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Background: At diagnosis of Type 1 Diabetes (T1D), 30% of the beta cells are

dormant, i.e. alive, but inactive. This could reduce beta cell destruction, as

cellular stress contributes to beta cell damage. However, the beta cells, that are

still active, must produce more insulin and are therefore more vulnerable. The

inactive beta cells represent a potential for restoring the insulin secretion.

Methods: We analyzed the expression of selected genes in islets from live,

newly diagnosed T1D patients from the DiViD study and organ doners with

longer duration of T1D, type 2 diabetes (T2D), or no diabetes from the nPOD

study. Additionally, analysis of polymorphisms was performed on all the

investigated genes.

Findings: Various possibilities were considered for the inactivity of the beta

cells: secretion defect, fetal state, hibernation, and insulin resistance. We

analyzed genes related to the ceramide and sphingomyelin synthesis and

degradation, secretion, circadian rhythm and insulin action, and found

changes in T1D islets that resemble fetal dedifferentiation and asynchrony.

Furthermore, we found low levels of insulin receptor mRNA in the islets. No

polymorphisms were found.

Interpretation: Our findings suggest a secretion defect, but also fetal

dedifferentiation and desynchronization in the inactive beta cells. Together

with previous evidence, that predisposing factors for T2D are also present for

T1D development, we raise the idea to treat individuals with ongoing T1D

development prophylactically with T2D medicine like GLP-1 receptor agonists,

metformin, or others, combined with anti-inflammatory compounds, in order

to reactivate the dormant beta cells, and to prevent autoimmune destruction.

T2D mechanisms during T1D development should be investigated further.
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Introduction

In the DiViD program (1) with biopsies from patients with

newly diagnosed T1D, it has been found that 60% of the beta

cells have been destroyed in the ongoing insulitis process,

approximately 30% of the beta cells are preserved, but inactive,

and approximately 10% actively secrete insulin for maintaining

glucose homeostasis (2). However, these few remaining, actively

secreting beta cells, must be considered at high risk of immune

destruction for several reasons: the cells express high amounts of

antigens (3), show ER-stress (4), produce high levels of

immunogenic insulin molecules (5), express TTG (tissue trans-

glutaminase), which deamidates glutamine to the more risky

glutamate (6), and are more sensitive to cytokines (7). Overall,

T1D development is seen more frequently in individuals with

stressed beta cells, as is seen during the third trimester of

pregnancy (8), during virus infections (9), and in association

with psychological stress. It might be avoided, at least in animal

models, by prophylactic insulin treatment (10), and in

individuals with T1D, C-peptide values often increase

substantially the first month after a T1D diagnose, when

insulin injections are instituted. In humans, prophylactic

insulin treatment has not been demonstrated to be efficient

(11), possibly due to suboptimal insulin dosage.

A large fraction of the beta cells in the pancreas is inactive at

the time of diagnosis. From an individual cell’s perspective, this

is appropriate since the cell might be shielded from the

destructive forces that attack active cells. The disadvantage is

that higher secretory activity, and thus a higher risk of immune

attack, is placed on the remaining, active beta cells.

The questions we address in this study are how the beta cells

become dormant, and what can be done to prevent the T1D

process in reaching clinical disease. We have analyzed islet

mRNA expression from the DiViD and nPOD studies to

suggest answers. Two of the possible reasons for the inactivity

could be that the beta cells enter a fetal mode or a state

of hibernation.
Methods

RNA analysis

Human pancreatic tissue was from the DiViD study (12)

from newly onset (disease duration 35 days) T1D patients aged

24–35 years (n=5), or from the nPOD study (13): autoantibody-

positive (n=12), T1D patients of 5 [0-21] years diabetes duration

(n=20), T2D patients with 2 [0-15] years duration (n=8),

pancreas-transplanted T1D patients with failure of the

transplant (n=4), and healthy controls (n=18). The DiViD

study was approved by The Norwegian government’s Regional

Ethics Committee (reference 2009/1907) and the nPOD study by
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the University of Tennessee Health Science Center’s Local

