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Since type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer’s disease

(AD) and both have the same pathogenesis (e.g., insulin resistance), drugs used

to treat T2DM have been gradually found to reduce the progression of AD in AD

models. Of these drugs, glucagon-like peptide 1 receptor (GLP-1R) agonists are

more effective and have fewer side effects. GLP-1R agonists have reducing

neuroinflammation and oxidative stress, neurotrophic effects, decreasing Ab
deposition and tau hyperphosphorylation in AD models, which may be a

potential drug for the treatment of AD. However, this needs to be verified by

further clinical trials. This study aims to summarize the current information on

the mechanisms and effects of GLP-1R agonists in AD.
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Introduction

Alzheimer’s disease (AD), a global public health priority, is the most common

neurodegenerative disease (1). AD is recognized as the leading cause of disability and

death, and the progressive cognitive dysfunction in AD patients seriously affects the

quality of life (2). According to previous research, there were 46.8 million people suffering

from dementia worldwide in 2015 and AD is identified as the leading cause for dementia

(3). Due to the severe cognitive impairment of AD patients, their treatment and care

require substantial economic and financial support, causing serious damage to global

economic development (3). The main pathological features of AD are amyloid plaques

and neurofibrillary tangles (NFTs) as well as neuroinflammation and oxidative stress in

the brain (2, 4, 5). Many studies have revealed that diabetes, insulin resistance and aging

are major risk factors for AD (6–9). Interestingly, previous studies have shown brain

insulin resistance in AD patients (10, 11). Therefore, AD is also called “type 3 diabetes”

(12, 13). Unfortunately, so far, there is no effective treatment for AD.
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Some human and animal studies show that insulin can

accelerate the clearance level of Ab in the brain and affects the

phosphorylation of tau protein, meanwhile, enhances the

synaptic activity and plasticity of neurons (14–16). It produces

beneficial effects if administered for short periods, because

raising peripheral insulin levels acutely increases insulin levels

in the brain and cerebrospinal fluid (CSF) (17–19). However,

sustained high levels of circulating insulin may conversely exert

a negative influence on cognitive function, due to prolonged

peripheral hyperinsulinemia down-regulates insulin receptors at

the blood-brain barrier (BBB) and reduces insulin transport into

the brain, leading to brain insulin resistance (BIR) (17–19).

Glucagon-like peptides 1 (GLP-1), derived from intestinal L

cells, is an incretin hormone. GLP-1 is a target for treatment of

diabetes because of the primary peripheral functions of inducing

insulin secretion from pancreatic b cells, gut emptying and

inhibiting glucagon secretion which results in lower blood

glucose levels (20). Continuous administration of natural GLP-

1 increases insulin levels and results in lower blood glucose and

hemoglobin A1C (HbA1c) levels in patients with type 2 diabetes

mellitus (T2DM) (20). GLP-1 has a short half-life of only two

minutes, due to renal clearance and endogenous GLP-1 is

degraded by the enzyme dipeptidyl peptidase IV (DPP-4) (20–

22). For these reasons, GLP-1 analogues and DPP-4 inhibitors

were synthesized to prolong the half-life of GLP-1.

GLP-1 can also be produced by neurons in central nervous

system (CNS) (20, 23). GLP-1 receptors (GLP-1R) expression

has been detected throughout the CNS including the

hippocampus, neocortex, hypothalamus, and cerebellum (17,

20, 24). GLP-1R are expressed by neurons, glia cells do not

express this receptor but induced expression when activated in

an inflammatory response (17, 25). Recently, GLP-1 and its

agonists have been found to have good neuro-regulation and

protection effects in animal models (26–28). Therefore, this

review summarizes the current information on the

mechanisms and effects of GLP-1R agonists in AD.
Pathogenesis of AD

Amyloid b plaque

Amyloid beta (Ab) is a peptide with a molecular weight of 4

KDa and a length of 40-42 amino acids (3, 29). Ab-40 and Ab-
42, obtained by hydrolysis of transmembrane amyloid precursor

protein (APP) by secretases (a, b and g), are the main types of

amyloid proteins and components of Ab plaques through the

aggregation of soluble oligomers (30). Ab-42 aggregates and

combines to Ca2+ channels and AMPA (a-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid) receptors, to which the

neurotransmitter glutamate binds, so Ab is the most

neurotoxic form (3, 31). Ab plaques, which form and deposit

in different regions of the brain, are recognized as foreign
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material by the brain and trigger an inflammatory and

immune response by activating the microglia leading to

neuronal degeneration and synaptic damage (2, 30). The

amyloid hypothesis is the prevalent theory of AD

pathogenesis, driven through an imbalance between Ab
production and Ab clearance (2, 6, 21). Clinical studies have

been reported that anti-Ab protofibril antibody lecanemab has

produced modest but highly statistically significant results in a

trial. The drug met its primary endpoint of slowing cognitive

decline in individuals with mild cognitive impairment (MCI), a

clinical presentation thought to be a precursor to AD, and those

with mild AD (32, 33).
Neurofibrillary tangles

Tau is a microtubule-associated protein and mainly found in the

axonal compartment (34). Tau protein interacts with tubulin to

stabilize the structure of neuronal microtubules through its isoforms

and phosphorylation, supporting neurite differentiation and growth,

as well as transporting motor proteins along the axons (29, 34). One

of the defining pathological features of AD is the intraneuronal

accumulation of NFTs (35). NFTs are primarily composed of paired

helical filaments consisting of hyperphosphorylated tau protein (2,

35). The affinity of hyperphosphorylation of tau protein to

microtubules decreased, and hyperphosphorylated tau protein can

no longer perform the function of maintaining the structure of the

neurons, which slows the axonal transport (30). The current studies

suggest a reduced ability to clear out misfolded, oligomerized and

aggregated tau proteins that increase with advancing age (36, 37).
Synaptic dysfunction and
neurotransmitter imbalance

