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and Zhangsuo Liu1,2,3,4*

1Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of
Zhengzhou University, Zhengzhou, China, 2Research Institute of Nephrology, Zhengzhou
University, Zhengzhou, China, 3Henan Province Research Center for Kidney Disease, Zhengzhou,
China, 4Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan
Province, Zhengzhou, China
Background: Growing evidence indicates that non-alcoholic fatty liver disease

(NAFLD) is related to the occurrence and development of diabetic nephropathy

(DN). This bioinformatics study aimed to explore optimal crosstalk genes and

related pathways between NAFLD and DN.

Methods: Gene expression profiles were downloaded from Gene Expression

Omnibus. CIBERSORT algorithm was employed to analyze the similarity of

infiltrating immunocytes between the two diseases. Protein–protein

interaction (PPI) co-expression network and functional enrichment analysis

were conducted based on the identification of common differentially

expressed genes (DEGs). Least absolute shrinkage and selection operator

(LASSO) regression and Boruta algorithm were implemented to initially

screen crosstalk genes. Machine learning models, including support vector

machine, random forest model, and generalized linear model, were utilized to

further identify the optimal crosstalk genes between DN and NAFLD. An

integrated network containing crosstalk genes, transcription factors, and

associated pathways was developed.

Results: Four gene expression datasets, including GSE66676 and GSE48452 for

NAFLD and GSE30122 and GSE1009 for DN, were involved in this study. There

were 80 common DEGs between the two diseases in total. The PPI network

built with the 80 common genes included 77 nodes and 83 edges. Ten optimal

crosstalk genes were selected by LASSO regression and Boruta algorithm,

including CD36, WIPI1, CBX7, FCN1, SLC35D2, CP, ZDHHC3, PTPN3, LPL, and

SPP1. Among these genes, LPL and SPP1 were themost significant according to

NAFLD-transcription factor network. Five hundred twenty-nine nodes and

1,113 edges comprised the PPI network of activated pathway-gene. In

addition, 14 common pathways of these two diseases were recognized using
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Gene Ontology (GO) analysis; among them, regulation of the lipid metabolic

process is closely related to both two diseases.

Conclusions: This study offers hints that NAFLD and DN have a common

pathogenesis, and LPL and SPP1 are the most relevant crosstalk genes. Based

on the common pathways and optimal crosstalk genes, our proposal carried

out further research to disclose the etiology and pathology between the

two diseases.
KEYWORDS

non-alcoholic fatty liver disease, diabetic nephropathy, crosstalk, LPL,
SPP1, bioinformatics
Introduction

Diabetic nephropathy (DN) is a rigorous microvascular

complication primarily associated with both type 1 and type 2

diabetes mellitus (T2DM) and has been the leading cause of end-

stage renal disease (ESRD) worldwide (1–3). Both morbidity and

mortality of DN have promptly increased around the world (1, 2, 4).

Non-alcoholic fatty liver disease (NAFLD) has become pyramidally

ordinary in parallel with the adding popularity of obesity and other

components of the metabolic syndrome (5, 6). NAFLD is

distinguished as the existence of fat storage ≥5% of liver weight

with the absence of excessive alcohol consumption or secondary

cause of liver diseases such as autoimmune hepatitis,

hemochromatosis, and Wilson’s disease (3, 7–9). Being metabolic

diseases, factors that contribute to NAFLD, such as diabetes,

chronic inflammation, insulin resistance, and obesity, are also

associated with the development of DN.

Several observational studies reported an impressive proportion

that there were 70%–86% of patients with NAFLD also suffering

from T2DM (6, 8, 10–12). Jia et al. (13) found that the cumulative

incidence of DN in patients with NAFLD was much higher than

those without it and that the liver fat content was positively

correlated with increased occurrence of albuminuria and decreased

glomerular filtration rate (GFR). Targher et al. (14) also found that

the prevalence of diabetic retinopathy and chronic kidney disease

(CKD) was significantly higher in patients with NAFLD. Previous

epidemiological studies further suggested several contributors

including metabolic syndrome, dysbiosis, unhealthy diets, platelet

activation, and processes acting as the linking factors between

NAFLD and CKD, which implied the potential correlations

involved in the pathogenesis of liver and kidney disease (15). That

NAFLD might be a risk factor for DN had been analyzed by some

researchers (13). The relationship between NAFLD and DN seems

rational and of clinical interest to some extent.

