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Mechanism of negative
modulation of FSH signaling
by salt-inducible kinases
in rat granulosa cells

Marah Armouti , Miriam Rodriguez-Esquivel
and Carlos Stocco*

Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago,
IL, United States
The optimal development of preovulatory follicles needs follicle-stimulating

hormone (FSH). Recent findings revealed that salt-inducible kinases (SIKs)

inhibit FSH actions in humans and rodents. This report seeks to increase our

understanding of the molecular mechanisms controlled by SIKs that participate

in the inhibition of FSH actions in primary rat granulosa cells (GCs). The results

showed that FSH causes a transient induction of Sik1 mRNA. In contrast, SIK

inhibition had no effects on FSH receptor expression. Next, we determined

whether SIK inhibition enhances the effect of several sequential direct

activators of the FSH signaling pathway. The findings revealed that SIK

inhibition stimulates the induction of steroidogenic genes by forskolin, cAMP,

protein kinase A (PKA), and cAMP-response element-binding protein (CREB).

Strikingly, FSH stimulation of CREB and AKT phosphorylation was not affected

by SIK inhibition. Therefore, we analyzed the expression and activation of

putative CREB cofactors and demonstrated that GCs express CREB-regulated

transcriptional coactivators (CRTC2) and that FSH treatment and SIK inhibition

increase the nuclear expression of this factor. We concluded that SIKs target

the FSH pathway by affecting factors located between cAMP/PKA and CREB

and propose that SIKs control the activity of CRTC2 in ovarian GCs. The findings

demonstrate for the first time that SIKs blunt the response of GCs to FSH, cAMP,

PKA, and CREB, providing further evidence for a crucial role for SIKs in

regulating ovarian function and female fertility.
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Introduction

Ovulation is the pinnacle of folliculogenesis, a process

requiring granulosa cell (GC) proliferation and differentiation,

both needed for preovulatory follicle formation. The optimal

development of preovulatory follicles needs follicle-

stimulating hormone (FSH). We recently revealed novel

roles for a family of kinases named salt-inducible kinase

(SIKs) in regulating folliculogenesis and ovulation in rodents

and controlling GC differentiation in humans and rodents (1).

In particular, we demonstrated that SIK2 blunts FSH-induced

GC differentiation and restricts the number of follicles

reaching ovulation. Thus, our previous studies demonstrated

that inhibition of SIK activity in vivo or in vitro potentiates the

stimulatory effect of FSH on GC differentiation and estradiol

production. Therefore, SIKs are key regulators of the response

of GCs to gonadotropins and consequently control ovulation

efficiency and fertility. These results motivate studies aimed at

determining the specific signaling mechanisms targeted by

SIKs in GCs.

The three SIK isoforms (SIK1, SIK2, and SIK3) are

serine/threonine protein kinases of the AMP-activated

kinases family known to regulate metabolism, cancer,

melanocytes, and bone formation (2, 3). SIK1 was

identified in the adrenal gland of rats fed a high-salt diet

(4, 5). Nevertheless, SIK1 is also induced by glucagon in b-
cells (6) and depolarization in neurons (7). In contrast, SIK2

and SIK3 are expressed ubiquitously, with the highest levels

in the adipose tissue for SIK2 and the brain for SIK3. SIKs

have an N-terminal kinase domain, a central ubiquitin

(UBA) domain, and a C-terminal containing potential

PKA phosphorylation sites (8). The function of the C-

terminal region and the UBA domain remains unknown.

In contrast, it is known that SIK activity depends on the

phosphorylation of Thr residues in the N-terminal kinase

domain by liver kinase 1 (LKB1, also known as serine/

threonine kinase 11) (9). We have shown that in human

and rodent GCs, SIK2 and SIK3 are the most prominent

isoforms (1). However, the mechanisms controlling SIKs

expression and activity in GCs have not been explored.

In GCs, the FSH receptor primarily activates Ga protein,

which in turn stimulates adenylate cyclase (AC) activity and the

production of cyclic adenosine 3′,5′-monophosphate (cAMP).

cAMP leads to the activation of protein kinase A (PKA) and

cAMP response element-binding protein (CREB), leading to the

induction of markers of GC differentiation, including Cyp19a1

(also known as aromatase) (10–12), steroidogenic-acute

regulator (Stard1, most commonly referred to as StAR) (13),

and Cyp11a1 (most commonly referred to as P450scc) (14).