It has been well established that cholinergic transmission is

essential for memory, learning, attention, and other higher brain

functions, so cholinergic deficits play a key role in the

neuropathology of AD (38). “Cholinergic hypothesis” states that

the degeneration of basal forebrain neurons in AD patients leads to

dysfunction and death of cholinergic neurons in the forebrain,

followed by extensive presynaptic denervation occurs, and the loss

of specific subtypes of acetylcholine receptors, leading to cognitive

decline in AD patients (39). Acetylcholine is a major

neurotransmitter in the brain, promoting experience-induced

neuroplasticity, the synchronization of neuronal activity, and

network connectivity (38). After depolarization of presynaptic

neurons, acetylcholine is released into the synaptic cleft and binds

to postsynaptic receptors such as acetylcholine muscarinic receptors

(mAchRs) or acetylcholine nicotinic receptors (nAchRs) (40). Some

facts attested that a reduction in the number of mAchRs and

nAchRs in basal forebrain cholinergic neurons, and a 40%-50%

decrease in cerebral acetylcholine level are considered pathogenic
frontiersin.org

https://doi.org/10.3389/fendo.2022.1033479
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Du et al. 10.3389/fendo.2022.1033479
elements for dementia and AD (41, 42). Moreover, the levels of 5-

hydroxytryptamine, g-aminobutyric acid (GABA) and their

receptors, as well as glutamate receptors are reduced in patients

with AD (42–46). An imbalance of any of these neurotransmitters

may lead to further deterioration of AD. Thus, homeostasis of

multiple neurotransmitters is critical to keep cognitive integrity.
Neuroinflammation

Neuroinflammation, microglia activation in response to

amyloid deposition, plays a central role in the pathogenesis of

AD (30). During acute inflammation caused by Ab build-up,

microglia phagocytose Ab and protect neurons from Ab toxicity

(47). Under normal circumstances, acute inflammation is

followed by regression through the anti-inflammatory effects

of microglia. In AD, Ab accumulation still exists, resulting in

chronic neuroinflammation (48). Chronic neuroinflammation is

observed at relatively early stages of disease. Chronic activation

of microglia is associated with protein degradation,

mitochondria dysfunction, and defects of axonal transport and

apoptosis, which adversely affect neuronal function and lead to

cell death (49). In addition, neuroinflammation causes immune

cells (monocytes and lymphocytes in the blood, such as T cells

and B cells) to infiltrate the central nervous system from the

periphery across the BBB, accelerating neuroinflammation and

neurodegeneration (49, 50).
Insulin resistance

For the past few years, AD has also been considered as “type 3

diabetes” because of insulin resistance (IR) and dysregulation of

insulin signaling in the brain (51). The majority of insulin in brain

derives from pancreatic b-cells, which is mainly transported

across the BBB. While some insulin molecules may be locally

synthesized and released by neurons in the CNS (such as the

hippocampus, prefrontal cortex, but not glial cells) (52). In the

CNS, insulin contributes to synaptic maintenance, neuronal

growth and survival, maintenance and regulation of learning

and memory (53). Significantly decreased insulin and insulin

receptor expression was observed in postmortem AD brain

tissue, and changes in downstream insulin signaling molecules,

including decreased levels of IRS-1/2, PI3K, p-Akt (51, 54). It has

been reported that spatial memory improves after insulin injection

in the hippocampus or intranasal administration of insulin (55,

56). Indeed, acute elevated peripheral insulin levels may increase

insulin in cerebrospinal fluid, whereas, chronic peripheral

hyperinsulinemia (such as insulin resistance or T2DM) may

downregulate insulin receptors of the BBB, impair brain insulin

uptake, and ultimately lead to learning, memory, and cognitive

deficits (14, 52).
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Metabolic impairment

The brain is an organ that requires a lot of glucose to

produce energy, with almost 70 percent of the energy used by

neurons. In patients with T2DM, cognitive deficits are classified

into three broad stages according to severity: diabetes-related

cognitive decline, mild cognitive impairment (MCI) and

dementia (57). MCI is a high-risk condition for conversion to

AD. A large proportion of patients progress to AD, while some

MCI patients may remain stable (58). All neurodegenerative

diseases exhibit significant metabolic impairment, including

decreased glucose uptake or utilization, with a consequent

diminution in ATP production (59). Reduced glucose

metabolism in AD may be a consequence of reduced

postsynaptic neurotransmission, since depolarizing agents

trigger glucose uptake in the brain and the effect is reduced in

AD (1). In the early pathological state of AD, glucose utilization

(up to 45%) is reduced, which is closely related to the alteration

of insulin signaling. It has been reported that poor glucose

utilization and insulin resistance can enhance Ab deposition

and decrease its clearance (60). Besides, brains with AD have

been found to have a higher incidence of abnormal lipid

metabolism, which is the early risk factor for the development

of amyloid pathology (61). Lipids (cholesterol and sphingolipids,

especially) are the main structural components of the brain, and

each type of lipid may have specific function (62). Evidence

shows that the strongest genetic risk factor for late-onset AD is

the E4 allele of the cholesterol transporter APOE (APOE4),

besides, APOE4 could promote amyloid aggregation and impair

clearance from the brain directly binding to Ab (63).