Based on the results of current observational studies, the

potential contributions of genetic factors and protein–protein
02
interactions (PPIs) on the correlation of NAFLD and DN should

be further analyzed. In this study, bioinformatics analysis was

used to disclose the crosstalk mechanisms between NAFLD and

DN at the transcriptomic level. The mutual transcription

characteristics would offer new insights into the common

pathogenesis of NAFLD and DN. The purpose of this study is

to recognize optimal crosstalk genes, participant pathways, and

transcription factors (TFs). We hypothesize the existence of

crosstalk genes between NAFLD and DN, then employed

comprehensive bioinformatics and enrichment analyses to

identify the common differentially expressed genes (DEGs)

and the functional pathways of NAFLD and DN. At last, we

identified 10 crosstalk genes, favoring the similarity between

these two diseases.
Materials and methods

Study design and data collection

We acquired microarray data from Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/).

After earnest review, four gene expression profiles (GSE66676

and GSE48452 were NAFLD datasets, and GSE30122 and

GSE1009 were diabetic human kidney disease datasets, with

no other complications) were selected. Figure 1 shows the

schematic of the research.
Data procession and differentially
expressed gene analysis

We combined two datasets for each disease to increase the

sample size. R software (version 4.1.1; https://www.r-project.org/)

and “BiocManager” packages were applied to analyze the data. The

expression data from different datasets were normalized using the
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robust multi-array average and merged together, and the “sva”

library was used for combating batch correction to remove batch

effects. We then used the Linear Models for microarray data

(“limma” package) to identify DEGs by comparing the expression
Frontiers in Endocrinology 03
values between NAFLD patients and control cases. Genes with P <

0.05 were considered DEGs. The same way was done in the diabetic

kidney disease dataset. The “pheatmap” package was used to draw

the heatmap of the DEGs in R software.
FIGURE 1

Workflow of this study. We downloaded the gene expression profiles of NAFLD and DN from the GEO database, including two NAFLD datasets
(GSE66676 and GSE48452) and two DN datasets (GSE30122 and GSE1009). Datasets were merged, and DEGs were found by R software. The
LASSO regression and Boruta algorithm were used to select the optional crosstalk genes. RF model was considered the best model to predict
DN using the 10 crosstalk genes. In addition, protein–protein interaction (PPI) and functional enrichment analyses of the DEGs were performed.
Graphic created with BioRender.com. NAFLD, nonalcoholic fatty liver disease; DN, diabetic nephropathy; GEO, Gene Expression Omnibus,
DEGs, different expression genes.
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Gene set enrichment analysis

In order to understand and interpret coordinate pathway-

level changes in transcriptomics experiments represented under

different conditions, the gene set enrichment analysis (GSEA)

was used to determine whether there are statistically significant

differences between the two groups as to a defined set of genes

(16). R package “clusterProfiler” was used to perform GSEA.

Gene sets “c7.all.v7.5.1.entrez” were downloaded from

“Downloads (gsea-msigdb.org)“ website, and then R software

was employed to retrieve systematic functional annotation

information. P < 0.05 was the cutoff criterion. We examined

the pathway-level changes for all DEGs in NAFLD and DN to

find out whether there were reduplicative pathways.
Immune infiltration analysis

The proportions of 22 kinds of immune cells, including

naive B cells, memory B cells, plasma cells, CD8 T cells, naive

CD4 T cells, CD4 resting memory T cells, activated memory

CD4 T cells, helper follicular T cells, regulatory T cells (Tregs),

delta gamma T cells, resting natural killer (NK) cells, activated

natural killer (NK) cells, monocytes, macrophages M0,

macrophages M1, macrophages M2, resting dendritic cells

(DCs), active DCs, resting mast cells, activated mast cells,

eosinophils, and neutrophils, were obtained, and CIBERSORT

algorithm was utilized to analyze the gene expression data

between NAFLD and DN.

We brought in all genes that were expressed in both NALFD

and DN patients to explore the common ground based on 22

kinds of immune cells between the two diseases. The percentage

of each kind of immune cell in the samples was calculated.

