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SIRT1 haplo-insufficiency results
in reduced cortical bone
thickness, increased porosity
and decreased estrogen
receptor alpha in bone in adult
129/Sv female mice
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Noga Kalish-Achrai2, Natan Lishinsky1

and Rivka Dresner-Pollak1*

1Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical
Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel, 2Laboratory
of Bone Biomechanics, Koret School of Veterinary Medicine, Faculty of Agriculture, Hebrew
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Introduction: Sirtuin 1 (SIRT1) is a key player in aging and metabolism and

regulates bone mass and architecture. Sexual dimorphism in skeletal effects of

SIRT1 has been reported, with an unfavorable phenotype primarily in femalemice.

Methods: To investigate the mechanisms of gender differences in SIRT1

skeletal effect, we investigated femoral and vertebral cortical and cancellous

bone in global Sirt1 haplo-insufficient 129/Sv mice aged 2,7,12 months lacking

Sirt1 exons 5,6,7 (Sirt1+/D) and their wild type (WT) counterparts.

Results: In females, femoral bone mineral content, peak cortical thickness, and

trabecular bone volume (BV/TV%), number and thickness were significantly lower in

Sirt1+/D compared to WT mice. Increased femoral cortical porosity was observed in

7-month-old Sirt1+/D compared to WT female mice, accompanied by reduced

biomechanical strength. No difference in vertebral indices was detected between

Sirt1+/D andWT femalemice. SIRT1 decreasedwith aging inWT femalemice andwas

lower in vertebrae and femur in 18- and 30- versus 3-month-old 129/Sv andC57BL/

6J female mice, respectively. Decreased bone estrogen receptor alpha (ERa) was

observed in Sirt1+/D compared toWT femalemice andwas significantly higher in Sirt1

over-expressingC3HT101/2murinemesenchymal stemcells. Inmales no difference

in femoral indices was detected in Sirt1+/D versusWTmice, however vertebral BV/TV

%, trabecular number and thickness were higher in Sirt1+/D vs. WT mice. No

difference in androgen receptor (AR) was detected in bone in Sirt1+/D vs. WT male

mice. Bone SIRT1 was significantly lower in male compared to female WT

mice, suggesting that SIRT1 maybe more significant in female than male skeleton.

Discussion: These findings demonstrate that 50% reduction in SIRT1 is sufficient

to induce the hallmarks of skeletal aging namely, decreased cortical thickness and
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increased porosity in female mice, highlighting the role of SIRT1 as a regulator of

cortical bone quantity and quality. The effects of SIRT1 in cortical bone are likely

mediated in part by its regulation of ERa. The age-associated decline in bone

SIRT1 positions SIRT1 as a potential therapeutic target to ameliorate age-related

cortical bone deterioration in females. The crosstalk between ERa, AR and SIRT1 in

the bone microenvironment remains to be further investigated.
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Introduction

Sirtuin 1 (SIRT1), a NAD+-dependent deacetylase, plays a key

role in aging and metabolism (1–3). We and others have previously

shown that SIRT1 regulates bonemass andmicro-architecture via its

direct effects on various cell types in the bone microenvironment.

Using mouse models of global Sirt1 overexpression as well as global

and cell specific Sirt1 deletion in bone marrow mesenchymal stem

cells, pre-osteoblasts, osteoblasts, and osteoclasts it has been shown

that SIRT1 stimulates bone formation and inhibits bone resorption

and marrow adipogenesis (4–8). Key factors in bone homeostasis

such as sclerostin, a canonical WNT pathway inhibitor, RUNX2,

FOXOs, PPARg, NFĸB, PGC1a, and b-catenin were identified as

SIRT1 targets (9–11).

Sexual dimorphism in SIRT1 effect in bone has been previously

reported by us and others with a compromised phenotype observed

in Sirt1 deficient female but not male mice (4, 6). To understand the

underlyingmechanismsof gender differences in SIRT1 skeletal effect,

we investigated bone microarchitecture and biomechanical strength

in 129/Sv Sirt1+/D female and male mice and their WT littermates.