Furthermore, impaired brain cholesterol synthesis can also

enhance insulin resistance in brain tissue by disrupting the

conformation of insulin receptor in cell membranes and

promoting aberrant receptor activation (64).
Oxidative stress and
mitochondrial dysfunction

Oxidative stress is a serious imbalance between the

production of reactive oxygen species (ROS) and reactive

nitrogen species (RNS) and antioxidant defenses (65). Due to

the active metabolism of neurons, the demand for oxygen is high

and a large number of ROS are produced. Therefore, the neurons

in brain are susceptible to oxidative damage and mitochondrial

dysfunction (29, 66). In mouse models and autopsy analysis of

AD patients, mitochondrial dysfunction and increased reactive

oxygen species enhance Ab aggregation. Moreover, the elevated

markers of oxidative stress precede Ab deposition and NFTs,

suggesting that oxidative stress is an early event in the

pathogenesis of AD (67). Oxidative stress raises intracellular

free Ca2+ levels, which may have deleterious consequences. In
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addition, oxidative DNA damage can interfere with gene

transcription and effect promoter function, resulting in

transcription damage and mutation of key genes. Oxidative

RNA damage can impair protein translation, and damaged

RNA can degrade prematurely, further impairs the synthesis of

essential proteins (65).

Regarding mitochondrial dysfunction involved in AD

pathophysiology, it includes disturbances in oxidative

phosphorylation (OXPHOS), and impaired energy metabolism

as well as excess generation of ROS, altered mitochondrial

biogenesis, transport and dynamics (68). The susceptibility of

neurons to mitochondrial dysfunction may be explained by the

high dependence of neurons on oxidative phosphorylation (69).

In the early stages of AD, mitochondria are unable to produce

enough energy due to Ab peptides and phosphorylation of tau,

and therefore impaired mitochondria eventually cause excessive

production of ROS (70). Finally, it further promotes the progress

of AD (71).
Autophagy

Autophagy is an important pathway in removing abnormal

protein aggregates in cells and plays an essential role in protein

homeostasis (72). The mammalian nervous system, especially

for neurons, depends heavily on autophagy to clear large

amounts of insoluble protein aggregates to maintain protein

homeostasis (73). Data shown that dysfunction of autophagy

lysosome system can affect the clearance of Ab peptides and tau

proteins, two major features of AD (74). Recently, increasing

evidence indicates that functional autophagy is required for

synaptic functions, including neurotransmission and synaptic

plasticity (75). Moreover, impaired autophagy is associated with

sustained inflammation in tissues and may contribute to the

pathogenesis of chronic inflammation (76). Therefore, impaired

autophagy may contribute to the AD pathogenesis (73). On the
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other hand, phosphorylated tau protein and Ab disturb

autophagy, which is a major event in AD pathogenesis (77).
Diagnostics and treatments of AD

Due to severe cognitive impairment in patients with

advanced AD, the cost of treatment and care seriously affects

economic development (2, 3). Therefore, early diagnosis and

treatment are essential to stop the progression of the disease.

Currently, the diagnosis of AD mainly depends on cognitive

tests, imaging techniques and analysis of CSF protein. Imaging

techniques are used as positive support to confirm the clinical

diagnosis of AD, including MRI scans and positron emission

tomography (PET) (78). Examination of CSF for p-tau, Ab42
and total tau protein content has value in predicting AD (2, 79).

However, the existing biomarker tests are either expensive or

invasive, so, to develop the ideal biomarker tests for AD

diagnosis is still needed (80).

Currently, there is only two classes of drugs approved for the

treatment of AD: N-methyl D-aspartate (NMDA) antagonist

(memantine), and cholinesterase inhibitors (tacrine, Donepezil,

galantamine, rivastigmine). However, all these treatments are

symptomatic and cannot prevent or reverse AD pathology (81).

Therefore, the development of effective disease modification

therapies is the focus of AD prevention and treatment

research in the future. Due to the similar molecular

mechanism between T2DM and AD, several drugs for the

treatment of T2DM are increasingly being proposed for the

treatment of AD (15, 82). Some drugs for the treatment of

T2DM may cause systemic side-effects such as hypoglycemia,

and the long-term administration of insulin could promote brain

insulin resistance (17). In contrast, GLP-1R agonists are safer,

and several studies have shown that GLP-1R agonists

significantly improve cognitive impairment (Figure 1) (25, 26,

83–85).
FIGURE 1

Pathogenesis of AD and neuroprotective effects of GLP-1R agonists.
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Biological characteristics of GLP-1

In the 1980s, a new glucagon-like peptide, produced from

proglucagon cleavage, was discovered to stimulate insulin

secretion (86). Two glucagon-related peptides were identified

in the proglucagon sequence, and were named glucagon-like

peptides 1 and 2 (GLP-1 and GLP-2) (87). However, neither

GLP-1 nor GLP-2 were active on insulin secretion, but a

truncated version of GLP-1 was subsequently found to

enhance insulin secretion in various experimental models and

human studies (88–90). Ultimately, GLP-1 was identified as a

potential incretin hormone (89, 91).

GLP-1, a 36-amino acid peptide, is produced in

enteroendocrine L-cells of the distal small bowel and colon (92).

Besides, GLP-1 can also be produced by neurons in CNS (20, 93).

GLP-1 has different forms include GLP-1(1-37), GLP-1(7-36)amide

and GLP-1(7-37) (22, 89). In humans, nearly all circulating GLP-1

is one of the latter two forms (89). While GLP-1(7-36)amide and

GLP-1(7-37) are equally effective in stimulating insulin and C-

peptide secretion, GLP-1(1-37) is much lower insulinotropic

efficacy (88, 90, 94).