Institutional Review board (reference 10-00848-XM). Direct to

lars.krogvold@gmail.com for requests to the datasets. In contrast

to the living patients in the DiViD study, the nPOD study

consists of pancreases from organ donors following accidental

death. Frozen sections were used for laser capture dissection (14)

and islets from two to five sections were pooled, and RNA was

extracted, using the Arcturus PicoPure RNA Isolation Kit

(Applied Biosystems, Grand Island, NY, USA), and quantified

on a Bioanalyzer 2100 instrument (Agilent Technologies, Santa

Clara, CA, USA). Gene expression analysis was carried out using

Affymetrix expression arrays (GeneChip Human Gene 2.0 ST,

Thermo Fisher) and normalized using global scaling (15). To

maximize comparison, all tissue handling was performed in the

same laboratory, by the same technicians, analyzed on the same

equipment, and the RNA quality was certified by RIN value

measurements (> 3.5).
GWAS analysis

GWAS analysis included the genes shown in Table 2. SNPs

were obtained from Onengut-Gumuscu et al (16), using a cut-off

p value <0.01. SNPs within ±250 kb flanking regions of the

transcription start site of the examined genes were identified,

and these SNPs, that were likely to regulate the expression of the

associated genes, were identified using Encyclopedia of DNA

Elements (ENCODE) from the University of California 186

Santa Cruz genome browser (17) (http://genome.ucsc.edu/),

RegulomeDB (18), and data from multiple expression

quantitative trait locus (eQTL) studies (19). The cis-eQTL

effects were calculated using linear regression models in the

selected tissues. Validated eQTLs from Westra et al. (20), and

GTEx2015_v6. GTEx2015_v6 eQTLs were computed using a ±1

Mb cis window around the transcription start site. Significance

was determined using a Q value threshold, using ≥ 70 samples

per tissue to achieve the statistical power needed for this type of

analysis. Predicted eQTL was calculated for pancreas and whole

blood. Genotype–tissue expression predictions calculation was

performed in tissues with at least ten samples. No Q value

filtering was performed.
Statistical analysis

Statistical analysis for RNA expression was performed using

GraphPad Prism 8.0.2 (GraphPad, La Jolla, Ca, USA) and data

are shown as mean ± SEM. Outliers were detected in each group

using the ROUT method and a total of 21 data points across all

genes and groups were identified and removed. All groups were

tested for normal distribution by the D’Agostino–Pearson and

Anderson Darling test. For comparison between groups, one-
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way ANOVA was used with Dunnett’s multiple comparison test

and a 95% CI. P <0.05 was considered significant (shown as *p

< 0.05, **p < 0.01 and ***p < 0.001 in the figures).
Results

In the DiViD and nPOD material (see patient characteristics

in Table 1) we initially looked at expression of genes (Figure 1)
Frontiers in Endocrinology 03
coding for enzymes that participate in the maintenance and

degradation of ceramide and sphingomyelin and that were not

previously examined (21). Interestingly, SMPD1 (also called

ASM, acid sphingomyelinase) which degrades sphingomyelin,

is reduced in all patient groups related to T1D. This is also the

case for SPTSSA, although the reduction in antibody-positive

individuals does not reach statistical significance. SGPP1 is also

reduced at the diagnosis of T1D, whereas SGPP2 is only reduced

in long term T1D individuals. SGMS1, SGPL1, and SPTSSB
TABLE 1 Characteristics for the investigated patient groups. Below is shown identification number related to DiViD and nPOD repositories of
analyzed samples.

n (M/F) Age BMI Diabetes duration C-peptide

Controls 18 (9/9) 35.5 [14.2-68] 25.1 [14.9-35.1] 2.9 [0.5-17.9]

T1D Long term T1D 20 (10/10) 19 [5-43.5] 24.6 [11,9-30.9] 5 [0-21] y 0.05 [0.05-0.48]

Ab Antibody positive 12 (7/5) 38.5 [4.3-69.2] 25.4 [14.8-34.3] 5.4 [0.06-26.2]

T2D Type 2 diabetes 8 (3/5) 43.9 [18.8-62] 35.7 [19.9-41] 2 [0-15] y 3.5 [0.58-10.7]