We discovered that Sirt1 haplo-insufficiency differentially affects

cortical and trabecular bone accrual in female and male mice, while

SIRT1 directly upregulates estrogen receptor type alpha (ERa) in
bone. Adult Sirt1+/D female mice displayed reduced femoral cortical

thickness and increasedporosity, thehallmarksof skeletal aging, at an

early age of age 7 month, accompanied by biomechanical

deterioration. A higher bone SIRT1 level was found in female

compared to male WT mice with a dramatic decline with aging in

two different mouse strains, suggesting that SIRT1-based

therapeutics maybe beneficial for age-associated cortical bone

deterioration in females.
Methods

Animal experimentation

Adult inbred female and male Sirt1 haplo-insufficient mice

(Sirt1+/D) and their wild type (WT) littermates of 129/Sv
02
background (12) were a generous gift of Prof. Frederick W.

Alt of Harvard University and were previously studied by us

(4, 8). Two mouse models of Sirt1 deficient 129/Sv mice have

been generated: Sirt1Dex4 lacking the 4th exon that encodes for

the conserved SIRT1 catalytic domain, and Sirt1Dneo lacking

exons 5, 6 and 7 resulting in no SIRT1 protein generation.

General Sirt1 ablation in both mouse models resulted in a high

degree of post-natal lethality with less than 5% of mice surviving

to adulthood. Knock-out mice are small in body size and exhibit

significant developmental defects of the retina and the heart (12).

Mice were housed under specific pathogen free (SPF)

conditions with free access to water and chow #2018 (Teklad

Diets, Madison WI) containing 18.6% protein, 1% calcium and 2

IU/g vitamin D3 and water. Three- and 30-month-old C57BL/6J

female mice were obtained from the National Institute of Aging

(NIA) through scientific collaboration with Prof. Raul

Mostoslavsky of Harvard University. Upon sacrifice by CO2

inhalation blood was collected via cardiac puncture,

immediately separated and frozen in -80°C until used. Femurs

and L4 were removed, cleaned of adherent tissue, kept in 10%

formalin for 48 hours and then in 70% EtOH at 4°C for micro-

computed tomography (mCT) imaging. For biomechanical

testing femurs were immediately wrapped in saline-soaked

gauze and kept in -20°C until analyzed. Vertebrae, femurs, and

tibiae were collected for protein and RNA extraction and stored

at -80°C until analyzed. Bone marrow from femurs and tibiae

was flushed and lysed as described below. All experiments were

performed with the approval of the Animal Study Committee of

the Hebrew University-Hadassah Medical School (MD-12-

13154-3). All studies were conducted in accordance with

ARRIVE guidelines.
µCT analyses

L4 and femurs of female and male Sirt1+/D and WT mice

aged 2, 3, 7 and 12 months were examined ex-vivo by mCT
(Desktop µCT 42; Scanco, Switzerland). Each group of Sirt1+/D

and WT mice was studied separately. The scanner was operated
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at X-ray tube potential 70 kVp and X-ray intensity 114 µA, with

an integration time of 200 ms and isotropic resolution of 10 µm.

Femoral length was automatically measured in mCT images.

Trabecular bone was analyzed in L4, and in the secondary

spongiosa in the distal femoral metaphysis. Cortical bone was

analyzed in the femoral mid-shaft. Cortical porosity was assessed

as the percentage of void area out of cortical bone 1 mm distal to

the midshaft. The chosen area was contoured, and threshold set

to 280 units (588 mg HA/ccm) for the midshaft evaluation 210

units (390 mg HA/ccm) for the trabecular structure. Evaluation

was performed by running the built-in “eval_midshaft” script

with uct_evaluation_v6 software version (Scanco).
Biomechanical testing

Femora were subjected to the three-point bending test.

Force–displacement data was generated as previously

described (13). Monotonic loading was performed at a

constant rate of 250 mm/min. Force to fracture (breaking

force), and maximal force (ultimate force) were obtained from

the load-displacement curves. Ultimate stress su as calculated

based on the µCT and force-displacement data using the

formula: su =
FuLc
4I , Fu, ultimate force, L, the distance between

the support points (5 mm) c, half-width of mid-shaft in the load

direction derived from the µCT measurements, I, cross sectional

moment of inertia (CSMI) (14).
Experiments in the mesenchymal stem-
cell line C3H10T1/2