Here, we seek to increase our understanding of the molecular

mechanisms controlled by SIKs involved in regulating these

genes and investigate the effects of SIK inhibition at all levels of
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the FSH receptor signaling pathway. We also tested if SIKs affect

the expression of the FSH receptor. In addition, we examined if

FSH regulates the expression of SIKs isoforms in primary

ovarian GCs. Our findings demonstrate that SIK activity

regulates the nuclear localization of CREB coactivators

downstream of PKA.
Materials and methods

Cells – GCs were isolated from 23-25 days old estradiol-

treated immature rats and cultured as described previously

(15–17). The use of a GC culture system from estradiol-treated

immature rats is a well-established and valuable approach that

provides an in vitro model for examining GC differentiation and

the mechanisms involved in the regulation of GCs by FSH (18).

Cells were treated with ovine FSH, forskolin, db8CPT, or

dbcAMP with or without HG-9-91-01 (HG), a specific

inhibitor of SIKs. All inhibitors and hormones were obtained

from Tocris (Bristol, United Kingdom). The Institutional

Animal Care and Use Committee at the University of Illinois

at Chicago approved all animal experiments.

RNA isolation and quantification – Total RNA was isolated

using TRIzol (Invitrogen, Carlsbad, CA) and reverse-transcribed

using anchored oligo-dT primers (IDT, Coralville, IA) and

Moloney Murine Leukemia Virus reverse transcriptase

(Invitrogen). Intron-spanning primers were used to amplify

the gene of interest (GOI) along with a standard curve

containing serial dilutions of the cDNA of the GOI. Real-time

PCR amplifications were performed with Brilliant II qPCR SYBR

master mix (Agilent, Santa Clara, CA) using an AriaMx

instrument (Agilent). For each sample, the number of cDNA

copies corresponding to 10 ng of total RNA was computed for

each GOI and ribosomal protein L19 (Rpl19). Then, the

expression of each GOI is reported as the ratio between the

number of copies of the GOI and Rpl19.

Promoter Reporter Assays - The CRE-Luc reporter was

generated by cloning three copies of the cAMP response

element (TGACGTCA) followed by the firefly luciferase cDNA

(CRE-Luc). Lentiviruses containing this construct were

generated using 293FT cells (Invitrogen) as previously

described (19). Cells were infected with lentiviruses and, after

overnight incubation, treated as indicated in the figure legends.

Empty plasmids were used as controls. Luciferase activity was

determined in 50 ml of lysates and expressed relative to renilla

luciferase, as previously described (19).

Overexpression experiments – Expression plasmids

encoding constitutively active PKA (20) or C2/CREB (21)

were kindly provided by Dr. Anthony J. Zeleznik (University

of Pittsburgh) and Dr. Thiel (University of Saarland, Germany),

respectively. C2/CREB cDNA was subcloned into the pGPcs

vector, which was derived from the pCDH vector (System
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Biosciences, Mountain View, CA). The capacity of these

plasmids to activate the CRE-Luc reporter was tested by

transfecting the CRE-Luc along with pGPcs, caPKA, or C2/

CREB in HEK293 cells using calcium phosphate precipitation

(Supplemental Figure 1). CREB-regulated transcriptional

coactivators (CRTCs) contain a highly conserved N terminal

CREB-binding domain (CBD) that is responsible for interacting

with the transcription factor CREB (22). We generated a

lentiviral pGPcs-based dominant negative CRTC (CRTC-DN)

construct that expresses only the CBD (1–54 aa) of mouse

CRTC2. CRTC-DN is predicted to bind CREB but lacks the

transcriptional activation domain, consequently interfering with

the functions of endogenous CRTCs through competitive CREB

binding (23, 24). Lentivirus stocks were generated in HEK293

cells (Invitrogen) transfected with pGPcs (empty), caPKA, C2/

CREB, or CRTC2-DN lentiviral vector along with the packaging

and envelope plasmids psPAX2 and pMD2G (Addgene,

Watertown, MA). Cell supernatants were concentrated by

ultracentrifugation. Viral stocks were titrated in 293FT cells

aided by a fluorescence marker. Viral stocks carrying pGPcs

(control), caPKA, C2/CREB, or CRTC-DN were added directly

to the cells 2 h after plating at a multiplicity of infection of 20 and

cultured for 24 hours before the initiation of the treatments

described in each figure.

