endometriosis (265).
Adenomyosis and other uterine factors
Endometriosis and adenomyosis often co-exist, especially in

infertile women (266, 267). Additionally, the concomitant

presence of both conditions seems to worsen fertility outcomes

(267). In baboons, endometriosis was found to be statistically

significantly associated to adenomyosis and the latter was found to

be strongly associated with primary infertility (268). Several

pathogenetic hypotheses have been postulated regarding

adenomyosis and its associated infertility, including junctional

zone thickness and subsequent perturbed uterine peristalsis that

may alter utero-tubal transport, as well as biochemical, functional
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and epigenetic alterations in both eutopic and ectopic

endometrium (269). The eutopic endometrial microenviroment

in adenomyosis differs from the endometrium of unaffected

women (270, 271). However, it remains conflicting whether

these changes are of clinical significance and, in particular, in

the setting of assisted reproductive technologies. According to the

most recent meta-analysis in the field (213, 272) the presence of

adenomyosis was associated with lower clinical pregnancy rate,

higher risk of miscarriage following ART, and (independently of

the mode of conception) with adverse pregnancy and neonatal

outcomes. However, because of the limited number of

comparative studies and their heterogeneous design, the real

influence of adenomyosis alone on fertility is still controversial

and poorly understood. One recent retrospective cohort study

including more than 2000 subjects who underwent ART and by

excluding those with decreased ovarian reserve and coexistence of

endometriosis and fibroids, found that adenomyosis has a

negative effect on IVF outcomes including an increased risk of

miscarriage and a reduced live birth rate (273). There are several

major limitations in investigating the impact of adenomyosis on

infertility. First, there are major diagnostic limitations related with

coexistence of endometriosis and adenomyosis, making the

interpretation of the available literature difficult. Second, with

the advent of 3D ultrasound and the use of magnetic resonance

imaging the diagnosis of adenomyosis can now be relatively

reliable without the need of histological examination of the

surgical specimen (274). However, there is no consensus

regarding diagnostic features of adenomyosis using imaging

making the interpretation of observational studies challenging;

different imaging criteria to define adenomyosis are commonly

used. Lastly, adenomyosis frequently coexists with other

gynecological disorders and potential confounders, such as

uterine leyomiomas. As with adenomyosis, uterine fibroids, in

particular submucous leyomiomas, has been associated with lower

implantation rates and increased risk for early pregnancy loss

(275, 276). The main pathophysiological processes implicated in

endometriosis associated infertility are summarized in Figure 2.
Management of endometriosis
associated infertility

Clinical management of infertility associated with

endometriosis is challenging due to lack of high-quality

scientific evidence and conflicting available guidelines (277).

The complexity in therapeutic decision-making is mainly

related to the heterogeneous population of infertile women

with endometriosis which includes diverse patient ’s

phenotypes. This often requires innovative diagnostic and

therapeutic tools to target the specific dysfunctional step of the

reproduction process. Therefore, care of women with
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endometriosis-associated infertility is best undertaken in

referral centers where a multidisciplinary approach can be

offered and where both surgery and IVF services are present.

From the patient perspective, a shared and informed

decision is mandatory because different treatment options may

involve both clinical and personal aspects. The treatment must

be individualized according to the clinical situation and to the

suspected level of impairment. Factors such as woman’s age,

ovarian reserve, duration of infertility, additional infertility

factors (male, tubal), ASRM stage, previous surgical treatment

for endometriosis, concomitant pain, and indications for IVF-

ET must be considered because they will influence the choice of

treatment and may also have socio-economic implications.

In American and European guidelines (278, 279), the

management of endometriosis is still based on the disease stage

defined according to the revised American Society of Reproductive

Medicine (rASRM) classification. Despite the high consensus and

multiple revisions, the currently used classifications system has

several limitations, including failure in predicting fertility outcomes

and in accounting for the different types of endometriosis. For this

reason, Adamson and Pasta developed a validated and predictive

endometriosis staging system, the Endometriosis Fertility Index

(EFI), to estimate the non-ART pregnancy rate (natural

intercourse or IUI) in women with surgically documented

endometriosis (280). This scoring system, which takes into

account patient-related factors (age, length of infertility, history

of previous pregnancy) and surgical factors (rASRM total score,

endometriosis lesions and “least function score” from the tubes and

ovaries), is highly accurate (281) and reproducible (282) and

represents an important clinical decision tool to counsel patients

on their reproductive options after surgery.

While ART can correct many defects that prevent

conception, implantation failure is not easily identified, and in

most cases, there are no available treatments. The endometrial

status is rarely investigated during the standard work-up of

infertile women performed in infertility clinics worldwide, even

prior to ART (283). Thus, in the era of precision medicine and

tailored therapy, a reliable endometrial receptivity assay would

be of huge clinical and economical benefit for the patient’s

selection process. Starting from functional analysis of the

endometrium, Kliman et al. (284) introduced an innovative

endometrial functional diagnostic tool (endometrial function

test EFT®) based on the use of antibodies two cyclins, as

expression patterns of this type of mitotic cycle regulators

have been associated with implantation success or failure.