Sirt1 over-expression in the murine mesenchymal embryonic

fibroblast stem cell line C3H10T1/2 (ATCC CCL-226) was

previously modified by us through retroviral infection with

pBABE-Sirt1 (4). Sirt1 over-expressing and control C3H10T1/2

cells were plated in growing medium (GM; D-MEM/10% fetal calf

serum/2 mM L-Glutamine/100 Units/ml penicillin/100 mg/ml

streptomycin sulfate/0.25 mg/ml amphotericin B) and were

maintained for 4 days for immunoprecipitation and 14 days for

studying protein and mRNA expression.
Protein analysis

Protein from whole vertebrae and femora was extracted by

crushing the bones in liquid nitrogen followed by lysis in RIPA

buffer (50mM Tris pH7.5/150 mMNaCl/0.1% SDS/0.5% sodium

deoxycholate/1% Triton X 100) and additional crushing by

Polytron (Kinematica). For C3HT101/2 cells protein was

extracted in Laemmli buffer (2% SDS/10% glycerol/5% 2-

mercaptoethanol/0.01% bromphenol blue/60 mM Tris HCl).

Nuclear extracts of bone marrow cells flushed from tibiae and
Frontiers in Endocrinology 03
femora were obtained by using the nuclear Extraction Kit #

10009277 (Cayman Chemicals). Antibodies for immunoblotting:

SIRT1 (Millipore, 07-131), aTubulin (AbCam, ab106375),

HSP90 (Heat Shock Protein 90) (BD Transduction

laboratories), ERa (Estrogen receptor alpha) (AbCam,

ab2746), Histone 3 (AbCam, ab1791), Acetylated-Lysine (Cell

Signaling, C-9441L), Androgen receptor (Millipore, MM06680),

GAPDH (Glyceraldehyde-3-phosphate dehydrogenase)

(AbCam, ab8245). Quantification for Western blot images was

performed by using a digital camera, BIO-RAD CHEMIDOC

using the software IMAGELAB and IMAGEJ.
Immunoprecipitation

Sirt1 over-expressing and control C3HT101/2 cells were

lysed in lysis buffer (50mM TRIS-HCl, pH 7.4/1% NP-40,

0.25% Sodium deoxycholate/150 mM NaCl, 1mM EDTA/

1mM PMSF supplemented with protease inhibitor and

phosphatase inhibitor). Marrow from tibiae and femora was

flushed with the same buffer, then cleared by centrifugation at

12,000 RPM for 15 min at 4°C. Immunoprecipitation was carried

out by preclearing 1 mg of protein in 300 ml lysis buffer with 30 ml
protein A beads (Millipore) for 1 h and incubating the lysates

with 4 ml of the SIRT1 antibody (Millipore, 07-131), rotating

over night at 4°C. For precipitation, 30 ml protein A agarose

beads were added followed by incubation at 4°C for 3 h.

Immunoprecipitates were washed extensively and eluted twice

with x2 Laemmli buffer. Proteins were separated by SDS-PAGE

and transferred to PVDF membranes (Millipore).
Gene expression analysis

Whole vertebrae and C3H10T1/2 cells were homogenized in

TRIzol (Invitrogen, Carlsbad CA). Total RNA was extracted and

converted to cDNA using the qScript kit (Quanta BioSciences,

Inc. Gaithersburg, MD, USA). Gene expression analysis was

performed using SYBR Green-based real-time-PCR (Kapa

Syber, Kapa Biosystems (Pty) Ltd, Cape Town, South Africa).

Relative gene expression was determined by the comparative

cycle threshold (CT) method with bActin, GAPDH and Polr2A

as controls. For each sample, the mean CT for each gene (run in

triplicate) was normalized to the geometric mean of the mean

CT of the 3 reference genes using the formula: 2-(gene of interest CT-

reference CT). The resulting DCT for each gene was used to

calculate relative gene expression changes between samples.
Statistical analysis

Statistical analysis was performed with GraphPad Prism

9.3.1 statistical software (GraphPad Software, Inc., La Jolla,
frontiersin.org
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CA, USA). All data were tested for normality using the Shapiro-

Wilk test. Normally distributed data sets were analyzed with

parametric tests, whereas data sets that did not pass the Shapiro-

Wilk test (P<0.05) were analyzed with nonparametric tests. For

normally distributed data, unpaired 2-tailed Student’s t test was

used to compare means of two groups. µCT metrics were

compared in 2, 3, 7 and 12-month-old female and male mice

and their age-matched WT counterparts using the unpaired 2-

tailed Student’s t test. Data are presented as Mean ± SEM.