The effect of GLP-1 depends on blood glucose levels since it

can only potentiate glucose-stimulated insulin secretion from

islet beta cells in the hyperglycemic state rather than in the

normal blood glucose state (95, 96). In addition, GLP-1 inhibits

glucagon secretion in islet alpha cells, but only when blood

glucose levels are higher than fasting (95, 96). Therefore, GLP-

1 is save for use in T2DM and non-diabetic patients (97). Due

to DPP-4 and renal clearance, native GLP-1 in humans has a

half-life of about 1-2 minutes (21, 22, 89). In addition, DPP-4

cleaved GLP-1(7-36)amide and GLP-1(7-37) to form GLP-1(9-

36)amide or GLP-1(9-37), low-affinity ligand of GLP-1

receptor and nonprimary role in regulating glucose

metabolism (98–101). DPP-4 inhibitors, such as sitagliptin,

alogliptin, linagliptin and saxagliptin, were synthesized to

prolong the half-life of GLP-1 (102). Although DPP-4

inhibitors do not cross the BBB under normal conditions

(the pharmacokinetic feature may prevent their repurposing

use in neurodegenerative diseases), the permeability of BBB is

increased in neurodegenerative diseases, so molecules

otherwise unable to cross BBB could enter into CNS in these

conditions (103). Several studies have showed the neuroprotective

effects of DPP-4 inhibitors in animal models of AD (104, 105).

Therefore, DPP-4 inhibitors, like GLP-1R agonists, may be a

potential drug for the treatment of AD.
Tissue distribution of GLP-1R

GLP-1 mediates its effects by binding to its receptor, the

GLP-1R, which is a sevenfold transmembrane G-coupled

receptor that increases levels of cAMP by activating
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adenylate cyclase (89, 95, 96). GLP-1R is abundantly

present in the pancreatic beta cells, gut, and the CNS,

including the cerebral cortex, hippocampus, hypothalamus,

thalamus, caudate-putamen and globus pallidum (89, 106–

108). In addition, GLP-1R is moderately in the lung, heart,

kidney, blood vessels, pancreatic alpha cells, and peripheral

nervous system, with no expression of GLP-1R in liver,

skeletal muscle or adipose tissue (109–112). However, the

analysis of GLP-1R always confronted an obstacle due to the

absence of antibodies with sufficient selectivity and

availability. Further, it is worth noting that there was

disputed information in the expression of GLP-1R in

different cell types. The exact cellular localization of the

GLP-1R remains equivocal due to the lack of selective

antibodies and application of specific anti-GPCR antibodies

(22). Recent studies identified the expression of GLP-1R in

adipocytes (22, 113). In addition, low expression of GLP-1R in

liver and muscle has been proposed (113).

In the peripheral system, GLP-1R mediates the actions of

GLP-1 via the incretin axis, in which stimulation of the GLP-1R

with GLP-1 primarily triggers insulin release from islet b cells in

a glucose-dependent manner and inhibits glucagon secretion

from islet a cells (110). The GLP-1R transduces signal mainly

through Gas coupling pathway (114). GLP-1R signaling

enhances glucose-dependent insulin secretion by activating of

Gas, upregulating of cAMP, and subsequently activating of PKA

(110). The cAMP/PKA pathway inhibits voltage-gated

potassium channels that respond to depolarization, opens and

allows K+ efflux, repolarizing the cell and allowing increased

calcium influx through voltage-dependent calcium channels,

resulting in the exocytosis of insulin from b-cells (115). GLP-
1R activity also promotes the transactivation of epidermal

growth factor receptor (EGFR), which then signals through

phosphoinositide 3-kinase (PI3K) and insulin receptor

substrate-2 (IRS-2), and subsequently activates extracellular-

signal-regulated kinase 1 and 2 (ERK1/2) and nuclear

translocation of PKC x to mediate b-cell proliferation and

differentiation (110, 114).

In the CNS, GLP-1 also exert neuroprotective and neurotropic

effects by binding to GLP-1R (20, 22, 116). GLP-1R expressed in

the nucleus tractus solitarius signals to suppress appetite, delay

gastric emptying and reduce body weight, and this is proposed to

be mediated through PKA, decreasing phosphorylation of AMPK

(22, 89, 110). In addition, GLP-1R overexpression results in

improved cognitive function in mice and GLP-1R knockout

severely impairs cognitive ability (5, 117, 118).
GLP-1R agonists

Several GLP-1R agonists, which mainly delay protease DPP-

4 metabolism to overcome the problem with the rapid

inactivation of GLP-1, have been developed (5, 119). Currently
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approved and commonly used GLP-1R agonists include

exenatide (the synthetic form of Ex-4, a naturally occurring

GLP-1R agonist), lixisenatide, dulaglutide liraglutide and

semaglutide (Figure 2) (17, 110).

Exenatide, a peptide of 39 amino acids, has a much slower

metabolism than endogenous GLP-1 (half-life of 3-4 h) (119, 120).

Exenatide readily enters the brain when injected intravenously into

mice (102). Elimination of exenatide is primarily achieved by

glomerular filtration with subsequent proteolytic degradation

(120–122). Increasing the dose of exenatide is not recommended

in patients with an estimated glomerular filtration rate (eGFR) of

30-60 mL/min/1.73 m2, it is contraindicated for use in patients with

an eGFR of less than 30 mL/min/1.73 m2 (123).

Lixisenatide comprises 44 amino acids and is based on the Ex-

4 peptide sequence, omitting proline at position 36 and adding six

lysine residues at the C-terminal (110). The binding affinity of

lixisenatide to GLP-1R is fourfold higher than native GLP-1 (17).

The circulating half-life of lixisenatide is approximately 3 h (124).

Studies have shown that significant concentrations of lixisenatide

were found in the brain of mice 30 minutes and 3 hours after

intraperitoneal injection, suggesting that lixisenatide could cross

the BBB (125). Lixisenatide is cleared by glomerular filtration,

followed by tubular reabsorption and subsequent metabolic

degradation (126). Dose adjustment is not recommended in

patients with mild-severe renal impairment (eGFR = 15-89 mL/

min/1.73 m2), but use is not recommended for patients with end-

stage renal disease (127).