Moreover, revolutionary diagnostic tests based on

transcriptomic and bioinformatic technologies, that can

inform clinicians about the status of endometrial receptivity,

have been proposed for diagnostic and prognostic purposes. The

endometrial receptivity array (ERA) (285) is a and reproducible

(286) microarray-based machine-learning predictive model for

assessing endometrial status in the work-up for infertile patients
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based on the specific signature of 238 differentially expressed

genes in the receptive endometrium. The ReceptivaDX™ test a

new screening and diagnostic test has been proposed (287) based

on the findings that B-cell-lymphoma 6 (BCL6) overexpression

in the secretory endometrium of these women contribute to the

progesterone resistance (288) and could potentially serve as a

surrogate inflammatory marker for a dysfunctional

endometrium in endometriosis associated with infertility

(289, 290).

Given the important diagnostic delay, strenuous research

has been made to identify potential non-invasive diagnostic tool

in endometriosis and to date, remains one of the major research

priorities in this disease. Several potential biomarkers have been

evaluated; however, none has demonstrated sufficient sensitivity

and specificity for clinical use.

Cancer antigen-125 (CA-125), a high-molecular-weight

glycoprotein antigen expressed in some derivatives of the

celomic epithelium, has been previously reported to be

elevated in serum of women with advanced forms of the

disease (291, 292); however, its overall sensivity is reported to

be extremely low (53%) (293).

Based on their pivotal role in the etiopathogenesis of

endometriosis, a substantial body of work has shed light on

circulating/exosomal miRNAs as potential leading biomarkers

for early diagnosis, prognosis, and surveillance for
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endometriosis. They are they are found both intra- and

extracellularly, contained and released via exosomes (294).

MiRNAs are attractive due to their simple structure and

their stability at the post-translational level and in extracellular

biofluids. Conversely, their highly variable content and their low

abundance in extracellular biofluids, make detection very

demanding. Real time PCR (qRT-PCR) remains the gold

standard for miRNA quantification (295). Next-generation

sequencing platforms are also used for miRNA sequencing,

and they showed high sensivity and excellent reproducibility

(296), nevertheless a great performance variation exists among

the different platforms. MicroRNA have several targets in cells

and each single mRNA transcript may be subjected to regulation

by various miRNAs, Thus, the same pathway maybe regulated

by a panel of miRNA.

Many studies have investigated the role of circulating

miRNA in endometriosis (104, 297–312). To date, more than

60 miRNAs were found to be differentially expressed in the

circulation (plasma and/or serum) of women with endometriosis

(313). Very few (20%) miRNAs have been replicated in more

than one study (314). While generally miRNAs are not highly

evolutionarily conserved, serum let-7 family miRNA showed

similar dysregulation in a murine model of endometriosis (315).

In general, serum-derived miRNAs seems to yield higher

sensitivity and specificity (92 and 95,5% respectively) compared
FIGURE 2

Summary of the main pathophysiological processes implicated in endometriosis associated infertility.
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with plasma-derived miRNAs and the highest biomarkers

potential was found to be represented by a panel of serum-

derived miRNAs comprised of miR-125-5p, miR-150-5P, mir-

342-3p, miR-451a, miR-3613-5P, and let-7b (area under the

curve (AUC) of 0.94) (313). Cosar et al. (302) reported a logistic

regression model combining miR-125-5p, miR-451a, and miR-

3613-3p. Later, the same group (300) confirmed a significant

diagnostic value of a combination of six miRNAs, with a final

AUC>0.9 across two independent clinical data sets.

The reason for the limited consistency of results across studies

is related with the dynamic nature/behavior of miRNA expression

which is influenced by lack of standardization in the study

protocols, such as sample collection (menstrual phase, circadian

rhythm), miRNA analysis method, case-control matching and

subject’s background (age, ethnicity, health status), stage

(minimal-mild vs. moderate/severe) and type of endometriosis

(ovarian, peritoneal, deep infiltrating). In addition, different cutoff

points were considered to define a meaningful change in

expression. An important variable is whether their expression is

influenced by the menstrual cycle phase.

Results need to be replicated on large series of well-

phenotyped patients and under stringent conditions of

sampling. The availability of a reliable non-invasive test for

endometriosis will allow more accurate and accessible diagnosis

as well as the potential for identification and treatment of

endometriosis related infertility. Current and emerging

treatment options for endometriosis associated infertility are

summarized in Figure 3.
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Reproductive surgery

Surgical indications should be guided by the presence or

absence of pain, patient’s age, history of previous surgery for

endometriosis, presence of other infertility factors, ovarian

reserve, and estimated EFI. In general, it is clear that multiple

surgeries should not be attempted to improve fecundity. Current

guidelines suggest fertility counseling before surgery which

should include AMH measurement (278, 279).
r-ASRM stages I and II

Stages I and II are not visible during the clinical and

ultrasound examination and they are diagnosed mainly

during diagnostic laparoscopy. A recent meta-analysis (315)

of moderate quality evidence, including three RCTs on

rASRM stage I/II endometriosis, concluded that operative

laparoscopy increases natural viable intrauterine pregnancy

rates compared to diagnostic laparoscopy only (OR 1.89, 95%

CI 1.25-2.86; I2 = 0%). Similar findings were later confirmed

in a network-metanalysis by Hodgson et al. (316) comparing

operative laparoscopy with placebo (OR 1.63; 95% CI 1.13-

2.35). Only one meta-analysis (317) analyzed the live birth

rate outcome and concluded that laparoscopic surgery in this

disease stages has an overall advantage in improving the

chances of live birth (RR 1.52, 95% CI 1.26-1.84). Based on

this evidence, operative laparoscopy is currently an option for
FIGURE 3

Current and emerging treatment options for endometriosis related infertility.
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endometriosis-associated infertility in rASRM stage I/II