Differences of P< 0.05 were considered significant.
Results

Decreased femoral peak cortical
thickness and bone volume fraction in
Sirt1+/D female but not male mice

Body weight was mildly reduced in Sirt1+/D compared to WT

female mice at age 2 months but similar in both genotypes beyond
Frontiers in Endocrinology 04
that age (Supplementary Figure S1A). In males, no difference in

body weight could be detected between genotypes

(Supplementary Figure S1B). Femoral length was lower in

Sirt1+/D compared to WT female mice at age 2 months but

similar in both genotypes at age 7 months (Supplementary

Figure S2A). Of note, we have previously reported similar

serum IGF-1 level in this model of Sirt1+/D and WT female

mice (4). In males, no difference in femoral length could be

detected between genotypes (Supplementary Figure S2B).

Femoral bone mineral content (BMC) was significantly

lower in Sirt1+/D compared to WT female mice at age 2

months (Figure 1A). Femoral trabecular peak bone mass

expressed as bone volume fraction (BV/TV%) was attained at

age 2 month in both genotypes and was significantly lower in

Sirt1+/D compared to WT female mice (Figure 1B). Consistently,

reduced trabecular number and thickness accompanied by

increased trabecular spacing was observed in 2-month-old

Sirt1+/D compared to WT female mice (Figures 1C–E). Cortical

thickness peaked at age 7 month in both Sirt1+/D and WT female

mice and was significantly lower in Sirt1+/D compared to WT
B C

D E F

G

A

FIGURE 1

Sirt1 haploinsufficiency leads to reduced peak cortical thickness, decreased trabecular bone volume fraction and increased cortical porosity in
the femur in 129/Sv female mice. µCT analysis of femoral mid-shaft and distal metaphysis in 2,7,12-month-old Sirt1+/D and WT female mice.
(A) Bone mineral content (BMC) (B) Bone volume fraction (BV/TV%) (C) Trabecular number (D) Trabecular thickness (E) Trabecular spacing
(F) Cortical thickness (G) Cortical porosity percent in 7-month-old Sirt1+/D and WT female mice (n = 14-15 mice/group); representative image
(left) and quantification (right); scale bar 1 mm. Results are Mean ± SEM analyzed by unpaired Student’s t test. *P < 0.05, **P < 0.01, ****P <
0.0001 versus WT female mice. ((n = 7-11 mice/group). BV, bone volume; TV, total volume.
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mice at both age 2 and 7 months (Figure 1F). Importantly, a 50%

increase in cortical porosity percent was found in femoral

midshaft in Sirt1+/D compared to WT female mice at age 7

months (Figure 1G). Peak vertebral (L4) BV/TV% was attained

at age 3 months in female mice in both genotypes (Figure 2A)

and was not significantly different in Sirt1+/D versus WT female

mice, nor were other indices of vertebral trabecular bone

(Figures 2B–D).
Increased vertebral trabecular bone
volume fraction and number in Sirt1+/D

male but not female mice

A different phenotype was observed in male mice. Like in

females, cortical thickness peaked at age 7 months in both

genotypes (Figure 3F), however no difference in BMC or

cortical thickness was detected between WT and Sirt1+/D male

mice (Figures 3A, F). Femoral BV/TV% was higher in Sirt1+/D

versus WT male mice at age 12 months (Figure 3B). Strikingly,

vertebral L4 BV/TV%, trabecular number and thickness were

significantly higher in 3-and 12-month-old Sirt1+/D compared to

WT male mice (Figures 4A–C).Consistently, trabecular spacing

was lower in Sirt1+/D compared to WT male mice (Figure 4D).
Frontiers in Endocrinology 05
Taken together, these results show a gender dimorphic effect of

Sirt1 haplo-insufficiency on femoral cortical and cancellous and

vertebral cancellous bone with lower femoral indices in Sirt1+/D

versus WT female mice, and higher vertebral indices in Sirt1+/D

versus WT male mice.
Decreased femoral biomechanical
strength in Sirt1+/D female but not
male mice