Dx T1D at diagnosis 5 (3/2) 31 [24-35] 25.6 [20,9-28.6] NA

Tx Transplanted, recurrent 4 (3/1) 44.5 [38-63] 23.9 [22.7-26] NA

Controls 6013, 6024, 6048, 6075, 6012, 6099, 6140, 6162, 6168, 6227, 6129, 6165, 6102, 6229, 6251, 6010, 6179, 6019
T1D 6070, 6084, 6088, 6180, 6224, 6243, 6228, 6209, 6038, 6046, 6069, 6195, 6052, 6268, 6265, 6196, 6211, 6113, 6264, 6135
Ab 6080, 6123, 6158, 6167, 6171, 6044, 6101, 6154, 6156, 6181, 6197, 6147
T2D 6188, 6114, 6249, 6275, 6273, 6191, 6059, 6110
Dx DiViD-6, DiViD-5, DiViD-4, DiViD-3, DiViD-2
Tx 3678-01, 3681-02, 3717-01, 3626-D
TABLE 2 List of abbreviations of examined genes and sample numbers from the nPOD and DiViD repository.

AANAT aralkylamine N-acetyltransferase

ACER1 alkaline ceramidase 1

ACER3 alkaline ceramidase 3

AKT1 AKT serine/threonine kinase 1

ARNTL aryl hydrocarbon receptor nuclear translocator like

ARNTL2 BMAL2, Basic Helix-Loop-Helix ARNT Like 2

ASMT Acetylserotonin O-Methyltransferase

CEPT1 choline/ethanolamine phosphotransferase 1

CHPT1 choline phosphotransferase 1

CLOCK clock circadian regulator

CRY1 Cryptochrome Circadian Regulator 1

CRY2 cryptochrome circadian regulator 2

DBP D-Box Binding PAR BZIP Transcription Factor

FOXO1 Forkhead Box O1

GPR50 G Protein-Coupled Receptor 50

HES1 hes family bHLH transcription factor 1

IGF1 insulin like growth factor 1

(Continued)
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showed increased expression only in transplanted islets with

recurrent diabetes (Tx). Tissue from T2D donors does not show

changes in gene expression, except for SGPP1, where the gene is

oppositely regulated than in tissue from T1D patients. In

addition to the genes in Figure 1, ACER1, ACER3, CEPT1,
Frontiers in Endocrinology 04
CHPT1, and PCYT1A (see Table 2 for gene names), were also

examined, but were not differentially regulated.

In Figure 2 we have analyzed the expression of selected

synaptotagmins to investigate the hypothesis that the inactive

state of many beta cells could simply be a result of a
CONTINUED

IGF2R insulin like growth factor 2 receptor

IL6 interleukin 6

INSR insulin receptor

MTNR1A Melatonin Receptor 1A

MTNR1B Melatonin Receptor 1B

NPAS2 Neuronal PAS Domain Protein 2

NR1D1 Nuclear Receptor Subfamily 1 Group D Member 1

NR1D2 nuclear receptor subfamily 1 group D member 2

PASK PAS domain containing serine/threonine kinase

PCYT1A phosphate cytidylyltransferase 1A

PDX1 pancreatic and duodenal homeobox 1

PER1 Period Circadian Regulator 1

PER2 period circadian regulator 2

PER3 period circadian regulator 3

PPARG peroxisome proliferator activated receptor gamma

RORA RAR related orphan receptor A

SGMS1 sphingomyelin synthase 1

SGPL1 sphingosine-1-phosphate lyase 1

SGPP1 sphingosine-1-phosphate phosphatase 1

SGPP2 sphingosine-1-phosphate phosphatase 2

SIRT sirtuin

SMPD1 sphingomyelin phosphodiesterase 1

SOX9 SRY-box transcription factor 9

SPTSSA serine palmitoyltransferase small subunit A

SPTSSB serine palmitoyltransferase small subunit B

SYT11 synaptotagmin 11

SYT13 synaptotagmin 13

SYT16 synaptotagmin 16

SYT4 synaptotagmin 4

SYT7 synaptotagmin 7

SYT9 synaptotagmin 9

TSC22D3 TSC22 Domain Family Member 3

TSPAN4 Tetraspanin 4

USP2 ubiquitin specific peptidase 2
frontiersin.org

https://doi.org/10.3389/fendo.2022.1032822
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Josefsen et al. 10.3389/fendo.2022.1032822
malfunctioning exocytotic mechanism. Thus, synaptotagmins,

some of which binds Ca++, are assumed to be regulators of

secretion, primarily in neuronal cells, but they have also been

found in pancreatic beta cells. We found that synaptotagmin

4,7,11,13,16 are downregulated in long-standing T1D patients,

whereas in newly diagnosed (DIVID) T1D patients only

synaptotagmin 16 is downregulated.