Liraglutide, 97% sequence identity to native GLP-1, is

obtained by derivatizing GLP-1 with a fatty acid (128). This

also facilitates albumin-binding and DPP-4 resistance, thereby

allowing a half-life of 13 h (129). The main mechanisms of

liraglutide protraction are as follows: (1) slow absorption after

subcutaneous injection (130); (2) reduce clearance rate due to

slowed metabolism and renal filtration (131). Significant levels of

liraglutide were found in the brain of mice 30 minutes and

3 hours after intraperitoneal injection, indicating that liraglutide

could cross the BBB (125). Liraglutide is approved in Europe for
Frontiers in Endocrinology 06
patients with T2DM and mild or moderate kidney damage, but

is currently not recommended or should be used with caution in

patients with severe renal impairment (130).

Dulaglutide is a long-acting GLP-1R agonist with a half-life of

4 days (124). The dulaglutide molecule consists of two modified

DPP-4 resistant GLP-1(7-37) peptides fused to a modified IgG4

Fc fragment, which protect dulaglutide from proteolytic

degradation by DPP-4 (132). In addition, its high molecular

weight (57 kDa) prevents renal clearance and prolongs its half-

life (133). No studies have addressed whether dulaglutide could

cross the BBB. In patients with varying degrees of renal or hepatic

impairment, no relevant change in dulaglutide exposure was

observed relative to the degree of renal or hepatic impairment

(132). Moreover, use of dulaglutide in people with T2DM is likely

to confer additional renal benefits, and dulaglutide may be used in

advanced chronic kidney disease at any eGFR level and without

dose adjustment in contrast with most other noninsulin diabetes

therapies (134, 135).

Semaglutide, a type of GLP-1R agonists with 94% sequence

homology to GLP-1 and with an extended half-life of approximately

1 week, has been clinically approved to treat T2DM and is available

in subcutaneous and oral dosage form (136, 137). Semaglutide

interacted with circumventricular organs, where GLP-1R

expression is abundant, and with regions protected by the BBB

(lateral septal nucleus, nucleus tractus solitarius, hypothalamic

arcuate nucleus) (102). The main elimination routs of

semaglutide are through urine and feces. About 3% of the dose is

emitted in the urine in an integral form (136).
Neuroprotective effects of
GLP-1R agonists

GLP-1 and its mimetics can cross the BBB, therefore, are

able to affect the CNS function such as cognition and

neuroprotection (138). GLP-1R agonists were initially used to

treat T2DM and soon after it was found that these drugs possess
FIGURE 2

The amino acid structure of various GLP-1R agonists.
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many other physiological properties, such as neuroprotection,

neurotrophic, and anti-inflammatory effects, which may be

useful to slow the progression of AD (Figure 3) (17).
Anti-inflammatory effects

Previous studies have shown that GLP-1R mimics have anti-

inflammatory effects in the CNS (139–141). Parthsarathy et al.

found that liraglutide, an GLP-1R agonists, reduces the activated

microglia load in the cortex and dentate gyrus region of

hippocampus, and the activated astrocyte load in the cortex.

Furthermore, the pro-inflammatory cytokine levels of IL-6, IL-

12p70, IL-1b, and total nitrite concentration are reduced in the

brains of mice treated with liraglutide (142). A study reports that

prophylactic liraglutide treatment reduces chronic inflammation

(activated microglia) in the cortex and prevents memory

impairment in APP/PS1 mice (143). In a number of studies,

GLP-1R agonists such as liraglutide, exenatide and lixisenatide

can reduce neuroinflammation in AD models, thereby

improving cognitive dysfunction (140, 141, 144–148). These

data strongly suggest that GLP-1R agonists are beneficial to

attenuate neuroinflammation-associated cognitive impairment

and thereby improve cognition.
Reducing Ab aggregation/deposition and
tau protein hyperphosphorylation

Some studies have reported that GLP-1 can affect the

pa tho log i c a l p roc e s s o f Ab depo s i t i on and t au
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hyperphosphorylation (149–151). Perry et al. found that GLP-1

can reduce the levels of endogenous Ab in the brain and reduce

the levels of APP in cultured neuronal cells (152). Exendin-4 (an

endogenous insulin releasing incretin, GLP-1) reduces Ab
accumulation and tau hyperphosphorylation in cellular and

animal models of AD (85, 151, 153–156). In another study,

(Val8)GLP-1 might prevent age-related neurodegenerative

changes (such as AD) by preventing decline of learning and

memory formation, reduction of tau hyperphosphorylation and

protection of subcellular structures and morphology of neurons

(149). Lixisenatide, a GLP-1R agonist, reduces neurofibrillary

tangles and amyloid plaque load, and thereby ameliorates

learning memory deficits in APP/PS1 mice (144, 157). Total

brain APP and Ab oligomer levels are reduced in Liraglutide-

treated AD mice (147, 158–160), and intervention with liraglutide

can prevent tau hyperphosphorylation (161–164). Dulaglutide, a

novel long-acting GLP-1R agonist, ameliorates AD-like

impairment of learning and memory ability by decreasing the

hyperphosphorylation of tau and NFs proteins (150). Therefore,

GLP-1R agonists might improve cognitive and memory function

by reducing Ab deposition and tau hyperphosphorylation in

the brain.
Promoting cell proliferation
and neurogenesis

In addition to its hormonal and neuropeptide activity, GLP-1

also is considered a growth factor that regulates cell growth and

differentiation, and promotes interruption of pro-apoptotic

processes (165). Hamilton et al. have found that progenitor cell
FIGURE 3

Signaling pathways for GLP-1R agonists in regulating cellular events in AD.
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division is enhanced after injected subcutaneously GLP-1 agonists

exenatide (exendin-4) and liraglutide in the dentate gyrus of brain

of mouse models of AD (166). In another study, intraperitoneal

injection with GLP-1 analogue (Val)GLP-1 enhances neuronal

stem cells and neurogenesis in the dentate gyrus of brain in wild

type mice, so it may have potentially beneficial effects in the CNS

(167). Moreover, chronic treatment with liraglutide showed an

increase in stem cell proliferation and differentiation into mature

neurons in APP/PS1 mice and controls at all ages, whichmay have

beneficial effects in neurodegenerative disorders like AD (168).