To understand if reduced femoral cortical thickness and

increased porosity in Sirt1+/D female mice result in

biomechanical alterations, the three-point bending test was

performed in Sirt1+/D female and male mice and their WT

counterparts. (Figures 5A–G). While stiffness was not affected

(Figure 5A), maximal force was significantly reduced in Sirt1+/

D compared to WT female mice (Figure 5B). There was also a

trend for lower breaking force (Figure 5C) (P=0.09) and

ultimate stress (Figure 5D) (P=0.1). No difference in any of

these parameters could be detected in Sirt1+/D compared to

WT male mice (Figures 5E–G), suggesting that femoral

mechanical strength is reduced in female but not male

Sirt1+/D mice.
B

C D

A

FIGURE 2

The effects of Sirt1 haploinsufficiency on vertebral L4 trabecular bone indices in female mice. µCT analysis of L4 trabecular bone in 3, 7,12-
month-old Sirt1+/D and WT female mice. (A) Bone volume fraction (BV/TV%) (B) Trabecular number (C) Trabecular thickness (D) Trabecular
spacing. Results are Mean ± SEM analyzed by unpaired Student’s t test (n = 7-11 mice/group).
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B C

D E F

A

FIGURE 3

The effects of Sirt1 haploinsufficiency on femoral cortical and trabecular bone parameters in Sirt1+/D and WT male mice. µCT analysis of femoral
mid-shaft and distal metaphysis in 2, 7,12-month-old Sirt1+/D and WT male mice. (A). Bone mineral content (BMC) (B). Bone volume fraction
(BV/TV%) (C). Trabecular number (D). Trabecular thickness (E). Trabecular spacing (F). Cortical thickness in mid shaft. Results are Mean ± SEM
analyzed by unpaired Student’s t test; **P < 0.01 versus WT male mice. (n = 7-11 mice/group).
B

C D

A

FIGURE 4

Sirt1 haploinsufficiency leads to increased vertebral L4 trabecular bone indices in Sirt1+/D male mice. µCT analysis of L4 trabecular bone:
(A) Bone volume fraction (BV/TV%) (B) Trabecular number (C) Trabecular thickness (D) Trabecular spacing. Results are Mean ± SEM analyzed by
unpaired Student’s t test; *P < 0.05, **P < 0.01 versus WT male mice (n = 7-11 mice/group).
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SIRT1 upregulates ERa in bone

To gain insight into possible underlying mechanisms of

gender differences in the effects of Sirt1 haplo-insufficiency on

cortical and cancellous bone, we next sought to explore sex

hormone receptors in bone in Sirt1+/D and WT female and male

mice. We have previously reported that serum E2 levels were not

different in Sirt1+/D and WT female mice (4). Using the ALPCO

Mouse/Rat Testosterone ELISA assay to determine serum

testosterone, levels were under the detection level of the kit in

Sirt1+/D and WT male mice (data not shown). ERa plays a key

role in bone in female and male mice as well as humans (15).

ERa deletion from early osteoblast progenitors (16) or mature

osteoblasts (17–20) was previously shown to result in decreased

cortical bone mass in female but not male mice. We therefore

evaluated ERa in Sirt1+/D and WT female mice. Strikingly, ERa
protein level was dramatically reduced by approximately two-

fold in whole vertebrae extracts derived from Sirt1+/D compared

to WT female mice (Figure 6A). mRNA expression was only

mildly reduced (Figure 6B). Consistently, mRNA expression of

Fas ligand (FASL), an ERa target gene in osteoblasts (21), was

decreased in vertebrae obtained from Sirt1+/D compared to WT

female mice (Figure 6C). To further investigate if the effects of

Sirt1 on ERa are direct and cell autonomous, we compared ERa
expression in Sirt1-overexpressing CH310T1/2 mesenchymal

stem cells and control cells. Consistent with the in vivo

findings, ERa protein and mRNA levels were markedly

increased in Sirt1 over-expressing C3H10T1/2 (Figure 6D),

indicating upregulation of ERa induced by SIRT1. This data
Frontiers in Endocrinology 07
suggest that SIRT1 upregulates ERa in bone and its reduction in

Sirt1+/D female mice likely contributes to reduced femoral bone

indices in female mice.
Bone SIRT1 is lower in male compared to
female WT 129/Sv mice

Others and we have previously shown that estrogen

deficiency induced by ovariectomy results in reduced SIRT1 in

bone (5, 22), suggesting that SIRT1 is regulated by estrogens. We

therefore compared SIRT1 protein level in vertebral extracts

obtained from male and female WT mice. Strikingly, a marked

reduction in SIRT1 protein was observed in male compared to

female WTmice (Figure 6E). No difference was observed in Sirt1

mRNA expression (Figure 6F). It is therefore plausible that no

significant SIRT1-dependent deterioration in cortical bone

phenotype was observed in male mice due to significantly

lower SIRT1 level in male bone.
SIRT1 decreases with aging in bone in
129/Sv and C57BL/6J WT female mice