Western blot analysis - Cytosolic and nuclear extracts were

prepared as described previously (25). Protein concentration

was determined using Pierce BCA Protein Assay Kit (Thermo

Fisher Scientific, Rockford, Illinois). Proteins were subjected

to gel electrophoresis , transferred to nitrocellulose

membranes, and processed by routine procedures. The

primary antibodies and the dilutions used were Lamin B1

(1:500), GAPDH (1:500), CRTC1 (1:1000), CRTC2 (1:1000),

CRTC3 (1:1000), AKT (1:1000), S473-AKT (1:1000), CREB

(1:1000), and S133-CREB (1:1000), all from Cell Signaling

(Danvers, MA). The secondary antibodies used were anti-

rabbit IgG-HRP (goat, 1:10,000) from Abcam (Cambridge,

United Kingdom) or anti-mouse IgG-HRP (goat, 1:10,000)

from Jackson ImmunoResearch Laboratory Inc. (West Grove,

PA). Detection was performed with Supersignal West Femto

Maximum Sensitivity Substrate (Thermo Scientific, Rockford,

IL) and detected using ChemiDoc MP Imaging System

(BioRad, Hercules, CA). Protein expression quantification

was performed with ImageJ software (National Institutes of

Health, Bethesda, Maryland).

Statistics – All experiments were repeated three times or

more as indicated in the figure legend. Determinations of mRNA

levels or luciferase activity were run in duplicate. Data were

analyzed using Prism 6 (San Diego, CA). Differences between

two groups were determined by Student’s t-test. For multiple

groups, one-way ANOVA was used, and differences between

individual means were determined by the Tukey test. Data from

all experiments are plotted as mean ± SEM. Significant

differences were recognized at p < 0.05.
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Results

Effects of FSH on SIKs expression

We previously showed in vitro and in vivo that SIK

inhibition enhances FSH-induction of steroidogenic genes

and estradiol production in human and rodent GCs (1).

Therefore, we first determined whether FSH inhibits the

expression of Sik in GCs. To test this, we treated rat GCs

with FSH and measured Sik1, Sik2, and Sik3 expression at 1, 3,

6, 12, 24, and 48 h after the initiation of the treatments. The

expression of Sik2 and Sik3 remained consistent throughout

the experiments (Figure 1). FSH induced a transient increase of

Sik1 after one hour of treatment. As expected, Cyp19a1 was

induced by FSH in a biphasic manner with a rapid increase at 1

and 3 h and a delayed increase at 24 and 48 h after the initiation

of treatments. These results suggest that FSH effects on SIK do

not correlate with its effects on the expression of steroidogenic

genes. Thus, FSH does not decrease the expression of SIKs as

we predicted.
FIGURE 1

Effect of FSH on SIK expression. Rat GCs were treated with FSH
(50 ng/ml). The mRNA levels for Cyp19a1, Sik1, Sik2, and Sik3
were measured 1, 3, 6, 12, 24, and 48 h after the initiation of
treatment. The expression of each gene is plotted as relative
expression to Rpl19 (Top) or relative to 0 h (Bottom). One-way
ANOVA followed by Tukey. *p < 0.05, n = 3.
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SIKs lessen FSH actions downstream of
cAMP

FSH receptor: Next, we examined whether SIK inhibition

increases the response of GCs to FSH by targeting the expression

of the FSH receptor. GCs were treated with FSH in the presence

or absence of 1 micromolar (10-6 M or µM) of HG-9-91-01

(HG). HG-9-91-01 is an effective SIK inhibitor, which has been

shown to selectively target SIK proteins (26, 27). Cotreatment

with FSH and HG or HG alone had no effects on FSH receptor

(Fshr) expression (Supplemental Figure 2).