Single-sample gene set enrichment analysis (ssGSEA) was

employed to calculate the degree of penetration of 28 immune

cell types on the grounds of the expression levels of genes in 28

published gene sets for immune cells (17).
Identification of potential crosstalk genes
and functional enrichment analysis

The potential crosstalk genes were identified as DN-related

DEGs overlapped with the NAFLD-related ones. These crosstalk

genes could have the potential ability of linking the pathogeneses

of NAFLD and DN.

To further determine the biological features of potential

crosstalk genes, Gene Ontology (GO) analysis was accomplished

by “clusterProfiler“ of R Bioconductor packages. A classification

method is offered by the “clusterProfiler“ packages to classify

genes based on their projection at a specific level of the GO

corpus and provide functions to calculate enrichment values for

GO terms. The enriched function with P < 0.05 was considered a
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significant pathway. Based on this analysis method, we selected

the top 20 GO biological processes. To identify the most

significant clusters of the crosstalk genes, PPI network of

crosstalk genes was constituted by STRING (STRING 11.5;

Search Tool for the Retrieval of Interaction Gene; https://

string-db.org/). Cytoscape (version 3.8.0) was used to visualize

the PPI network.
Identification of optimal diagnostic
crosstalk genes

To better screen the risk crosstalk genes between NAFLD

and DN, Boruta algorithm and least absolute shrinkage and

selection operator (LASSO) regression were performed in R

project. The LASSO regression was used to filter the best

predictive features while fitting a generalized linear model

(GLM) and avoiding overfitting. The Boruta employed a

wrapper approach, built around a random forest (RF)

classifier. After merging two NAFLD datasets, the expression

values of potential crosstalk genes were extracted. The DEGs

between NAFLD patients and healthy controls were reserved for

feature selection, and the optimal crosstalk genes were initially

recognized using the Boruta algorithm and LASSO regression.

To narrow it down further, we combined the results of the

two algorithms.

On the grounds of the optimal diagnostic crosstalk gene

expression on the NAFLD merged dataset, we created the RF

model, support vector machine (SVM) model, and GLM to pick

out the best model. The response variable was the diagnosis of

NAFLD or not, and the DEGs were used as explanatory

variables. We then used the explain feature of “DALEX”

package in R to find out which was the finest model among

these three models aforementioned based on the plot of

residual distribution.
Development of the random forest
model using optimal diagnostic
crosstalk genes

After extracting the gene expression values of the filtered

crosstalk genes that constitute the merged gene expression

profile, the RF model with the gene expression value and

sample type was built (NAFLD and healthy) to further

confirm the diagnostic value of these crosstalk genes. The R

package “randomForest” was applied to build the RF model. The

“ComBat”method of “sva” packages in R project was performed

to eliminate the batch effect. It is worth noting that the gene

sample expression values were changed after a series of

operations that are mentioned above, comparing previous gene

expressions. Therefore, the primitive expression profile of the

two datasets GSE66676 and GSE48452 was obtained. Afterward,
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the optimal crosstalk genes were confirmed by Boruta algorithm

and LASSO regression, and then the expression values of the

optimal crosstalk genes from the merged data were confirmed.

We select the gene expression values of the filtered optimal genes

to form the merged gene expression profile, and the RF models

with the gene expression profile value and sample type were set

up (NAFLD or healthy). The NAFLD merged data were input as

training data, and the DN merged data were imported as testing

data. The prediction effectiveness was determined by the

accuracy rate of the test set.
Transcription factor-adjusted and
pathway analysis of the crosstalk genes

We downloaded TFs that regulate the target genes from

TRRUST and ChEA3 databases, taking the intersection of TFs

from these two databases. Based on the TF–target relationship,

the NAFLD-related TF–target pairs were picked out, and the

Cytoscape software was used to set up and visualize the TF–

target gene interaction network.