And total hippocampal CA1 pyramidal neuron numbers in

senescence-accelerated mouse prone 8 mice are increased after

received liraglutide, at the same time, the memory retention of

mice is increased (169). Overall, GLP-1 may improve cognitive

function by promoting neuronal stem cell proliferation

and differentiation.
Enhancing synaptic plasticity

Evidence shows that the changes in synaptic function may be

an early event in AD pathogenesis (170). Studies have found that

(Val8)GLP-1 protects synapses from the detrimental effects of

Ab fragments on synaptic plasticity formation (171–173). In

another study, McClean et al. reported that GLP-1R analogues

enhance synaptic plasticity in area CA1 of the hippocampus

(174). However, synaptic plasticity and memory formation are

impaired in GLP-1 receptor knockout mice (118). Liraglutide

was shown to prevent synapse loss and deterioration of synapse

plasticity in the hippocampus of APP/PS1 mice, while enhance

synaptic plasticity in the control mice (158, 175). And liraglutide

protects synapse from Ab oligomers-induced damage in

hippocampal neurons (176, 177). Ohtake et al. found that

exendin-4 increased the membrane protein level of the AMPA

receptor GluR1 subunit and postsynaptic density protein-95,

which were the critical mechanisms of long-term potentiation

(LTP) as well as the formation of learning and memory (178).

Moreover, lixisenatide and GLP-1 analogue CJC-1131 could

protect against Ab-induced suppression of hippocampal LTP

(179, 180). These results suggest that one of neuroprotective

effects of GLP-1R agonists is enhancing synaptic plasticity.
Attenuating oxidative stress and
mitochondrial dysfunction

Oxidative stress plays a vital role in the pathogenesis and

pathophysiology of AD (181). Chen et al. have reported that

GLP-1/exendin-4 could ameliorate oxidative stress-induced

injury in PC12 cells (182). GLP-1 also protects HT22 cells

against oxidative stress-induced cell death (183). Moreover,

Spielman et al. found that GLP-1 can reduce oxidative stress

in BV2 microglia by inhibiting the accumulation of intracellular
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ROS and release of nitric oxide (NO), as well as by increasing the

expression of the antioxidant glutathione peroxidase 1 (GPx1)

and superoxide dismutase 1 (SOD1) (184). Studies have

demonstrated that Liraglutide has neuroprotective effects on

AD-like neurodegeneration induced by H2O2 in human

neuroblastoma cell line SH-SY5Y (185, 186), and protects

against brain Ab accumulation by partially rescuing oxidative

stress (146).

Mitochondria are involved in a series of biochemical events

in cells, ordinarily, normal neurons have an intense energetic

demand to support localized neuronal activities. However,

dysfunctional mitochondria are associated with impaired

neuronal function and associated neurodegenerative diseases

(187). According to the report of An et al. GLP-1R agonists

could repair mitochondrial damage in vitro, and promote

mitochondrial biogenesis and antioxidant system peroxisome

proliferator-activated receptor g coactivator 1a (PGC-1a)
signaling pathway in vivo (28). Xie et al. have reported that

Liraglutide ameliorates mitochondrial dysfunction and prevents

neuronal loss in the brain of 5×FAD mice (188). Likewise,

another study shows that Exenatide alleviates mitochondrial

dysfunction and cognitive impairment in 5×FAD mice (84).

Moreover, Exendin-4 significantly increases Ab-induced
decrease in mitochondrial function, integrity and respiratory

control rate in all brain regions (189).

These results suggest that GLP-1R agonists are able to

improve cognitive function by attenuating the oxidative stress

and mitochondria dysfunction in CNS.
Inhibiting neuronal apoptosis
and neurotoxicity

Neuronal apoptosis, induced by Ab and stress, is regard as a

physiolopathologic marker in AD brain (190). Perry et al. found

that GLP-1 and exendin-4 could completely protect cultured rat

hippocampal neurons against glutamate-induced apoptosis

(191). Moreover, exendin-4 protected PC12 cells from Ab-
induced apoptosis (192). During et al. reported that [Ser (2)

exendin (1-9)], a GLP-1R agonist, significantly attenuated kainic

acid-induced apoptosis in the CA3 region of the hippocampus

(117). In another study, GLP-1 protected against methylglyoxal-

induced pheochromocytoma (PC12) cell apoptosis though the

PI3K/Akt/mTOR/GCLc/redox signaling pathway (193).