To understand the relevance of these findings to skeletal

aging in female mice, we compared SIRT1 protein level in spine

and femur in young versus aged WT female mice in two mouse

strains. Vertebral SIRT1 level was markedly reduced in 18-

month- compared to 3-month-old 129/Sv WT female mice
B C D

E F G

A

FIGURE 5

Sirt1 haploinsufficiency leads to reduced femoral biomechanical properties in female but not male Sirt1+/D mice. Biomechanical properties
determined by three-point bending in 7-month-old female (A–D) and male (E–G) Sirt1+/D and WT mice. (A, E). Stiffness (N/mm). (B, F). Maximal
(Ultimate) force (N). (C, G). Breaking force (N). (D) Ultimate Stress (MPa). Results are mean ± SEM. Analyzed by unpaired Student’s t-test. *P <
0.05 versus WT mice. (n = 8 mice/group).
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FIGURE 6

SIRT1 upregulates ERa in bone, is lower in males and declines with aging in female mice. (A) Immunoblot of ERa in whole vertebrae in 5-
month-old Sirt1+/D and WT female mice. A representative image (left) and densitometry (right) with HSP90 as control. (B) ERa mRNA and
(C) FASL mRNA relative expression in whole vertebrae in 5-month-old Sirt1+/D and WT female mice with bActin and GAPDH as controls.
(D) Immunoblot of ERa in Sirt1 over-expressing and control C3HT101/2 cells. A representative image (left) and densitometry (right) with HSP90
as control (n = 3 independent experiments). (E) SIRT1 protein and (F) Sirt1 mRNA in whole vertebrae in 5-month-old WT female and male mice.
A representative image (left) and densitometry (right) with a-tubulin and GAPDH as controls, respectively. (G) SIRT1 protein level in whole
vertebrae in 3- and 18-month-old WT 129/Sv female mice (n = 3 mice/group). A representative image (left) and densitometry (right) with HSP90
as control. (H) Sirt1 mRNA relative expression in whole vertebrae in 3- and 18-month-old WT 129/Sv female mice (n = 3 mice/group) with
bActin, Polr2A and GAPDH as controls. (I) SIRT1 protein level in whole femur in 3- and 30-month-old C57BL/6J WT female mice (n = 3 mice/
group) with GAPDH as control. Results are mean ± SEM analyzed by unpaired Student’s t-test. **P < 0.01 versus C3H10T1/2 cells (D); **P < 0.01
versus WT female mice (E); **P < 0.01 versus 3-months-old WT 129/Sv female mice; (G) ***P < 0.001 versus WT female mice (A, C) (n = 6-9
mice/group, unless otherwise specified).
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(Figure 6G). Consistently, SIRT1 was lower in femora in 30-

compared to 3-month-old C57BL/6J female mice (Figure 6I),

confirming that the effect of aging on bone SIRT1 is not

strain-dependent.
SIRT1 and androgen receptor

To explore the underlying mechanisms of increased

vertebral cancellous bone indices in Sirt1+/D vs. WT male

mice, we sought to investigate the AR, as SIRT1 was

previously reported to deacetylase and inhibit AR function in

prostate cells in the context of prostate cancer (23). Thus, Sirt1

haplo-insufficiency could result in restraining the inhibitory

effects of SIRT1 on AR. Furthermore, targeted deletion of exon

3 of the AR in mature osteoblasts resulted in reduced vertebral

cancellous bone volume fraction and trabecular number (24).

We, therefore, first examined if AR and SIRT1 physically interact

with each other in Sirt1 overexpressing C3H10T1/2 cells.

A physical interaction between SIRT1 and AR was observed

(Figure 7A). Next, we determined lysine acetylation, a marker of

SIRT1 activity, in bone marrow flush obtained from Sirt1+/D and

WT male mice. No difference in AR lysine acetylation could be

detected in WT versus Sirt1+/D male mice (Figure 7B), nor was

there a difference in AR protein level in the cytosolic or the

nuclear fractions obtained from long bones marrow flush in

Sirt1+/D vs. WT male mice (Figures 7C, D).
Discussion

This study demonstrates that global Sirt1 haplo-insufficiency

attenuates femoral cortical and trabecular bone mass accrual in

female but not male 129/Sv mice, resulting in lower femoral
Frontiers in Endocrinology 09
bone mineral content, a corelate of human bone mineral density,

decreased peak femoral cortical bone thickness and metaphyseal

cancellous bone volume fraction. Moreover, increased cortical

porosity was observed in femoral cortical bone in Sirt1 haplo-

insufficient female mice at a relatively young age of 7 months.