(278, 279) when is performed for other indications

such as pain. The absolute benefit is modest with a number

of women needed to be treated of 12 to achieve one

additional pregnancy.
r-ASRM stages III and IV

The situation is more complex for advanced disease where

high quality evidence regarding the role of surgery for infertile

patients is lacking and the risk of major complications due to the

surgery itself must be considered. There are no RCT to

determine whether clinical pregnancy rates are improved after

surgery in patients with stage III-IV of the disease. Women with

advanced disease are normally counseled toward surgery in case

of significant pain symptoms, large endometriomas, or ureter

and bowel clinical involvement.

Apart from the deep infiltrating endometriosis (DIE)-

induced alteration of pelvic anatomy and adhesions, evidence

supporting a direct link between DIE and infertility is weak and

the lack of high-quality data preclude firm conclusions on the

effect of surgery. Moreover, DIE alone is found in only 6% of

endometriosis patients (318) and surgery-related major

complications in this context must be taken into account.

According to three independent systematic reviews, pregnancy

rate after surgery for rectovaginal endometriosis varies from 24%

to 44% (319–321). An additional systematic review (322) of

heterogeneous prospective and retrospective studies reported

postoperative spontaneous pregnancy rates in women with DIE

with and without bowel involvement of approximately 50% and

20%, respectively. Lastly, a recent meta-analysis including

observational studies on both rectovaginal and rectosigmoid

DIE patients showed a statistically significant benefit of

surgery before IVF (323) in terms of live birth and pregnancy

rates per patient and per cycle. Nonetheless results need to be

interpreted with caution before attributing this rate of success

entirely to surgery (324). Interestingly it has been shown in a

recent study that extensive surgery in women with deep and

intraperitoneal endometriosis, when compared with

intraperitoneal surgery only, does not modify the fertility

outcome (325). At present, operative laparoscopy for DIE

represent a well-established indication in endometriosis

associated-pain and in case of visceral obstruction, and is a

treatment option in symptomatic patients wishing to conceive

(278, 279).

Potential benefits and harms of adnexal surgery for

endometrioma must be considered in this context because of

its direct effect on ovarian reserve and the risk of recurrence.

There is still no consensus regarding the optimal indication for

surgery depending on cyst diameter due to the lack of

comparative studies. According to guidlines (278, 279), key
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indications for surgical management of the “asymptomatic”

ovarian endometrioma in patients with infertility is to improve

the accessibility of follicles and to prevent potential

complications (endometrioma rupture, contamination) prior

to ART.

A recent meta-analysis (326) conducted by Alborzi et al. of

eight prospective studies comparing pregnancy rate from four

different approaches of OMA (surgery + ART, surgery +

spontaneous pregnancy, aspiration with or without

sclerotherapy + ART, and ART alone) found no significant

difference between the four study groups. Another meta-

analysis (167) analyzing surgical versus expectant management

of endometriomas reported similar live birth rates per cycle after

IVF in both groups. Surgery is generally not recommended for

the sole purpose of enhancing fertility in an otherwise

asymptomatic patient.

Medically assisted reproduction (IUI, ART)
The utility of Intrauterine Insemination (IUI) with or

without ovarian stimulation in patients with endometriosis is

supported by only one single RCT (327) including patients

undergoing ovarian stimulation with gonadotrophins and IUI

versus expectant management. The study found a 5-6 times

higher live birth rate per cycle in the treatment group. IUI in

combination with controlled ovarian stimulation (clomiphene

citrate) is currently recommended only in infertile women with

ASRM stage I/II (328).

Currently, up to 25% of in vitro fertilization (IVF)-embryo

transfer procedures are performed in patients with

endometriosis (329). Despite its high implementation, both

the influence of endometriosis on pregnancy rates after ART,

and the effectiveness of ART treatments in women with

endometriosis are still a matter of debate. Main indications

for ART remain tubal impairment, male factor, low EFI, and

failure of other treatments. There are currently no RCTs

evaluating the efficacy of this treatment option versus no

intervention in women with endometriosis, and only

indirect evidence is available from studies comparing ART

outcomes in women with endometriosis to women without the

disease. Several meta-analyses (172–175) have investigated

ART outcomes of women with and without endometriosis,

but results appear conflicting due to the low quality and the

high heterogeneity of the selected studies. According to a

recent meta-analysis (213), endometriosis consistently leads

to reduced oocyte yield and a reduced fertilization rate. Milder

forms of endometriosis are most likely to affect fertilization

and implantation processes as discussed earlier, whereas

advanced stages of the disease may influence all stages

of reproduction.

Reasons for the suspected suboptimal performance

of ART in endometriosis may include the affected

ovarian responsiveness during the ART cycles (low
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ovarian reserve), impaired endometrial receptivity, and

altered folliculogenesis.

Finally, a specific protocol of controlled ovarian stimulation

for ART in women with endometriosis is not currently

recommended as both antagonist and agonist protocols are

still widely used and no difference in pregnancy or live birth

rates has already been demonstrated (330).