Adenylyl cyclase (AC): After observing that SIK inhibition

has no effect on FSH receptor expression, we hypothesized that it

might affect signaling downstream of the FSH receptor. Since the

FSH receptor activates the AC, we treated GCs with forskolin, a

specific AC activator, in the presence or absence of 0.3, 1, or 3

micromolar (10-3 M, µM) of HG-9-91-01 (HG). These

concentrations are based on our previous publications on GCs

(1) and previous reports demonstrating HG high specificity to

inhibit SIK activity (26, 27). Forskolin stimulated the expression

of Cyp19a1, Stard1, and Cyp11a1 (Figure 2). The stimulatory

effect of forskolin was significantly enhanced in a concentration-

dependent manner by the inhibition of SIK activity (Figure 2).

Thus, Cyp19a1 and Stard1 induction by forskolin was enhanced

by 1 and 3 µM HG. In contrast, Cyp11a1 induction by forskolin

was significantly augmented even by 0.3 µM (300 nM), the

lowest concentration tested. In good agreement with our

previous report (1), treatment with HG alone stimulated the

expression of Cyp19a1, Stard1, and Cyp11a1 in a concentration-

dependent manner having significantly stimulatory effects at 1

and 3 µM.

Cyclic AMP: AC activity increases intracellular cAMP;

therefore, we next examined whether SIK inhibition also

augments the stimulatory effect of cAMP on gene expression.

For this purpose, we treated GCs with dibutyryl-cAMP

(dbcAMP), a cell-permeable analog of cAMP, which alone

induced Cyp19a1, Stard1, and Cyp11a1 expression. As with

FSH and forskolin, SIK inhibition augmented the stimulatory

effect of dbcAMP on gene expression in a concentration-

dependent manner (Figure 3). Thus, dbcAMP induction of

Cyp19a1, Stard1, and Cyp11a1 was significantly augmented by

HG at 0.3, 1, and 3 µM. Although, in the case of Stard1 and

Cyp11a1, the enhancement of dbcAMP actions with 3 µM was

not as strong as with 1 µM of HG.

cAMP effects are mediated mainly by two cAMP-binding

proteins: the exchange protein directly activated by cAMP

(EPAC) and PKA (28). Therefore, we next examined whether

SIK inhibition modifies the effects of the pharmacological

activation of EPAC with 8-(4-chlorophenylthio) adenosine

3’5’-cAMP (8CPT). 8CPT activates EPAC but not PKA (29).

EPAC activation did not induce Cyp19a1, Stard1, and Cyp11a1

expression, whereas SIK inhibition alone induced these genes.
Frontiers in Endocrinology 04
The combination of HG and 8CPT treatment did not stimulate

gene expression beyond the stimulation levels of HG treatment

alone (Supplemental Figure 3).
SIK inhibition enhances constitutively
active PKA effects

Next, we used a lentivirus to express constitutively active

PKA (caPKA) protein, which carries His87Gln and

Trp196Arg mutations rendering it insensitive to the

regulatory units (20). We first determined if caPKA

increases the activity of a cAMP response element reporter

(CRE-Luc) . As shown in Supplementa l F igure 1 ,

overexpression of caPKA significantly stimulated the activity

of the CRE-Luc reporter. Next, we infected GCs with lentivirus

carrying an empty plasmid (pGPcs) or caPKA. Overexpression

of caPKA was sufficient to stimulate Cyp19a1, Stard1, and
FIGURE 2

SIK inhibition enhances forskolin actions. Rat GCs were pretreated
with vehicle or 0.3, 1, or 3 µM of HG for one hour; then, cells
were treated with vehicle, FSH, or forskolin (an adenylate cyclase
activator). Cyp19a1, Stard1, and Cyp11a1 mRNA levels were
determined 48 h after adding FSH or forskolin. One-way ANOVA
followed by Tukey. *p < 0.05 vs. 0; #p < 0.01 vs. 0+FSH; &p <
0.01 vs. 0+forskolin; n = 4.
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Cyp11a1 expression an effect that was significantly enhanced

by SIK inhibition (Figure 4).
Effect of SIK inhibition on PKA
downstream targets

PKA activates AKT and CREB in GCs (19, 30, 31); we next

sought to determine if SIK activity impacts the activation of

these proteins. GCs were treated with FSH in the presence or

absence of HG for one hour, and then whole-cell lysates were
Frontiers in Endocrinology 05
used for total and phospho AKT and CREB determination using

Western blotting. As expected, FSH significantly increased AKT

and CREB phosphorylation. The inhibition of SIK activity with

HG did not modify the stimulatory effect of FSH on AKT or

CREB phosphorylation. SIK inhibition alone had no effects on

AKT or CREB phosphorylation (Figure 5).
SIK inhibition increases the activity of a
CRE reporter

Since inhibition of SIK activity did not augment CREB

phosphorylation, we next investigated the effect of SIK

inhibition on CREB activity. For this purpose, we created a

cAMP response element reporter (CRE-Luc, see materials and

methods). As expected, CRE-Luc activity increased significantly

after treatment with FSH. HG treatment enhanced FSH-induced

CRE-Luc activity and alone increased CRE-Luc activity

significantly (Figure 6).