In order to pick out activated pathways, the remarkably

enriched pathways by the DEGs of NAFLD were screened. We

selected the potential crosstalk pathways that may be the bridge

of NAFLD and DN and obtained the genes functioning in each

pathway. Finally, the Cytoscape software was used to construct

the pathway–gene crosstalk network. For the purpose of

confirming the functional TFs, which adjusted the crosstalk

genes in the activated pathways, we picked out the crosstalk

genes in the pathway–gene pairs and identified the NAFLD-

related TFs and DN-related TFs. Moreover, 10 crosstalk genes

were also included. Finally, the network of these four parts

was created.
Results

Identification of differentially expressed
genes and functional pathways by gene
set enrichment analysis

A total of 215 study subjects were included in the current

study. The mean age with standard deviation was 63.29 ± 14.61

years (DN patients) and 52.44 ± 12.90 years (healthy control) for

the DN group and 45.92 ± 11.29 years (NAFLD patients) and

33.52 ± 8.82 years (healthy control) for the NAFLD group. The

proportion of women was 66.5% and 78.9% for the DN and

NAFLD groups, respectively. To identify DEGs between NAFLD

and healthy controls, we recruited microarray expression

profiles of GSE66676 and GSE48452 from the GEO database.

After merging and normalizing the microarray data, 1,265 DEGs

between NAFLD and healthy controls were selected by “limma”

package (P < 0.05). Two DN datasets were also picked out from
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the GEO website, which was done in the same way. Finally, we

got 1,265 DEGs in the NAFLD merged dataset and 1,085 DEGs

in the DN merged dataset (heatmap shown in Supplementary

Figures S1A, B). GSEA was implemented to reveal the functional

similarity between the two diseases. All DEGs of each disease

were contained in the GSEA using gene set “c7.all.v7.5.1.entrez.”

As a result, three common pathways were identified in NAFLD

and DN (Supplementary Figures S2A, B).
Immune infiltration analysis

By employing the CIBERSORT algorithm, we investigated

the similarity in immune infiltration between NAFLD patients

and DN patients in 22 subpopulations of immune cells. The

results acquired from NAFLD patients and DN patients were

summarized by R software (Supplementary Figure S3A). The

samples were screened according to P < 0.05, and the percentage

of each kind of immune cell in the samples was calculated. As

shown in Supplementary Figure S3B, there are no significant

differences between NAFLD and DN tissue in most immune

cells, such as macrophage M1, which were considered to be

proinflammatory and promote inflammation (18). However, the

DN tissue generally included a high ratio of naive CD4 T cells,

delta gamma T cells, activated NK cells, and resting mast cells,

while resting NK cells had the opposite trend of expression. In

the ssGSEA (Supplementary Figure S3C), 17 immune cell

subtypes, including activated B cell, NK T cell, immature B

cell, effector memory CD8 T cell, and central memory CD4 T

cell, demonstrated no significant expression differences between

NAFLD and DN. However, Myeloid-derived suppressor cells

(MDSC), memory B cells, regulatory T cells, T follicular helper

cells, and Type 1 T helper cells showed higher expression in DN

patients, while immature DCs were highly expressed in NAFLD

patients. The consequences of the CIBERSORT algorithm and

ssGSEA manifest that the two diseases are likely to have a similar

immune infiltration environment, which laid the theoretical

foundation to link them.
Identifying crosstalk genes, Gene
Ontology analysis, and construction of
the protein–protein interaction network

After overlapping the DEGs of the two datasets, we finally got

80 crosstalk genes. The Venn diagram for the DEGs was given in

Figure 2A. The heatmaps of common DEGs between NAFLD and

DN were represented in Figures 2B, C. The GO analysis found that

common DEGs were most intensively related to neutrophil-related

pathways such as neutrophil degranulation, neutrophil activation

involved in immune response, neutrophil-mediated immunity, and

neutrophil activation. The detailed biological pathways in which

DEGs were involved were shown in Figures 3A–D.
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Seventy-seven nodes and 283 edges comprised the

constructed PPI network of common DEGs (Figure 4A). The

most significant module (score = 5.846) was recognized by

MCODE, a plug-in of Cytoscape. CytoHubba was used to

identify the hub genes (Figure 4B). SPP1 may be the key gene

that contacts NAFLD and CKD, since it had the highest score in

the biological network.
Prediction of optimal crosstalk genes
and building the machine learning model

We then extracted the expression data of the 80 genes from

the NAFLD gene expression profile. Gene biomarkers were

identified with the LASSO and Boruta algorithms. A total of

15 genes were finally selected (Figures 5A–C; Supplementary

Table S2). Furthermore, the optimal crosstalk genes were

identified by overlapping biomarkers derived from these two

algorithms. We got 10 optimal crosstalk genes in the end.