Medical approach
Based on a presumed altered steroidogenesis in

endometriosis associated infertility, the use hormonal

suppression has been investigated. Based on current

recommendations (278, 279) ovarian suppression (danazol,

GnRH agonists, progestogens, OCP) should not be offered

alone or in combination with surgery in endometriosis-related

infertility because there is no evidence of its benefit on

pregnancy outcomes (331). A recent Cochrane review (332),

comparing the effectiveness of different timing of hormonal

suppression in the setting of surgery, concluded that

postsurgical medical therapy compared with no treatment or

placebo may increase pregnancy rates and reduce disease

recurrence, and that it should be recommended in women

who cannot, or decide not to conceive immediately after surgery.

The role of downregulation with GnRH agonists prior to

ART has been extensively investigated and several meta-analysis

have been performed; however results are still contradictory. It

has been proposed that medical treatment with gonadotropins

prior to IVF may result in improved fertility outcomes in terms

of both oocyte quality and endometrial receptivity.

An updated Cochrane review by Georgiu et al. (333) that

included 8 RCT concluded that the effect of long-term GnRH

agonist pre-treatment for at least 3 months versus no pre-

treatment is uncertain in terms of live birth rate (primary

outcome), clinical pregnancy rate, multiple pregnancy rate,

miscarriage rate, mean number of oocytes and mean number

of embryos.

Another more recent meta-analysis (334) investigated the

effectiveness of three different down-regulating protocols based

on the use of GnRH-agonist (ultra-long, long and short

protocol) in infertile women with endometriosis prior to ART.

The authors concluded that the ultra-long protocol may improve

the clinical pregnancy rate especially in patients with stages III-

IV endometriosis based on data from two RCTs. Conversely,

more recently, two RCTs (335, 336) failed to demonstrate a

beneficial effect of the ultra-long protocol in terms of live birth

rate, clinical pregnancy rate, or embryo quality; instead, it was

associated with a longer duration of ovarian stimulation, a

higher consumption of gonadotropins, and a lower ovarian

estradiol production (335). No studies have been conducted to

evaluate the efficacy of GnRH antagonists for the treatment of

endometriosis-related infertility. A large multicenter RCT (337)
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is ongoing in the US with the aim to investigate for the first time

the pre-IVF treatment with a GnRH antagonist (Elagolix) in

women with endometriosis (PREGnant). Compared with

GnRH-agonists, the rapid reversibility and recovery of the

hormone secretion once the treatment is concluded using

GnRH antagonist may allow for better outcomes at the time

of ART.

Data addressing pretreatment with continuous oral

contraceptives are very limited and do not allow firm

conclusion (338, 339). Comparative studies between different

hormonal suppression treatment strategies are lacking.

Lastly, assuming that endometriosis is a chronic

inflammatory condition, the effect of several anti-

inflammatory, immunomodulatory and antioxidant agents has

been investigated in the context of inflammation and altered

redox balance in the follicular fluid microenvironment and of

suspected impaired oocyte quality (340). Pentoxifilline has been

the most studied anti-inflammatory and antioxidant agent in

endometriosis-associated infertility, and it has also been shown

to enhance sperm motility and improve semen parameters in

men with oligoasthenospermia. However, according to a recent

Cochrane review (341) including 5 RCT, there is no conclusive

evidence on its effectiveness and safety in endometriosis-

associated-infertility.

Emerging treatment strategies
By elucidating the cellular and molecular mechanisms

involved in endometriosis-associated infertility and based on

the assumption that current hormonal suppression-based

treatment cause important side effects rather than effectively

improve fertility (342), there is a fundamental need to identify

potential signaling pathways for non-hormonal targets for

endometriosis associated with infertility.

Non-coding RNAs (ncRNAs) have rapidly emerged as

important regulatory molecules in cancer and several

reproductive diseases such as recurrent pregnancy loss and

endometriosis (95). The use of ncRNAs as a therapeutic tool is

still in its infancy; however, the US-FDA has recently approved

three RNAi therapies (343, 344). In the context of impaired

endometrial receptivity and progesterone resistance, Petracco et

al. (345) identified a putative miR135 binding site in HOXA10

gene showing that miR135a and miR135b are expressed in

normal endometrium and increased in the endometrium of

women with endometriosis; they likely act by regulating

targets of progesterone action in the endometrium.

Furthermore, miR-451 was found to be the most highly

downregulated in the mid-secretory phase of eutopic

endometr ium of baboons (346) and women with

endometriosis (347) compared to controls, leading to an

increased expression of transcription factors involved in

regulation and mediation of progesterone signaling such as
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GATA2 and YWHAZ. Similarly, H19 is one of the first long

noncoding RNA identified; it is expressed in a menstrual cycle-

dependent fashion, confined to the stroma, and acts as a decoy

for several tumor-suppressor miRNA. Moreover, it is positively

regulated by E2 and negatively regulated by progesterone in the

mouse. It was recently found that in the eutopic endometrium of

patients with endometriosis, downregulation of H19 will

increase let-7 activity, contributing to a decreased proliferation

of endometrial stromal cells (through IGFR1 expression

inhibition) and contributing to the impaired endometrial

preparation and receptivity (through reduction of stromal cell

proliferation) (348). Finally, further studies have investigated the

role of certain miRNA within progesterone resistance during the

luteal phase in women with endometriosis; they reveal that miR-

30b, miR-30d, miR-29c and miR-194-3p are up-regulated

whereas mi-494 and miR-923 are down regulated in receptive

endometrium (230, 349) of both humans and baboons (350).