To outline possible mechanisms by which SIKs might

regulate CRE-Luc act ivi ty without affect ing CREB

phosphorylation, we tested the impact of SIK inhibition on the

stimulation of gene expression by C2/CREB. C2/CREB is a

fusion protein that activates CREB-responsive genes in the

absence of cAMP or PKA activation (21). Initial experiments

showed that overexpression of C2/CREB increases the activity of

the CRE-Luc reporter (Supplemental Figure 1). Then, we

infected GCs with lentivirus carrying an empty plasmid

(pGPcs) or C2/CREB. C2/CREB overexpression induced

Cyp19a1, Stard1, and Cyp11a1 expression. Inhibition of SIK

activity in cells overexpressing C2/CREB augmented Cyp19a1,

Stard1, and Cyp11a1 expression to levels that were significantly

higher than those observed with C2/CREB alone (Figure 7).
SIK inhibition regulates the nuclear
translocation of CREB coactivators

The lack of effect of SIK inhibi t ion on CREB

phosphorylation and its capacity to enhance the induction of

CRE-Luc activity by FSH or the stimulation of steroidogenic

gene expression by C2/CREB led to the hypothesis that SIK

inhibition regulates the activity of CREB coactivators. SIKs are

known to regulate CREB-regulated transcriptional coactivators

(CRTCs) (22). As this family of factors contains three members

(CRTC1, CRTC2, and CRTC3), we first examined which

isoform is expressed in rat GCs. As shown in Figure 8, CRTC2

is the main isoform expressed in the GCs. GCs express low levels

of CRTC1 but lack CRTC3. Protein extracts from liver and white

adipose tissue were used as positive controls for the expression of

CRTC isoforms.

CRTCs activity is mainly regulated by their translocation to

the nucleus, where they contribute to activating gene
FIGURE 3

SIK inhibition enhances cAMP actions. Rat GCs were pretreated
with vehicle or 0.3, 1, or 3 µM of HG for one hour; then, cells
were treated with vehicle or dbcAMP (a cell-permeable analog of
cAMP). Cyp19a1, Stard1, and Cyp19a1 mRNA levels were
determined 48 h after adding dbcAMP. One-way ANOVA followed
by Tukey. *p < 0.05 vs. 0; &p < 0.01 vs. 0+dbcAMP, n = 3.
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expression (22). Therefore, we next examined the effects of FSH

and SIK inhibition on the subcellular localization of CRTC2.

GCs were treated with FSH in the presence or absence of HG

(1µM) for 0, 15, 30, or 45 minutes. Following this treatment,

cytosolic and nuclear protein fractions were prepared. The

content of CRTC2 in the nuclear fraction increased with FSH

treatment. Combined treatment with FSH and the SIK inhibitor

increased the expression of CRTC2 in the nuclear fraction,

especially after 30 and 45 minutes of treatment (Figure 9A).
Frontiers in Endocrinology 06
Based on these findings, we repeated the experiment two more

times using 45 minutes of treatment with FSH in the presence or

absence of HG. As shown in Figure 9B, FSH increased CRTC2

content in the nucleus while cotreatment with HG enhanced

FSH effects. Finally, we quantified cytosolic and nuclear CRTC2

levels at 45 minutes and expressed them as a ratio to GAPDH or

Lamin B, which were used as loading controls for the cytosolic

and nuclear fractions, respectively. The analysis demonstrated

that treatment with FSH and HG significantly increases CRTC2
FIGURE 4

SIK inhibition enhances constitutively active PKA stimulation of gene expression. Rat GCs were infected 2 h after plating with lentivirus carrying
an empty plasmid (pGPcs) or caPKA. 24 h later, cells were treated with vehicle or HG (0.5 µM). Cyp19a1, Stard1, and Cyp11a1 mRNA levels were
determined 48 h after adding HG. One-way ANOVA followed by Tukey. Columns labeled with different letters differ significantly a-d and b-c,
p < 0.05; a-c, a-b, p < 0.01, n = 4.
FIGURE 5