To select and create the optimal prediction model, three

models including SVM, RF, and GLMwere created in light of the

training NAFLD merged dataset. After that, the “DALEX”

package’s explanatory feature in R was utilized to analyze the

three aforementioned models. As shown in Figures 6A–C, which

revealed the residual distribution, the RF model was confirmed

as the best suitable model because it possesses the least sample

residual. Ultimately, the expression of the 10 optimal crosstalk

genes in NAFLD [CD36, WIPI1, CBX7, FCN1, SLC35D2, CP,

ZDHHC3, PTPN3, lipoprotein lipase (LPL), and SPP1] was input

to create the RF model. The gene expression profile of the 10

feature genes was also extracted from the DN merged dataset.

Treating the NAFLDmerged dataset as training data and the DN

merged dataset as validation data, the predicted outcome of the

RF model was shown in Supplementary Table S1.

Supplementary Figure S4 shows the importance of 10 genes in

the RF model. The forecast performance of each gene in both

NAFLD and DN was shown in Supplementary Figure S5. The

area under the curve (AUC) values of LPL and SPP1 in DN were

86% and 80.1%, and the AUC values of LPL and SPP1 in NAFLD

were 72.5% and 64.3%, respectively. Supplementary Figure S6

showed the expression of the 10 genes in the two diseases.
Transcription factor–gene regulation
network

We got a total of 35 mutual TFs, and the TF–target network

was established as shown in Figure 7A. The optimal crosstalk

genes with the highest degree were SPP1 and LPL and therefore

potentially played a significant role in the TF–target network.

Supplementary Figure S7 showed the network between NAFLD

TF–target pairs and DN–genes.
A

B

C

FIGURE 2

Venn diagram and expression level of common DEGs. (A) The
intersection of DEGs in the NAFLD merged dataset and DN
merged dataset from GEO contains 80 optimal crosstalk genes.
The expression level of 80 common DEGs in the NAFLD merged
dataset (B) and DN merged dataset (C).
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Ultimately, 14 crucial pathways, which may play a key role in

the progress of NAFLD, were selected. In order to recognize the

pathway crosstalk between NAFLD and DN, we established the

pathway–gene crosstalk network. Five hundred twenty-nine

nodes and 1,113 edges were included in the activated

pathway–gene network (Figure 7B). To further explore the

relationship between NAFLD and DN, the DN-related TF–

target pairs and NAFLD-related TF–target pairs were extracted
Frontiers in Endocrinology 07
and the PPI was built. Meanwhile, the PPI between 10 crosstalk

genes was obtained, then the activated TF–crosstalk gene

network was established (Figure 7C). Consequently, we

discovered that crosstalk genes were regulated by many TFs.

The closeness of their relationship was indicated by the size of

the circle. The highest degree among the 10 crosstalk genes

remained to be SPP1 and LPL. DN-related TF–target pairs had a

closer relationship with crosstalk genes.
A B

DC

FIGURE 3

Gene Ontology pathway enrichment analysis. Result of GO pathway enrichment analysis of the 80 common DEGs, the dot plot (A) and bar plot
(B). Biological process (BP), cellular component (CC), and molecular function (MF) analysis results of 80 common DEGs, the dot plot (C) and bar
plot (D). X-axis represents the proportion of DEGs and Y-axis on behalf of the different categories. The size of the circle manifests the number
of genes enriched in each category and different properties are denoted by the color of the circle.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1032814
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yan et al. 10.3389/fendo.2022.1032814
Discussion

The major outcome of this study was that bioinformatics

analysis could expose crosstalk genes between NAFLD and DN.

Accordingly, LPL and SPP1 were identified to be the most
Frontiers in Endocrinology 08
concerned genes; meanwhile, some participant pathways were

identified. According to their expression values in each patient

and forecast ability, the latent correlation of these genes was

confirmed. The areas under the ROC curve of these two genes

are higher than those of most genes (Supplementary Figure S3);
A

B

FIGURE 4

The protein–protein interaction analysis. (A) The PPI network
analysis of the 80 common DEGs. (B) The hub genes identified
by CytoHubba.
A