Consistent with the notion that cortical porosity is a major

determinant of bone strength (25, 26) these structural

alternations in adult Sirt1+/D female mice resulted in

deterioration in femoral biomechanical strength, as indicated

by lower maximal and breaking forces. Thus, adult Sirt1+/D

female mice prematurely display the hallmarks of skeletal

aging namely reduced cortical thickness and increased cortical

porosity. As peak bone mass is a predictor of bone quality at old

age (27), and cortical porosity is a structural deterioration

associated with increased fracture risk in mice and humans,

our findings highlight the importance of SIRT1 in skeletal aging

in female mice. Importantly, we discovered that SIRT1

expression in vertebrae and femur significantly declines with

age in female mice in two different mouse strains, supporting the

notion that the physiologic decline in SIRT1 is a significant

contributor to age-associated cortical bone deterioration in

females. Of note, in humans, porosity occurs in both genders

but is much higher in women compared to men (28, 29).

To investigate the underlying mechanisms of sexual

dimorphism in the skeletal effects of Sirt1 haplo-insufficiency,

we studied sex hormone receptors, as a cross talk between SIRT1

and ERa and AR has been previously reported in the context of

breast and prostate cancer, respectively (23, 30). Indeed, reduced

vertebral ERa was found in Sirt1+/D female mice, while increased

ERa was observed in Sirt1 over-expressing C3H10T1/2 cells

indicating direct upregulation of ERa. This data is consistent

with the results of Yao et al. (31) that have shown decreased ERa
protein level in mouse embryonic fibroblast (MEF) cells derived

from Sirt1-/- mice.
B CA

FIGURE 7

SIRT1 and the androgen receptor (AR). (A) SIRT1 associates with AR in Sirt1-over expressing C3HT101/2 cells; immunoprecipitation (IP) with anti
SIRT1 and IgG (negative control) antibodies. (B) AR acetylation in bone marrow flush in 9-week-old Sirt1+/D and WT male mice. IP with anti SIRT1
antibody, immunoblot with anti-acetylated lysine antibody. (C, D). AR in bone marrow flush in 9-week-old Sirt1+/D and WT male mice; C-
Cytosolic fraction with a-tubulin as control. D-Nuclear fraction with Histone 3 (H3) as control (a pool of 3 mice/group).
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The interaction between sex hormone receptors and bone is

complex, and sex hormone receptors were previously shown to

regulate bone mass and microstructure in a gender specific

manner (32). ERa plays a key role in bone in both females

and males in mice and humans. Studies investigating the effects

of ERa actions on bone have used mouse models with global as

well as cell specific ERa deletion in different bone cells in bone

including osteoprogenitors, osteoblasts, osteocytes, osteoclasts,

and immune cells. The findings in global ERa deletion mouse

models were confounded by the systemic increase in circulating

sex hormones, and models of targeted ERa deletions from birth

onwards could affect growth and development. With these

limitations, in most studies a gender specific skeletal

phenotype was observed. Targeted deletion of ERa in myeloid

progenitors resulted in cancellous bone loss in female but not

male mice (33). Using the Prx-1-Cre mouse model to delete ERa
in mesenchymal progenitors led to reduced cortical bone mass in

female but not male mice (16). Similarly, ERa deletion in

osteoblasts progenitors using the Osx1-Cre model (16) and in

osteoblasts using the OCN-Cre model also resulted in reduced

cortical bone mass in female but not male mice (34).

Importantly, in a recently published study in which ERa
deletion in osteocytes was induced in adult mice using the

tamoxifen inducible CreERT2 with the 8kb Dmp1 promoter, it

was shown that ERa is critical for estrogen action in adult bone

in female but not male (15). Taken together, we speculate that

reduced SIRT1 resulted in lower ERa in bone and contributed to

impaired cortical bone phenotype in Sirt1+/D female mice. As

SIRT1 level was found in this study to be significantly lower in

males, the change in ERa in males was probably marginal.

Interestingly, the orphan receptor estrogen related receptor

alpha (ERRa) was also reported to influence cortical bone (35)

and be regulated by SIRT1 (36).