Dormant cells are well known in the animal kingdom during

hibernation. This state, that enables species to overcome

environmental changes, that is otherwise not compatible with

their survival, is only partially understood, but changes in clock

genes, otherwise known to control the circadian rhythm, can be

detected in many organs during this state. This led us to examine

if the inactive beta cells, at the time of T1D diagnosis, could bear

resemblance to hibernation by investigating the expression of

clock genes (Figure 3). Of 31 investigated genes, that were
Frontiers in Endocrinology 05
selected, either because they have been demonstrated as

temporally regulated in beta cells or are genes that are well

known to regulate the circadian rhythm in cells, 16 genes were

differentially regulated, 10 in long lasting T1D, and 7 in tissue

from T1D patients at the time of diagnosis (Figure 3). Only 2

genes were differentially regulated in islet tissue from T2D

patients compared with controls. We did not find changes in

NPAS2, PER1, CRY1, FOXO1, NR1D1, ARNTL2, DBP,

TSC22D3, TSPAN4, ASMT, MTNR1A, MTNR1B, or GPR50.

We finally examined the insulin receptors in the beta cells to

exclude that changes in their expression could be a reason for

dormant state. We found that mRNA for the insulin receptor

gene was down-regulated by a factor of two in newly diagnosed

T1D patients, but increased in tissue from long lasting T1D

patients (Figure 4). Tissue from T2D patients did not show any

change. Likewise, the IGF2 receptor gene expression is down-
FIGURE 1

Expression levels of islet of Langerhans mRNA from genes related to synthesis or degradation of ceramide or sphingomyelin. For comparison
between groups, one-way ANOVA was used with Dunnett’s multiple comparison test and a 95% CI. C: non-diabetic control patients, AB: non-
diabetic subjects with auto-antibodies, D1, Type 1 diabetes of longer duration; D2, Type 2 diabetes; Dx, Newly diagnosed Type 1 DiViD samples;
Tx, Biopsies from pancreatic transplants with recurrent diabetes. *p<0.05, **p<0.01, ***p<0.001.
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regulated to 66% of the normal value, but no changes are seen for

IGF1 receptor.

We also looked for polymorphisms among all the

investigated genes mentioned in Table 2, but found no

significant polymorphisms.
Discussion

In the present study we examined islets of Langerhans from

live, newly diagnosed T1D humans and the results were

compared to T1D patients with longer disease duration and

other relevant controls. In the DiViD study enteroviruses were

detected in all cases (22–24), and the inactive state of many beta

cells could be a rational self-defense mechanism when infected

with virus, as resting cells are less vulnerable than actively

secreting cells; thus, enterovirus-infected mice with relaxed

beta cells, induced by prophylactic insulin treatment, are less

sensitive to diabetes development (25). The disadvantage of this

inactivation state, however, is that the few remaining beta cells

must be highly active and therefore are more vulnerable to

immune attack. We therefore found it interesting to investigate

the background for the dormant state.

We previously found that a number of genes related to the

sphingomyelin synthesis were altered in T1D (21) and identified

several additional genes in the present study. Based on

expression levels of mRNA, it is not possible to predict
Frontiers in Endocrinology 06
changes in sphingomyelin levels, but a decrease in acid

sphingomyelinase mRNA expression in tissue from all patient

groups related to T1D (newly diagnosed, long standing,

antibody-positive, transplantation tissue) compared to controls

and T2D patients, is surprising, since decreased levels of acid

sphingomyelinase is associated with higher levels of regulatory T

cells (26), which is not expected in T1D-related conditions. For

reference, increased sphingomyelinase has been found in serum

from patients with rheumatoid arthritis (27).