B

C

FIGURE 5

Feature selection. Crosstalk gene selection by LASSO regression
(A, B) and Boruta algorithm (C). (A) By using LASSO model to
confirm the optimal genes, the partial likelihood deviance curve
was plotted vs. log(lambda). Based on 1 SE of the minimum
criteria (the 1-SE criteria) to draw dotted vertical lines. (B)
Confirmed 34 genes with non-zero coefficients by optimal
lambda. Panel (A) shows the coefficient profile plot produced
against the log(lambda) sequence. (C) The 15 confirmed genes
were indicated by the yellow box. X-axis represents selected
genes. Y-axis represents the score of each gene.
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A

B

C

FIGURE 6

Construction and evaluation of RF model, SVM model, and GLM.
(A) Accumulated residual distribution picture of the sample. (B)
Boxplot of the residuals of the sample. The root mean square of
the residuals was indicated by a red dot. (C) The significance of
the variables in the three models.
Frontiers in Endocrinology 09
A

B

C

FIGURE 7

A series of protein–protein interaction (PPI) networks. (A)
NAFLD-related TFs selected by TRRUST and ChEA3, indicated by
yellow circles. The purple circles represent the top 50 significant
differentially expressed genes in the NAFLD merged dataset. The
optimal 10 crosstalk genes are indicated by the green circle. (B)
Fourteen crucial pathways functioning in both NAFLD and DN,
indicated by green squares. The purple-red circles represent the
genes from each pathway both NAFLD-related and DN-related.
The lilac circles represent the significant differentially expressed
genes in the NAFLD merged dataset. The green circle represents
the significant differentially expressed genes in the DN merged
dataset. (C) DN-related TFs selected by TRRUST and ChEA3,
indicated by purple circles. The green circles represent 10
optimal crosstalk genes. The genes from each pathway both
NAFLD-related and DN-related were indicated by yellow circles.
The pink circles represent NAFLD-related TFs.
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furthermore, they have the highest degree in the TF–

target network.

According to our results, the aberrant lipid and glucose

metabolism plays an important role in the crosstalk between

NAFLD and DN. The LPL gene, which belongs to the lipase gene

family including hepatic lipase, endothelial lipase, and

pancreatic lipase, could combine with lipoproteins and cell

surface proteins concurrently, resulting in accumulation and

uptake of lipoproteins (19, 20). In 2019, Teratani et al. (21)

found that the expression of LPL was changed in hepatic stellate

cells in NAFLD patients. Serum obesity-related factors,

including interleukin-6, leptin, and free fatty acid (FA), could

further affect its circulating level (21). NAFLD would even evolve

to hepatocellular carcinoma (HCC) due to the aberrant

activation of LPL, since it had great impact on HCC cell

proliferation and lipid deposition (19).

On the other hand, LPL had also been proven to be

associated with the development and progression of DN (20).

A previous study has shown that DN rats have elevated levels of

total cholesterol, triglycerides (TGs), and low-density

lipoproteins (LDL), accompanied by significant changes in

plasma LPL activity (22). When the activity of LPL is affected,

it would consequently result in hypertriglyceridemia, which is a

pivotal trait of nephrotic syndrome (23). Our previous studies

also found that dyslipidemia was one of major risk factors for

diabetic kidney disease (24, 25). In 2019, Al Shawaf et al. (23)

found that the level of circulating ANGPTL4, an inhibitor of

LPL, was significantly higher in DN patients compared with

those in T2DM patients and healthy controls. Its expression was

also positively correlated with serum creatinine and urinary

albumin-to-creatinine ratio (23). These findings indicated that

the suppressing efforts on LPL were increasing during the

progression from DM to DN, which suggested an intervention

target for the early prevention of the development of DN in

DM patients.

Another crucial crosstalk gene we found was SPP1, which

encodes osteopontin and is expressed in a variety of cells and

tissues including endothelial cells, DCs, macrophages, and

kidney (26, 27). Osteopontin is known as a regulator of

hepatic stellate cell activation. Zhu et al. (28) found that the

contribution of hepatocyte-derived osteopontin in NAFLD was

capable of altering the liver microenvironment to potentiate

fibrosis via a Notch-activated pathway. Notch-mediated

osteopontin secretion in hepatocytes could directly activate

hepatic stellate cells and cause excessive collagen deposition,

despite hepatocellular injury. Furthermore, by performing

chronic g-secretase inhibitor treatment, liver Notch activity

was decreased and hepatic stellate cell activation and liver

fibrosis were reduced (28). In the progression of DN, Notch

signaling pathway was activated following long-term exposure to

hyperglycemia (29). The expression of constitutively active

Notch intracellular domain in mature podocytes caused

podocyte dedifferentiation, glomerulosclerosis, and apoptosis
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that substantially caused albuminuria and progressive renal

failure (30, 31). By treating with g-secretase inhibitors, the

diabetes-induced glomerulosclerosis and podocyte injury could

be prevented, which suggested that inhibiting the overactive

Notch pathway in renal cells could be a potential plausible

therapeutic approach (32).