On the other hand, AR was previously shown to regulate

primarily cancellous bone in male mice. Targeted deletion of AR

in the mesenchymal lineage and in osteoblasts using the 2.3kb

Col1A1 mouse model resulted in low cancellous bone but not

cortical bone mass in male but not female mice (24). Of note,

transgenic mice overexpressing AR in osteoblasts under the

control of the 2.3-kb a1 (I)-collagen promoter fragment

exhibited increased trabecular bone volume and trabecular

number (37). As Sirt1+/D male mice exhibited higher vertebral

BV/TV% and previous data has shown inhibition of AR by

SIRT1, we anticipated a decrease in AR level or function.

However, we could not detect differences in AR expression in

whole vertebrae in Sirt1+/D compared to WT male mice.

Additional studies in different cell types and bone

compartments are needed to fully understand the interaction

between AR and SIRT1 in bone.

Lower SIRT1 level was observed in male compared to

female mice. These findings are consistent with Elangovan
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et al. (30) that examined Sirt1 mRNA expression in kidney,

lung, liver, heart, and colon in C57BL/6J female and male mice

and found lower Sirt1 expression in males compared to

females aged 3-6 months. Bone tissue was not included in

that study.

This study is not without limitations. We used a mouse

model with global Sirt1 haplo-insufficiency. Thus, the skeletal

phenotype observed in this study could result from direct

actions of SIRT1 in bone cells as well as indirect effects in

other tissues and via intermediate mediators. SIRT1 plays a

role in skeletal muscle physiology and reduction in muscle

mass and function can contribute to bone loss. SIRT1

positively regulates peroxisome proliferator-activated

receptor g coactivator 1a (PGC-1a), a major inducer of

mitochondrial biogenesis and the expression of antioxidative

enzymes, that can inhibit the generation of harmful

mitochondrial reactive oxygen species (ROS) (38). In

addition, SIRT1 influences the activity of the transcription

factors forkhead box, class O (FoxO), FoxO1 and FoxO3 in

muscle, thereby inhibiting muscle atrophy and promoting

muscle growth (39). Investigating skeletal phenotypes in

mouse models of targeted Sirt1 deletion in muscle cells can

shed light on additional pathways by which SIRT1 exerts its

effects in bone. Gender differences in bone SIRT1 level were

evaluated in 129/Sv mice and not in additional mouse strains,

although we demonstrated age-associated reduction in bone

SIRT1 in two different mouse strains. The effects of Sirt1 on

ERa and AR were studied in whole vertebrae at one time point

and not in specific bone cells in the different bone

compartments. It is possible that we could not detect

differences in AR in Sirt1+/D compared to WT male mice due

to the confounding effects of a mixed cell population. ERb was

not studied as its skeletal effects were shown to play a less

significant role in bone homeostasis as the skeletal phenotype

of mice with global deletion of ERb is minimal (40). Additional

studies investigating the crosstalk between sex hormones, their

receptors and SIRT1 are needed to increase our understanding

of SIRT1-related gender dimorphic effects in bone.

In conclusion, our results indicate that Sirt1 haplo-

insufficiency in adult female 129/Sv mice leads to reduced

peak femoral cortical thickness and trabecular bone volume

fraction, as well as increased cortical porosity, accompanied by

unfavorable biomechanical properties and decreased bone ERa
expression. The notion that reduction of SIRT1 level by half is

sufficient to induce cortical porosity in females at adulthood

identifies SIRT1 as a regulator of cortical bone quantity and

quality, and positions SIRT1 as a potential target to improve

cortical bone mass and strength. Whether a feedback

mechanism exists between sex hormones, ERa, AR and SIRT1

that contributes to the sexual dimorphism detected in SIRT1

skeletal effects remains to be further investigated.
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SUPPLEMENTARY FIGURE 1

Body weight determined at age 2, 7, 12 months in: (A). female Sirt1+/D and

WTmice (B).male Sirt1+/D andWTmice. Results are Mean ± SEM analyzed
by unpaired Student’s t-test; **P<0.01 versus WT mice (n=7-11

mice/group)

SUPPLEMENTARY FIGURE 2

Femoral length determined at age 2, 7, 12 months in: (A). female Sirt1+/D

and WT mice (B). male Sirt1+/D and WT mice. Results are Mean ± SEM

analyzed by unpaired Student’s t-test; **P<0.01 and ****P<0.0001 versus
WT female mice.
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