We found decreased expression levels in five of six

synaptotagmin mRNAs examined from T1D tissue and also in

SYT16 expression from recently diagnosed T1D patients, still

without detecting changes in tissue from T2D patients. While

data are not available for all synaptotagmins in beta cells, SYT7

has previously been described as reduced in a beta cell model

during cytokine stimulation (28) and further attributed to

replenishing of insulin granules (29). Various data are

available for SYT9, which we did not find altered, as it has

both been described as a major Ca++ sensor (30), a regulator of

early phase insulin secretion (31), and not involved in insulin

secretion (32). SYT4 is decreased in tissue from T1D patients,

which could be important, as an increase in SYT4 occurs during

postnatal maturation of the beta cells, leading to binding of

cellular Ca++ and resulting in a more specific glucose-stimulated

insulin secretion. SYT11 and SYT13 were previously found

reduced in human T2D islets (33), but not in the present

study. In summary, the observed reductions in synaptotagmins
FIGURE 2

Expression levels of selected synaptotagmins in human islet of Langerhans. See Figure 1 for patient groups and additional information. *p<0.05,
**p<0.01, ***p<0.001.
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could contribute to the diabetic phenotype. Although the SYT4

mRNA reduction is characteristic of undifferentiated, fetal beta

cells, a fully, dedifferentiated state is unlikely, as it is not seen in

adults (except in insulinomas), and since it is well known that

fetal beta cells, exposed to glucose, as it takes place in pregnant

T1D patients, develops into the adult phenotype.

As genes regulating the circadian rhythm are changed

during hibernation (34), we used their expression to probe the
Frontiers in Endocrinology 07
hypothesis that the dormant state of the beta cells, found in

human pancreatic T1D tissue, could be related to this condition.

Beta cells display a distinct time-of-the-day circadian rhythm

(35), so in principle the analysis is problematic, since the tissue is

obtained from donors that deceased at different times of the day.

If this was detrimental for the analysis, however, we would

expect to see random expression levels of the circadian genes

across the patient groups, and thus no significant differences. In
FIGURE 3

Expression levels of selected genes related to circadian rhythm in islet of Langerhans. See Figure 1 for patient groups and statistics. *p<0.05,
**p<0.01, ***p<0.001.
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contrast, we noticed a compelling number of circadian genes

differentially regulated for T1D, either at diagnosis and/or in

tissue from long-standing T1D patients, and significantly, only 2

genes that were differentially regulated in tissue from T2D

patients. Regarding IL-6 we can not, of course, determine

whether the signal arose from the beta cells or from

infiltrating lymphocytes, but in any case, IL-6 was primarily

included as a circadian gene, not as a marker of immunological

activity. Together, we find that this suggests that the diabetic

condition influences the expression of the circadian genes in the

tissue collection. Their importance for insulin secretion is well

established. Disruption of CLOCK and BMAL1 was previously

shown cause to hypoinsulinaemia and diabetes in mice (36), and

changes in the synchronization of the beta cells, resulting in loss

of pulsatile or first phase insulin secretion, are predictive for both

T1D and T2D (37, 38). Our data therefore support the

hypothesis that desynchronized beta cells, also found during

hibernation, are associated with the diabetes development.

We finally investigated the possibility that changes in beta

cell insulin sensitivity could reduce the insulin secretion during

diabetes development. We did see changes in insulin- and

insulin-like growth factor 2-receptor expression in tissue from

T1D patients (and not in tissue from T2D patients, as was also

found by western blotting (39)), but it is not currently clear what

the implication of the finding is, since it has been found that a

lack of insulin stimulation on beta cells can both decrease (40)

and increase (41) insulin stimulation. Interestingly, we and

others have found that overweight adolescents, predisposed to

T2D, also have a higher risk of developing T1D (42, 43).

Furthermore, presence of insulin resistance can actually

predict progression to T1D (44).
Frontiers in Endocrinology 08
In summary, the human pancreatic beta cells that we

investigated, show traits of embryonic dedifferentiation and

changes in synchronization, similar to characteristics of T2D beta

cells, and we previously found a relation between T1D development

and predisposing factors to T2D disease. In this report, we primarily

focused on cellular disease mechanisms, that could explain the

inactivity of beta cells in T1D patients. If these mechanisms can be

further established, it opens for prophylactic treatment of pre-T1D

with GLP-1 analogues, metformin or potassium channel blockers to

possibly activate the dormant beta cells. It could be done

prophylactically in an early stage, following detection of T1D

autoantibodies, and in combination with immunesuppressive

medicine. Of note, GLP-1 improves glucose-stimulated insulin

secretion and restores glucose competence in glucose-resistant

beta-cells (45), and GLP-1 stimulation of SYT7 phosphorylation

in pancreatic beta cells (46) might potentially overcome a decreased

expression of the protein.
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