Previous studies indicated that hyperglycemia would

increase the expression of SPP1, which caused an elevated

exposure of cells to proinflammatory cytokines and

inflammation indicators including tumor necrosis factor a,
transforming growth factor b, and interleukin-1 (33–36). In

our current study, the immune filtration analysis also found that

there were common expressions of macrophages and DCs

between the NAFLD and DN groups, which suggested that

inflammatory activations were involved in the crosstalk of the

two diseases. It has been proven that in high-glucose conditions,

the transcriptional activity of SPP1 was enhanced in proximal

tubular epithelial cells (PTECs), which means that when T2DM

occurred, the expression of SPP1 will increase and SPP1

promotes the occurrence and development of both diseases

(37). Zhang et al. (38) also found that the SPP1 was negatively

correlated with GFR in diabetic kidney disease patients. Some

researchers believed that SPP1 could be the core target to treat

diabetic kidney disease by using traditional Chinese medicine

(39). SPP1 is also conjectured to function in the transformation

of non-alcoholic steatohepatitis (NASH) to HCC like LPL (40).

In the enrichment analysis part, we found that 14 pathways

were involved in the crosstalk between NAFLD and DN, one of

which was “regulation of lipid metabolic process.” Several

previous studies also demonstrated that the progression of DN

was linked to serum lipid abnormalities and renal ectopic lipid

accumulation (18, 41, 42). The proportion of kidney-absorbed

LDL would be different when the activity of the LDL receptor

changed; meanwhile, the expression of LDL receptor would be

remarkably suppressed by cholesterol in podocytes (42). Lipid

loading facilitates the phenotypic conversion of podocytes,

which results in the disappearance of its epithelial features

(43–45). Most DN patients performed albuminuria or

macroproteinuria during the progression of disease. The

albumin also acted as a vehicle for FAs in urine. Consequently,

albuminuria may cause extensive accumulation of FAs and

accelerate kidney injury in DN patients (46). By analyzing 34

DN patients and 12 healthy controls, Herman-Edelstein et al.

(47) found a high degree of correlation between lipid metabolism

and GFR. In the situation of continuing hyperglycemia in

diabetic patients, TGs and FAs were accumulated (47). Ectopic

lipid accumulation in non-adipose tissues, such as liver, kidney,

heart, and pancreas, occurs because of raised serum TGs, FFAs,

and modified cholesterol (41, 48–51), which appear to play a

part in the pathogenesis of DN (52–54). This condition also

seems to result in NAFLD. This suggests that diabetes also acts as

a link between these two diseases. Consistent with this, obvious

neutral lipid accumulation was found both in glomeruli and
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tubulointerstitium in diabetic kidneys (47). Two of the features

of DN in electron microscope podocyte process effacement,

interestingly, lipotoxicity and lipid cumulation, can lead to

podocyte malfunction and apoptosis (55). Hence, it is

reasonable for DN to see heavy lipid deposition (47).

A previous study found that the total counts of lipid droplets

(LDs) decreased when kidney tissue was seriously fibrosed. This

process was similar to the progression of NASH (56). Liver is the

central organ of lipoprotein metabolism, since it takes part in the

production of lipoprotein particles in all categories. It also plays

a central role in the metabolism of TGs and cholesterol. Serum

TGs and remnant cholesterol would be elevated when liver

function is impaired. Then, it comes with altered glucose

metabolism and insulin resistance, which are believed to be

hallmarks of NAFLD (57). NAFLD occurs at the time of

excessive intake of FAs and TGs from the circulation.

Unbalanced lipid metabolism is also related to NAFLD

advancement from steatosis to NASH; moreover, alterations in

liver and serum lipidomic signatures are excellent indicators of

NAFLD’s development and progression (58).