Consistent with these data, GLP-1 attenuated apoptosis of

PC12 cells induced by carboxymethyl lysine via peroxisome

proliferation activated receptor-g (PPAR-g) (194). Chen et al.

demonstrated that GLP-1 could significantly decrease the

percentage of advanced glycation and products (AGEs)-

induced SH-SY5Y cell apoptosis (195). And it also has been

reported that liraglutide reduces cytotoxicity and apoptosis of

SH-SY5Y cells during methylglyoxal, thapsigargin and Ab stress

(196–199). Likewise, in an AD model, SH-SY5Y cells were
frontiersin.org

https://doi.org/10.3389/fendo.2022.1033479
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Du et al. 10.3389/fendo.2022.1033479
treated with Ab, semaglutide inhibited apoptosis by inhibiting

the expression of Bax induced by Ab and increasing the

expression of Bcl2 inhibited by Ab (200). In summary, these

data suggest one of neuroprotective effects of GLP-1R agonists is

inhibiting neuronal apoptosis.
Enhancing autophagy

Autophagy deregulation may underlie the accumulation of

neuropathological markers for AD, rendering it one of the main

features in AD (201). Candeias et al. found that peripheral

exendin-4 treatment promoted brain cortical autophagy upon

type 2 diabetes rats (202). Liraglutide modulated the autophagy

machinery homeostasis in SH-SY5Y cells (198), and attenuated

Ab42 generation in SH-SY5Y cells through enhancing

autophagy (160). Another study showed that semaglutide

protected against Ab25-35 in SH-SY5Y cells by enhancing

autophagy (200). These indicate autophagy is a key molecular

event for GLP-1R agonists to protect neurons against damage.
Other effects

In addition to above effects, GLP-1R agonists have other

neuroprotection mechanism on CNS, such as increasing the

brain-derived neurotrophic factor (BDNF) levels and activity,

regulating calcium homeostasis, promoting glycolysis, and

reducing vascular damage. BDNF plays a crucial role in the

pathophysiology of brain neurons. Ohtake et al. found exendin-4

increased the expression of BDNF in mouse neocortex (178).

And several studies suggest that exenatide increased expression

levels of BDNF in AD mice hippocampus and cortex (141, 203,

204). It has been shown that intracellular calcium overload

induced by Ab produces cytotoxicity, which cause a decrease

in learning and memory as well as cognitive function. Recent

studies reported that GLP-1R agonists, such as Val8-GLP-1(7-

36), exendin-4 and liraglutide, attenuated Ab1-42-induced
calcium overload by regulating intracellular calcium

homeostasis in cortical or hippocampal pyramidal cells (173,

205, 206). Glycolysis and oxidative phosphorylation, which

break down glucose into the form of ATP to produce energy,

is the main source of energy for the brain. Bomba et al. found

that exenatide increased brain lactate dehydrogenase activity,

enhancing anaerobic glucose catabolism in brains of PS1-KI

mice (207). Zheng et al. revealed liraglutide improved aerobic

glycolysis in astrocyte, and cortices of 5×FAD mice (208).

Cerebral microvascular impairments occurring in AD may

reduce Ab clearance. Some studies found liraglutide reduced

incidence of cerebral microanuerysms and leakage (209, 210).

Above all, GLP-1R agonists may improve cognitive function

via different mechanism. These results suggest that GLP-1R

agonists may have therapeutic and preventive effects on AD.
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Signaling pathways underlying the
neuroprotective effects of GLP-1R

PI3K signaling pathway

PI3K plays an important role in modulating cytoactivities. Data

showed that GLP-1 significantly increased PI3K, Akt, and

mammalian target of rapamycin (mTOR) phosphorylation

without inducing the expression of PI3K, Akt, or mTOR. And

the expression of downstream gene significantly reduced after

treated inhibitors of PI3K, Akt, and mTOR. These results suggest

PI3K/Akt/mTOR signaling mediated the protection of GLP-1 on

apoptosis in neurons (193). Exendin-4 treatment reversed the

intracerebroventricular-streptozotocin (ICV-STZ) -induced

decline in the levels of phosphorylation of Akt at Ser473 and

glycogen synthase kinase 3b (GSK-3b) at Ser9, a key kinase in

AD, leading to decrease hyperphosphorylation of tau in rat

hippocampus (182). And, exendin-4 significantly increased Ab-
induced decrease in the level of phosphorylated Akt in brain (189).

However, lixisenatide inhibited the Ab-induced activation of GSK-

3b, with a significant increase in the phosphorylation of ser9 and a

significant decrease in the phosphorylation of Y216, suggesting that

lixisenatide can prevent Ab-related impairments by affecting the

PI3K-Akt-GSK3b pathway (179). Liraglutide administration

prevented the decrease of AKT and GSK-3b phosphorylation

after treated Ab1-42 protein, which inhibit ing tau

hyperphosphorylation (164, 211). Moreover, liraglutide prevents

Ab and H2O2-induced neurotoxicity in SH-SY5Y cells via PI3K/

Akt signaling pathway (185, 197). Lixisenatide relieved the Ab25-35-
induced suppression of the phosphorylation of Akt and MEK1/2

indicating the neuroprotection of lixisenatide might related to the

Akt-MEK1/2 signaling pathway (206). A study reported that GLP-1

(7-36) could protect HT22 cells against stressors via activation of

survival signaling molecules, such as Akt and ERK1/2 (183).

Dulaglutide decreased the hyperphosphorylation of tau and NFs

proteins through improving the PI3K/Akt/GSK3b signaling

pathway, which may be related to its protective effects on

impaired of AD-like learning and memory (150).
cAMP/PKA pathway

The cAMP/PKA pathway, a ubiquitous cascade that

modulates numerous cellular events within neurons (176).