Lastly, upregulation of miR-196 and MEK/ERK signaling

proteins was reported in infertile women with minimal/mild

endometriosis mediating downregulation of PGR expression

and decidualization in eutopic endometrium (351). MicroRNA

based therapies are promising new fertility treatments.

In the context of a pro-inflammatory endometrium, one

recent study (352) investigated the pharmacological effects of

selective inhibition of prostaglandin receptors (EP2/EP4) by

using a chimeric mouse model of endometriosis and found that

endometrial functional receptivity can potentially be restored the

interaction among prostaglandin E2 (PGE2), estrogens and

progesterone. The results indicate that inhibition of EP2/EP4

decreases PGE2, estrogen biosynthesis and signaling, pro-

inflammatory cytokine production, and increases P4 signaling in

eutopic endometrium of women with endometriosis.

Stem cell therapy has shown to be promising as a new

therapeutic target for infertility, especially Asherman’s

syndrome (353). The interaction between BMDSC and

endometrial MSC has generated considerable interest because

of their tropism toward inflamed foci.

Stem cell properties of self-renewal and differentiation made

attractive their use to replace potential damaged tissues and

inflammation by reducing intrauterine adhesions and fibrosis

(354, 355), improving endometrial thickness (356) and promote

endometrial regeneration. To date, the use of stem cell for

treating endometriosis, and in particular endometriosis-

associated infertility offers an attractive option because of its

tropic and immunomodulatory proprieties.

Endometriotic lesions recruit stem cells away from the

uterus resulting in inadequate endometrial repair and

regeneration as endometriosis more effective in recruiting

BMDSCs than eutopic endometrium (357). Lesions highly

express CXCL12, a chemoattractant for BMDSCs expressed in

many organs, as well as by endometrial stromal cells (357).

Inhibiting its receptor (CXCR4)was shown to impact the
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migration of BMDSCs to the uterus (358). Endometriosis

related-chronic inflammation likely acts by continually

recruiting BMDSCs to the lesions as demonstrated in animal

(52). Moreover, physiologic estradiol levels can increase

CXCL12 and CXCR4 expression by endometrial stromal cells

and BMDSCs respectively in vitro, thereby increasing the

chemoattractiveness between the two and consequently,

migration (358).

Interestingly, Badoxifene, a selective antagonist ER

antagonist, showed to reduce both ectopic endometriotic

lesions and the BMDCs engraftment to them, redirecting these

cells to the eutopic endometrium (54, 359, 360). This

phenomenon might be able to create a new endometrium

partially free of epigenetic defects.

The route of stem cell administration will be a crucial

component of any stem cell based therapy. Significantly

greater levels of stem cell incorporate in uteri of mice when

cells were administered systemically by intravenous injection as

compared with local injections into the uterus (361).

Interestingly, mice that received a systemic infusion of

BMDSCs prior to uterine injury were also more likely than

twice to achieve a pregnancy, suggesting functional repair of

damaged endometrium was due to BMDSs activity (355).

BMDSCs maybe superior to ESC in the treatment of uterine

injury; they may allow a more complete repair due to their

superior versatility, developing into a large number of cell types

required for endometrial function (355).
Fertility preservation
The need for reproductive counseling utilizing a

multidisciplinary medical team has become more evident in

endometriosis not only prior to surgery but also at diagnosis,

based on the assumption that fertility is likely to be

compromised in these women.

Several options are currently available to preserve fertility,

including embryo or oocyte cryopreservation and ovarian tissue

cryopreservation which are no longer considered experimental

procedures (362) . Vitr ificat ion or planned oocyte

cryopreservation technology has grown enormously during the

last few years. Several meta-analyses demonstrated that clinical

outcomes after vitrification are superior to the standard slow-

freezing/thawing. Moreover, comparable results between

vitrificated and fresh oocytes were reported (363, 364).

Many questions in terms of efficiency, effectiveness and risks

remain unanswered, and the strength of evidence to support

fertility preservation in endometriosis, regardless disease

severity, is still limited (365). Systematically offering FP to

patients with endometriosis might have a dramatic effect on

the public healthcare expenditure and may expose patient to

unnecessary clinical risks (366, 367). In the context of ovarian

endometriosis, subgroups that would particularly benefit from
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fertility preservation are women with bilateral endometriomas

and those scheduled for surgery for contralateral recurrence after

unilateral endometrioma surgery or in whom spontaneous

conception is unlikely after ovarian surgery (365–368). One of

the advantages related with an earlier approach is the

opportunity to preserve oocyte at a young age. However, lack

of reliable data regarding the effectiveness limit full scale

adoption. Women at young age may have a greater risk of

recurrence, and when there is not an immediate desire for

pregnancy, offering FP could be a beneficial option. Ovarian

tissue cryopreservation represents an alternative in case where

ovarian hyperstimulation is contraindicated. The first case of

autologous ovarian transplantation with cryopreserved tissue

was reported in 2000 by Oktay et al. (369). Later updates by the

same group in 2010 (370) and Donnez et al. in 2005 (371)

reported a similar successful approach in endometriosis cases

and to date, other few cases have been reported (372–378).
Fertility sparing surgery

Optimizing fertility in patients with endometriosis requires

reducing potential iatrogenic harm to the ovarian reserve. In this

context, the role of adnexal sparing surgery, when indicated, is

crucial for treating symptomatic women with endometriosis-

associated pain for improving accessibility of follicles prior to

ART due to endometriosis-associated infertility. Thus, skilled

surgeons with expertise in reproductive pathophysiology are

required to avoid potential insults to the healthy parenchyma

and ovarian vascular network.