Both NAFLD andDNwere considered to be affected by chronic

inflammation progression, especially in individuals with abnormal

serum glucose and lipid concentration (7, 12, 59). In our current

study, we also found that there were aberrant proportions and

expression levels of immune indicators in both diseases. There were

a total of 7 and 17 kinds of immune cells performing higher

proportion and expression levels, respectively. Most of them

showed no significant differences between NAFLD and DN

groups, which indicated the mutual mechanism in the two

diseases. Enrichment analysis further demonstrated that several

common DEGs were enriched in immune-related functions,

including neutrophil activation, neutrophil-mediated immunity,

and positive regulation of mitophagy.

Liver-mediated lipid changes are associated with the severity

of proteinuria (60). Similarly, the diagnosis of DN refers to the

appearance of specific pathologic structural alongside functional

changes in the kidney of patients with DM, one of which is

proteinuria (61). Renal injury is generally non-reversible on the

condition that albuminuria persistently occurs (13). Various

mechanisms, such as poor plasma glucose control, activation

of sympathetic nervous system, and insulin resistance both in

liver and kidney contribute coordinately to the advancement of

kidney diseases (62, 63). Metabolic syndrome is a significant

contributor to the evolution of chronic kidney dysfunction (64,

65). It has already been confirmed that lipid accumulation is

strongly associated with inflammatory stress in the kidney.

Through perturbing the LDL receptor pathway and induced

phenotypic change and dysfunction in podocytes, inflammation

induces lipid accumulation (42). Obesity is closely associated

with these two diseases, which have been considered as a risk

factor for both NAFLD and DN (9, 66, 67). Obesity, T2DM, and

NAFLD can not only facilitate systemic insulin resistance but

also boost the accumulation of hepatic fat and impairment of
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glucose metabolism (3, 66); in the meantime, insulin resistance

can stimulate hepatic macrophages. T2DM often causes chronic

hyperinsulinemia, which plays a vital role in liver metabolism

abnormalities (41). The possibility that kidney dysfunction

occurs was remarkably higher in patients with NAFLD based

on two cross-sectional studies (14, 68). There is an assumption

that along with the advancement of NAFLD into NASH, diabetic

kidney diseases would occur (69). With the progression of

NASH, metabolic disorders, for example, dyslipidemia, insulin

resistance, and glucose intolerance, would collectively advance

the renin-angiotensin (RAS) system system and influence nitric

oxide formation (70–72), which can facilitate the progression of

DN. Simultaneously, a mechanism in NASH adjusted by liver-

derived inflammatory mediators and oxidative stress, which

boosts the free proinflammatory, procoagulant, pro-oxidant,

and profibrogenic factors from the liver, participates in the

development of DN (69, 73–75). Renal hemodynamics may be

influenced because of activation of the sympathetic nervous

system, hence conducing to the onset or deterioration of

kidney diseases (3, 63). Therefore, based on these common

risk factors, it is reasonable to conjecture the interlink between

NAFLD and DN, and early detection and treatment of NAFLD

may be of clinical significance for the intervention of DN.

Altogether, this study identified two major crosstalk genes and

relevant shared pathways, which emphasize the comparability and

underlying relationship between NAFLD and DN. It is reasonable

to consider that NAFLD patients are vulnerable to get and develop

kidney dysfunction caused by T2DM and insulin insistence. Despite

the credibility of such a probability interlink, more research needs to

be done to reveal the potential mechanism of these two diseases.

Nevertheless, there exist several limitations in our study. Firstly, data

on survival times and outcomes are lacking. Therefore, the effect of

these crosstalk genes on survival could not be tested. Secondly, the

integration of different gene expression datasets might be biased

because of discrepancies in the experimental setting for each dataset.

Ideally, unnecessary bias should be avoided by making sure all gene

expression data have the same experimental settings. In addition, it

was a retrospective study. For the purpose of averting analysis bias

associated with retrospective studies, a prospective study is

recommended to be conducted. Lastly, the current study is

entirely ground on computer analyses, thus the validation analysis

based on wet-lab will be encouraged to confirm these crosstalk

genes we found.
Conclusion

To the best of our knowledge, this is the first study of

crosstalk mechanisms between NAFLD and DN using

bioinformatics analysis, identifying common immune and TF-

related mechanisms. LPL and SPP1 are the most relevant

crosstalk genes in our study, which suggest that NAFLD and

DN may have a common pathogenesis.
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