SIK inhibition does not increase CREB or AKT phosphorylation. Cultured rat GCs were pretreated with HG (0.5 µM) for one hour and then
stimulated with FSH for one hour. Whole-cell lysates were used for total CREB, phospho-S133-CREB, total AKT, and phospho-S473-AKT
determination by Western blotting. The experiment was repeated 3 times, a representative blot is shown. For all experiments, bands were
quantified and the ratio of phospho to total protein was calculated, the average ± SEM is plotted on the right. One-way ANOVA followed by
Tukey. Columns labeled with different letters differ significantly a-b p < 0.05, n = 3.
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expression in the nuclear fractions compared to control and FSH

alone (Figure 9C).

Since SIK inhibition enhances the translocation of CRTC2 to

the nucleus, we next examined the effect of dominant negative

CRTC2 (CRTC2-DN), which has been shown to block the effects

of all CRTCs (23, 24). Expression of the CRTC2-DN blocked the

induction of Cyp19a1, Stard1, and Cyp11a1 expression by FSH

or by the combination of FSH plus HG (Figure 10).
Frontiers in Endocrinology 07
Discussion

We recently described the expression of SIK isoforms in the

ovary and GCs and showed that inhibition of SIK activity

enhances FSH actions in vitro and in vivo (1). Thus, we

showed that SIK inhibition enhances FSH induction of

steroidogenic gene expression and estradiol production in

human and rodent GCs (1). In addition, analysis of SIK

knockout mice demonstrated that SIKs are critical regulators

of female fertility. The main objective of this report was to

determine the intracellular mechanisms by which SIK inhibition

enhances FSH actions in the GCs.

Our previous report demonstrated that inhibition of SIK

activity is enough to mimic FSH actions (1). Therefore, we

initially hypothesized that FSH might, at least in part, stimulate

the expression of Cyp19a1, Stard1, and Cyp11a1 and the

production of estradiol by decreasing SIKs expression.

However, the results show that FSH does not inhibit SIKs

expression up to 48 h after treatment, which is the peak of

FSH-induced Cyp19a1 expression. We also showed that SIK

inhibition has no effects on the expression of the FSH receptor,

suggesting that SIKs act downstream of the FSH receptor.

Instead of a decrease in SIKs expression as expected, we found

that FSH transiently stimulates the expression of SIK1. SIK1 is

also stimulated by adrenocorticotropic hormone in the adrenal

glands (5). The transient induction of SIK1 may contribute to

the control of FSH actions by providing negative feedback on

FSH receptor signaling. However, the role of SIK1 stimulation by

FSH in GCs remains to be investigated.

Our findings suggest that SIKs target signaling molecules

downstream of cAMP, as evidenced by the ability of SIK

inhibition to enhance Cyp19a1, Stard1, and Cyp11a1 expression

induced by forskolin and dbcAMP. Forskolin causes direct
FIGURE 6

Effect of FSH on cAMP response element activation. Rat GCs
were infected 2 h after plating with lentivirus carrying an empty
plasmid or the pCRE-LUC reporter. 24 h later, cells were treated
with FSH (50 ng/ml) in the presence or absence of HG (0.5 µM).
Luciferase activity was quantified 48 h after adding FSH and HG.
One-way ANOVA followed by Tukey. Columns labeled with
different letters differ significantly a-b and b-c, p < 0.05; a-c p <
0.01, n = 3.
FIGURE 7

SIK inhibition enhances C2/CREB stimulation of gene expression. Rat GCs were infected 2 h after plating with lentivirus carrying an empty
plasmid (pGPcs) or C2/CREB. 24 h later, cells were treated with vehicle or HG (0.5 µM). Cyp19a1, Stard1, and Cyp11a1 mRNA levels were
determined 48 h after adding HG. One-way ANOVA followed by Tukey. Columns labeled with different letters differ significantly a-b, a-d, and b-
d, p < 0.05; a-c, and b-c p < 0.01, n = 3.
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activation of adenylyl cyclase activity, stimulating the production

of cAMP, whereas dbcAMP mimics the action of endogenous

cAMP. Therefore, the robust enhancement of forskolin- and

dbcAMP-induced stimulation of gene expression by SIK

inhibition indicates that SIK activity controls targets

downstream of cAMP. Moreover, our findings demonstrate that

of the two cAMP targets, PKA and EPAC, SIK activity appears to

regulate only PKA downstream signaling. EPAC has no effects on

the stimulatory effects of SIK inhibition on gene expression.