Decrease of normal ovarian cortex (ovarian reserve) and

disease recurrence are the two main risks associated with surgery

for endometrioma, regardless the surgical technique. Several

surgical approaches for endometrioma have been proposed:

Excisional, ablative or a combination of both. Lower rates of

spontaneous pregnancy and higher rates of recurrence are

associated with ablative surgery compared with cystectomy,

whereas cystectomy was found to be deleterious for residual

ovarian function (162, 379, 380). Since the meta-analysis of Dan

et al. in 2013 (380), RCTs comparing ablative versus excisional

techniques in terms of ovarian reserve markers and ovarian

residual volume have been performed (381–386). Data from

animal studies (387) and RCT (381, 382, 388) on the use of laser

and plasma energy is encouraging and may result in less

inadvertent tissue removal and thermal injury compared with

cystectomy and bipolar electrosurgery. Fertility sparing surgery

performed in the context of endometriosis-associated infertility

also requires the systematic evaluation and optimization of tubal

anatomy and patency. Concomitant adhesiolysis with

restoration of pelvic anatomy is also recommended when

anatomical distortion is present.
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Conclusions

The mechanisms involved in endometriosis-associated

infertility are still not completely understood and this

condition is multifactorial. Endometriosis-associated pain and

inflammation, altered pelvic anatomy and adhesions, disrupted

ovarian function, and compromised endometrial receptivity all

play a major role in endometriosis infertility in women with

endometriosis. Identifying innovative, non-invasive diagnostic

tools in endometriosis that also predict a higher risk of infertility

remains one of the major research and clinical priorities in this

disease; delayed diagnosis allows for disease progression which is

clearly detrimental from the perspective of fertility.

Treatment options of infertility associated with endometriosis

are still limited. Surgery and ART remain the mainstay of effective

therapy. All medical therapies currently approved for use in this

disease prevent or diminish fertility and therefore are not helpful

in treating this condition. Future non-hormonal medical therapies

are needed that can enhance fertility by interfering with the

pathways outlined above.

Endometriosis-associated infertility requires a multidisciplinary,

personalized, shared and holistic approach based on patient’s unique

characteristics, endometriosis subtype and level of impairment.
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92. Monteiro JB, Colón-Dí az M, Garcí a M, Gutierrez S, Colón M, Seto E, et al.
Endometriosis is characterized by a distinct pattern of histone 3 and histone 4
lysine modifications. Reprod Sci (2014) 21:305–18. doi: 10.1177/1933719113497267

93. La Ferlita A, Battaglia R, Andronico F, Caruso S, Cianci A, Purrello M, et al.
Non-coding RNAs in endometrial physiopathology. Int J Mol Sci (2018) 19:2120.
doi: 10.3390/ijms19072120

94. Fehlmann T, Ludwig N, Backes C, Meese E, Keller A. Distribution of
microRNA biomarker candidates in solid tissues and body fluids. RNA Biol (2016)
13:1084–8. doi: 10.1080/15476286.2016.1234658

95. Santamaria X, Taylor H. MicroRNA and gynecological reproductive
diseases. Fertil Steril (2014) 101:1545–51. doi: 10.1016/j.fertnstert.2014.04.044

96. Bjorkman S, Taylor HS. MicroRNAs in endometriosis: Biological function
and emerging biomarker candidates. Biol Reprod (2019) 100:1135–46. doi: 10.1093/
biolre/ioz014

97. Wei S, Xu H, Kuang Y. Systematic enrichment analysis of microRNA
expression profiling studies in endometriosis. Iran J Basic Med Sci (2015) 18:423–9.

98. Haikalis ME, Wessels JM, Leyland NA, Agarwal SK, Foster WG. MicroRNA
expression pattern differs depending on endometriosis lesion type. Biol Reprod
(2018) 98:623–33. doi: 10.1093/biolre/ioy019

99. Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW. Genomic
profiling of microRNAs and messenger RNAs reveals hormonal regulation in
microRNA expression in human endometrium. Biol Reprod (2010) 82:791–801.
doi: 10.1095/biolreprod.109.081059

100. Sha AG, Liu JL, Jiang XM, Ren JZ, Ma CH, Lei W, et al. Genome-wide
identification of micro-ribonucleic acids associated with human endometrial
receptivity in natural and stimulated cycles by deep sequencing. Fertil Steril
(2011) 96:150.e5–5.e5. doi: 10.1016/j.fertnstert.2011.04.072

101. Yang YM, Yang WX. Epithelial-to-mesenchymal transition in the devel-
opment of endometriosis. Oncotarget (2017) 8:41679–89. doi: 10.18632/
oncotarget.16472

102. Viganò P, Ottolina J, Bartiromo L, Bonavina G, Schimberni M, Villanacci
R, et al. Cellular components contributing to fibrosis in endometriosis: A literature
review. J Minim Invasive Gynecol (2020) 27:287–95. doi: 10.1016/
j.jmig.2019.11.011