However, SIK inhibition augments the stimulatory effects of

caPKA on Cyp19a1, Stard1, and Cyp11a1 expression. Thus, our

findings show that SIKs act downstream of PKA.

Strikingly, although SIK inhibition potentiates PKA actions in

the GCs, inhibiting SIK activity has no impact on CREB

phosphorylation, a primary target of FSH and PKA in GCs

(32, 33). CREB is rapidly and transiently phosphorylated by FSH

(12, 34), whereas overexpression of a non-phosphorylatable

mutant of CREB in primary cultures of rat GCs decreases

estradiol production induced by FSH and adversely affects GC

survival (33). This evidence suggests that CREB activation is

required for normal GC differentiation. Surprisingly, SIK

inhibition increases the activity of a CRE reporter and the
Frontiers in Endocrinology 08
expression of several CREB-dependent genes such as Cyp19a1,

Stard1, and Cyp11a1. Moreover, we demonstrated that SIK

inhibition enhances the stimulation of gene expression induced

by C2/CREB, a CREB fusion protein that stimulates CRE-

responsive genes in the absence of cAMP. This evidence

demonstrates that SIK does not directly target CREB but factors

that might enhance its activity.

Previous reports have demonstrated that SIKs are potent

inhibitors of CRTCs (26, 35–39). CRTC movement between the

nucleus and the cytoplasm is regulated by phosphorylation (6).

In particular, CRTC phosphorylation by SIK results in nuclear

exclusion (40, 41). Under basal conditions, CRTCs are

sequestered in the cytoplasm. However, activation of specific

pathways causes CRTC nuclear translocation and binding

to CREB. The binding of CRTCs to CREB also leads to

increased CREB occupancy over cognate binding sites (42).

Therefore, CREB activity is not only regulated by

phosphorylation but also by the translocation of CRTC2 to the

nucleus. Our findings show for the first time that rat GCs express

mainly CRTC2 and low levels of CRTC1. Moreover, we observed

that treatment with FSH leads to the translocation of CRTC2 to

the nucleus, an effect significantly augmented by the

simultaneous inhibition of SIK activity. Because FSH induction

of steroidogenic genes is decreased by the overexpression of

CRTC2-DN, we propose that SIKs blunt FSH signaling in the

GCs by maintaining CRTC2 in the cytoplasm.

It is known that CRTCs activate CREB independent of S133

phosphorylation (23, 41) and that CRTC nuclear translocation is

necessary and sufficient for CRE activation (23). We have

previously reported that CREB localizes to the nucleus of GCs

and binds to the Cyp19a1 promoter even in the absence of FSH

(43). Here, we show that SIK inhibition is enough to stimulate

CRTC2 nuclear translocation in GCs, which coincides with

increased steroidogenic gene expression and CRE-Luc activity.

These findings suggest that the nuclear translocation of CRTC2

may also explain the stimulatory effect of SIK inhibition on

Cyp19a1, Stard1, and Cyp11a1 in the absence of FSH. Thus,

CRTC2 movement to the nucleus is enough to stimulate the GC

differentiation program, most probably by activating CREB-

occupied promoters. However, from our findings, it is also

clear that full activation of the GC differentiation program is

only reached in the presence of FSH. Whether CRTC2 regulates

the activity of other transcription factors in addition to CREB in

GCs remains to be investigated. In addition, because SIK

inhibition alone is sufficient to stimulate the expression of

markers of GC differentiation, it is possible to postulate that

SIKs are highly active in undifferentiated GCs. Therefore, we

postulate that SIK activity is inhibited by FSH. However, the

mechanisms involved have not yet been explored.

In addition to cAMP, we have previously demonstrated that

the AKT signaling pathway is essential for FSH-induced

preovulatory GC differentiation (19). FSH stimulates AKT

signaling (44); subsequently, a dominant-negative mutant of
FIGURE 8

Expression of CRTC isoforms in GCs. Total protein extracts from
rat GCs were used for Western blot analysis for CRTC1, CRTC2,
CRTC3, and GAPDH (loading control). Extract of rat liver and rat
white adipose tissue (WAT) were used as positive controls. MM:
Molecular Marker weight in kDa. Representative blot of two
individual determinations.
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FIGURE 9

Effect of FSH and SIK inhibition on the subcellular localization of CRTC2. (A) Rat GCs were treated with FSH (50 ng/ml) in the presence or
absence of HG (0.5 µM) for 15, 30, or 45 minutes or left untreated. (B) Rat GCs were treated with FSH in the presence or absence of the SIK
inhibitor HG for 45 minutes. For A and B, Nuclear and cytosolic extracts were prepared and blotted for CRTC2, GAPDH (cytosolic marker), or
Lamin B (nuclear marker). The bands were quantified using Image J software, and the ratio between CRTC2 and the corresponding subcellular
marker was calculated. (C) Cytosolic and Nuclear CRTC2 content as a ratio to the corresponding subcellular marker is plotted. *p <0.05, n = 3.
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AKT blocks FSH-stimulated estrogen production (45). Despite the

importance of AKT in FSH-induced GC differentiation, SIK

inhibition has no effects on the phosphorylation and activation

of AKT by FSH. Noteworthy, SIK activity is increased in the

presence of active glycogen synthase kinase-3b (GSK3b) (9). FSH
strongly and rapidly phosphorylates GSK3b in ovarian GCs (44).

GSK3b activity is decreased by phosphorylation, particularly by

AKT (46, 47). Therefore, we propose that in GCs, CRTC2 activity

may also be increased by FSH via the activation of AKT, which in

turn causes GSK3b and SIKs inactivation. Further experiments are

needed to test this hypothesis.

In summary, our findings outline the intracellular signaling

pathway downstream of the FSH receptor that is affected by SIK
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activity. We show that SIK inhibition enhances the actions of all

the components of the FSH signaling transduction pathway,

including adenylyl cyclase, cAMP, PKA, and CREB. Moreover,

we show that FSH and SIKs interact to control the expression of

CRTC2 in the nucleus of GCs. We propose that in GCs, SIK

inhibition increases the recruitment of CRTC2 to the promoter

of steroidogenic genes. Further experiments are needed to

determine the involvement of CRTC2 in regulating CREB

activity and whether SIK activity targets additional PKA

substrates in ovarian GCs.
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Dominant negative CRTC2 inhibits FSH and SIK inhibition effects.
Rat GCs were infected 2 h after plating with lentivirus carrying an
empty plasmid (pGPcs) or CRTC2-DN. 24 h later, cells were
treated with FSH (50 ng/ml) in the presence of vehicle or HG
(0.5 µM). Cyp19a1, Stard1, and Cyp11a1 mRNA levels were
determined 48 h after adding FSH. One-way ANOVA followed by
Tukey. Columns labeled with different letters differ significantly
a-b, a-d, and b-c, p < 0.05; a-c p < 0.01, n = 3.
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SUPPLEMENTARY FIGURE 1

caPKA and c2/CREB capacity to activate a CRE-reporter. HEK293 cells
were transfected with pCRE-LUC plus empty vector, caPKA, or C2/CREB.

Luciferase activity was determined 48 h after transfection. ** p<0.01 vs.
empty, n = 3.

SUPPLEMENTARY FIGURE 2

Effect of SIK inhibition on FSH receptor expression. Rat GCs were treated

with FSH in the presence or absence of HG. FSH receptor mRNA levels
were measured 48 h after the initiation of treatments. No significant

differences were found. One-way ANOVA followed by Tukey, n = 3.

SUPPLEMENTARY FIGURE 3

Activation of EPAC does not affect SIK inhibition effects. Rat GCs were

pretreated with vehicle or HG (0.5 µM) for one hour; then, cells were
treated with vehicle, FSH, or 10 µM 8-CPT-cAMP (8CPT), an EPAC

activator. Aromatase, StAR, and P450scc mRNA levels were determined
48 h after adding FSH or 8CPT. One-way ANOVA followed by Tukey. *p <

0.05, **p < 0.01, n = 3.
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