103. Saare M, Rekker K, Laisk-Podar T, Rahmioglu N, Zondervan K, Salumets
A, et al. Challenges in endometriosis miRNA studies — From tissue heterogeneity
to disease specific miRNAs. Biochim Biophys Acta Mol Basis Dis (2017) 1863:2282–
92. doi: 10.1016/j.bbadis.2017.06.018

104. Weber JA, Baxter DH, Zhang S, Huang DY, How Huang K, Jen Lee M,
et al. The microRNA spectrum in 12 body fluids. Clin Chem (2010) 56:1733–41.
doi: 10.1373/clinchem.2010.147405

105. Panir K, Schjenken JE, Robertson SA, Hull ML. Non-coding RNAs in
endometriosis: A narrative review. Hum Reprod Update (2018) 24:497–515.
doi: 10.1093/humupd/dmy014

106. Grümmer R. Translational animal models to study endometriosis-
associated infertility. Semin Reprod Med (2013) 31(2):125–32. doi: 10.1055/s-
0032-1333477

107. Story L, Kennedy S. Animal studies in endometriosis: A review. ILAR J
(2004) 45(2):132–8. doi: 10.1093/ilar.45.2.132

108. Dick EJJr, Hubbard GB, Martin LJ, Leland MM. Record review of baboons
with histologically confirmed endometriosis in a large established colony. J Med
Primatol (2003) 32:39–47. doi: 10.1034/j.1600-0684.2003.00008.x

109. TE LINDE RW, SCOTT RB. Experimental endometriosis. Am J Obstet
Gynecol (1950) 60:1147–73. doi: 10.1016/0002-9378(50)90517-5

110. D’Hooghe TM, Bambra CS, Suleman MA, Dunselman GA, Evers HL,
Koninckx PR. Development of a model of retrograde menstruation in baboons
(Papio anubis). Fertil Steril (1994) 62:635–8.

111. Kaplan CR, Eddy CA, Olive DL, Schenken RS. Effect of ovarian
endometriosis on ovulation in rabbits. Am J Obstet Gynecol (1989) 160:40–4.
doi: 10.1016/0002-9378(89)90083-5

112. Hayashi S, Nakamura T, Motooka Y, Ito F, Jiang L, Akatsuka S, et al. Novel
ovarian endometriosis model causes infertility via iron-mediated oxidative stress in
mice. Redox Biol (2020) 37:101726. doi: 10.1016/j.redox.2020.101726

113. Grechukhina O, Petracco R, Popkhadze S, Massasa E, Paranjape T, Chan E,
et al. A polymorphism in a let-7 microRNA binding site of KRAS in women with
endometriosis. EMBO Mol Med (2012) 4:206–17. doi: 10.1002/emmm.201100200

114. Yong PJ, Sadownik L, Brotto LA. Concurrent deep-superficial dyspareunia:
prevalence, associations, and outcomes in a multidisciplinary vulvodynia program.
J Sex Med (2015) 12:219 –27. doi: 10.1111/jsm.12729

115. Mabrouk M, Del Forno S, Spezzano A, Raimondo D, Arena A, Zanello M,
et al. Painful love: Superficial dyspareunia and three dimensional transperineal
Frontiers in Endocrinology 20
ultrasound evaluation of pelvic floor muscle in women with endometriosis. J Sex
Marital Ther (2020) 46:187–196.14. doi: 10.1080/0092623X.2019.1676852

116. Wahl KJ, Orr NL, Lisonek M, Noga H, Bedaiwy MA, Williams C, et al.
Deep dyspareunia, superficial dyspareunia, and infertility concerns among women
with endometriosis: A cross-sectional study. Sex Med (2020) 8:274–81.
doi: 10.1016/j.esxm.2020.01.002

117. Vercellini P, Meana M, Hummelshoj L, Somigliana E, Vigano` P, Fedele L.
Priorities for endometriosis research: A proposed focus on deep dyspareunia.
Reprod Sci (2011) 18:114–8. doi: 10.1177/1933719110382921

118. Vercellini P, Somigliana E, Consonni D, Frattaruolo MP, De Giorgi O,
Fedele L. Surgical versus medical treatment for endometriosis-associated severe
deep dyspareunia: I. effect on pain during intercourse and patient satisfaction.Hum
Reprod (2012) 27:3450–9. doi: 10.1093/humrep/des313

119. Denny E, Mann C. Endometriosis-associated dyspareunia: The impact on
women’s lives. J Fam Plann Reprod Health Care (2007) 33:189–93. doi: 10.1783/
147118907781004831

120. Barbara G, Facchin F, Buggio L, Somigliana E, Berlanda N, Kustermann A,
et al. What is known and unknown about the association between endometriosis
and sexual functioning: A systematic review of the literature. Reprod Sci (2017)
24:1566–76. doi: 10.1177/1933719117707054

121. Barbara G, Facchin F, Meschia M, Berlanda N, Frattaruolo MP, Vercellini
P. When love hurts. A systematic review on the effects of surgical and
pharmacological treatments for endometriosis on female sexual functioning.
Acta Obstet Gynecol Scand (2017) 96:668–87. doi: 10.1111/aogs.13031

122. Pluchino N, Wenger JM, Petignat P, Tal R, Bolmont M, Taylor HS, et al.
Sexual function in endometriosis patients and their partners: Effect of the disease
and consequences of treatment. Hum Reprod Update (2016) 22:762–74.
doi: 10.1093/humupd/dmw031

123. Schenken RS, Asch RH, Williams RF, Hodgen GD. Etiology of infertility in
monkeys with endometriosis: luteinized unruptured follicles, luteal phase defects,
pelvic adhesions, and spontaneous abortions. Fertil Steril (1984) 41:122–30.
doi: 10.1016/s0015-0282(16)47552-7

124. Gleicher N, Weghofer A, Barad DH. Defining ovarian reserve to better
understand ovarian aging. Reprod Biol Endocrinol (2011) 9:23. doi: 10.1186/1477-
7827-9-23

125. Nelson SM. Biomarkers of ovarian response: current and future
applications. Fertil Steril (2013) 99:963–9. doi: 10.1016/j.fertnstert.2012.11.051

126. Santoro N. Using antimüllerian hormone to predict fertility. JAMA (2017)
318:1333–4. doi: 10.1001/jama.2017.14954

127. Sanchez AM, Papaleo E, Corti L, Santambrogio P, Levi S, Viganò P, et al.
Iron availability is increased in individual human ovarian follicles in close
proximity to an endometrioma compared with distal ones. Hum Reprod (2014)
29:577–83. doi: 10.1093/humrep/det466

128. Sanchez AM, Viganò P, Somigliana E, Panina-Bordignon P, Vercellini P,
Candiani M. The distinguishing cellular and molecular features of the
endometriotic ovarian cyst: From pathophysiology to the potential
endometrioma-mediated damage to the ovary. Hum Reprod Update (2014)
20:217–30. doi: 10.1093/humupd/dmt053

129. Matsuzaki S, Schubert B. Oxidative stress status in normal ovarian cortex
surrounding ovarian endometriosis. Fertil Steril (2010) 93:2431–2. doi: 10.1016/
j.fertnstert.2009.08.068
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endometrioma size and bilaterality on ovarian reserve. J Obstet Gynaecol (2020)
40:531–6. doi: 10.1080/01443615.2019.1633518

154. Muzii L, Bianchi A, Crocè C, Manci N, Panici PB. Laparoscopic excision of
ovarian cysts: Is the stripping technique a tissue-sparing procedure? Fertil Steril
(2002) 77:609–14. doi: 10.1016/s0015-0282(01)03203-4

155. Hachisuga T, Kawarabayashi T. Histopathological analysis of
laparoscopically treated ovarian endometriotic cysts with special reference to loss
of follicles. Hum Reprod (2002) 17:432–5. doi: 10.1093/humrep/17.2.432

156. Roman H, Tarta O, Pura I, Opris I, Bourdel N, Marpeau L, et al. Direct
proportional relationship between endometrioma size and ovarian parenchyma
inadvertently removed during cystectomy, and its implication on the management
of enlarged endometriomas. Hum Reprod (2010) 25:1428–32. doi: 10.1093/
humrep/deq069
Frontiers in Endocrinology 21
157. Muzii L, Marana R, Angioli R, Bianchi A, Cucinella G, Vignali M, et al.
Histologic analysis of specimens from laparoscopic endometrioma excision
performed by different surgeons: Does the surgeon matter? Fertil Steril (2011)
95:2116–9. doi: 10.1016/j.fertnstert.2011.02.034

158. Biacchiardi CP, Piane LD, Camanni M, Deltetto F, Delpiano EM,
Marchino GL, et al. Laparoscopic stripping of endometriomas negatively affects
ovarian follicular reserve even if performed by experienced surgeons. Reprod
BioMed Online (2011) 23:740–6. doi: 10.1016/j.rbmo.2011.07.014

159. Garcia-Velasco JA, Somigliana E. Management of endometriomas in
women requiring IVF: To touch or not to touch. Hum Reprod (2009) 24:496–
501. doi: 10.1093/humrep/den398

160. Somigliana E, Berlanda N, Benaglia L, Viganò P, Vercellini P, Fedele L.
Surgical excision of endometriomas and ovarian reserve: A systematic review on
serum antimüllerian hormone level modifications. Fertil Steril (2012) 98:1531–8.
doi: 10.1016/j.fertnstert.2012.08.009

161. Raffi F, Metwally M, Amer S. The impact of excision of ovarian
endometrioma on ovarian reserve: A systematic review and meta-analysis. J Clin
Endocrinol Metab (2012) 97:3146–54. doi: 10.1210/jc.2012-1558

162. Younis JS, Shapso N, Ben-Sira Y, Nelson SM, Izhaki I. Endometrioma
surgery-a systematic review and meta-analysis of the effect on antral follicle count
and anti-müllerian hormone. Am J Obstet Gynecol (2022) 226:33–51.e7.
doi: 10.1016/j.ajog.2021.06.102

163. Nankali A, Kazeminia M, Jamshidi PK, Shohaimi S, Salari N, Mohammadi
M, et al. The effect of unilateral and bilateral laparoscopic surgery for endometriosis
on anti-mullerian hormone (AMH) level after 3 and 6 months: A systematic review
and meta-analysis. Health Qual Life Outcomes (2020) 18:314. doi: 10.1186/s12955-
020-01561-3

164. Moreno-Sepulveda J, Romeral C, Niño G, Pérez-Benavente A. The effect of
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