Pretreatment with liraglutide effectively and dose-dependently

protected against the Ab25-35-induced impairment of spatial

memory and deficit of late-phase long-term potentiation (L-

LTP), and also activated cAMP signal pathway in the rat brain

(177). Furthermore, pretreatment of cultures with liraglutide

attenuated measures of synapse induced by Ab oligomers

(AbOs), but liraglutide failed to prevent AbOs-induced synapse

loss after treated PKA inhibitor, and liraglutide attenuated the

AbOs-induced decrease of PKA activity, suggesting that activation
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of the cAMP/PKA pathway underlies the neuroprotective actions

of liraglutide (176). Besides, GLP-1R agonists also regulated PC12

cells growth through regulating cAMP/PKA signaling pathway

(212). In addition to acting on neuronal cells, GLP-1R agonists

also exert effects on microglia and astrocytes through cAMP/PKA

signaling pathway. GLP-1 reduced apoptotic death of BV2

microglia cells through the binding and activation of the GLP-

1R, with subsequent activation of the PKA pathway. Moreover,

GLP-1 upregulated BV2 microglia cells expression of BDNF in a

PKA-dependent manner (184). In Ab-treated astrocytes, GLP-1

prevented mitochondrial fragmentation, and improved the

neuronal supportive ability via cAMP/PKA pathway (188).
Insulin signaling pathway

Insulin signaling in the brain is vital for the brain activity, and

insulin resistance is one of key reasons of AD (213). Liraglutide

treatment significantly decreased insulin receptor aberrations in

conjunction with a concomitant decrease in amyloid plaque load

and a highly significant reduction in astrocytosis and microglial

number associated with both plaques and IR pathology (214).

Liraglutide also restored neuronal insulin sensitivity in

hyperinsulinemic conditions and reduced the Ab formation and

tau hyperphosphorylation in neuronal cells (215). The ERK and JNK

are parts of the insulin signal pathway and closely associated with tau

hyperphosphorylation. Liraglutide ameliorated the phosphorylated

expressions of ERK and JNK interfered with by STZ and decreased

the hyperphosphorylation of NFs (216). Exendin-4 significantly

increased insulin level and phosphorylation of insulin receptor

substrate 1 (IRS-1) in rat hippocampus, and could not change the

status of tau phosphorylation without insulin in HT22 neurons,

suggesting that insulin is required in reduction of tau

hyperphosphorylation by GLP-1R agonists (154).
Application of GLP-1R
agonists in AD

Several studies have reported that GLP-1 agonists could

protect brain against various damage in AD models

(Supplementary Table 1 and Table 1). Currently, GLP-1R

agonists used in the treatment of AD models include (Val8)

GLP-1, GLP-1(9-36)amide, GLP-1(7-36)amide, CJC-1131,

Geniposide, Exendin(5-39), Exendin-4, NLY01 (engineered

exendin-4), liraglutide, Lixisenatide, Dulaglutide, Exenatide,

GLP-1, dual GLP-1/GIP receptor agonist (DA-JC4, DA-JC1,

DA5-CH, DA-CH3), GLP-1/GIP/Gcg receptor triagonist

(triagonist, TA), dual GLP-1 and Gcg receptor agonist

(oxyntomodulin) (144, 147, 148, 150, 171, 180, 186, 189, 194,

218, 219, 228, 235, 237, 238, 241, 242).

The treatment of (Val8)GLP-1 30 minutes prior to injection of

Ab fully reversed the impairment of LTP induced by Ab (171,
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217). Val8-GLP-1 also protected against Ab1-40-induced
impairment of learning and memory, and reduced total tau

expression and hyperphosphorylated tau levels (149, 217).

Likewise, GLP-1(9-36)amide could reverse AD-related

alterations in hippocampal synaptic plasticity and memory

deficits, but did not alter levels of APP and Ab in APP/PS1

mice (218). And, GLP-1(7-36)amide significantly prevented LPS-,

IL-1b-, H2O2-induced impairment in synaptic functions of

hippocampal CA1 region (219). CJC-1131, a new chemical-

modified GLP-1 agonist, was effective in resisting DPP-4

degradation. It is found that CJC-1311 effectively prevented

Ab1-42-induced impairments in spatial learning and memory,

and also reversed Ab1-42-induced suppression of hippocampal

LTP (180). Geniposide, acting as a GLP-1R agonist, partially

prevented STZ-induced learning and memory impairment via

modulation of PI3K/GSK-3b signaling pathway and reduced STZ-
induced hyperphosphorylation of tau protein (220). Besides,

geniposide suppressed Ab accumulation and alleviated cognitive

dysfunction in APP/PS1 mice, attenuated Ab-induced reduction

of LTP in acute hippocampal slices, and attenuated Ab-induced
synaptic dysfunction in cultured hippocampal neurons (221, 222).

There are a large number of studies that have reported the

application of exendin-4, liraglutide and exenatide in the treatment

of cognitive dysfunction and pathological features in AD models.

Exendin-4 treatment could reduce levels of Ab in brain of mice and

reduce levels of APP in cultured neuronal cells (152). Exendin-4

also could ameliorate brain levels of AbPP and Ab, elevated by STZ-
induced diabetes, in 3×Tg-AD mice (151). Behavioral measures of

cognition in APP/PS1mice treated with Exendin-4 was significantly

improved. After administration of Exendin-4, Ab oligomers-

induced impaired axonal transport was prevented, and levels of

soluble Ab and amyloid plaque load were decreased in APP/PS1

mice (224, 227). In STZ-treatment rats, Exendin-4 improved

learning and memory performance, protected hippocampal

neurons against degeneration, and reversed STZ-induced tau

hyperphosphorylation through downregulation of GSK-3b
activity (154, 155, 182). For Ab1-42-induced AD model, exendin-4

mitigated abnormal behavior and prevented Ab1-42-induced
impairment of LTP (85, 189, 226). Similar to exendin-4,

liraglutide also improved cognitive and spatial memory, enhanced

induction and maintenance of LTP, and reduced b-amyloid plaque

formation as well as inflammatory response in APP/PS1 (143, 158,

159, 175, 214). Liraglutide decreased hyperphosphorylation of NFs

and hyperphosphorylated tau in brain of STZ mice, and improved

learning and memory impairment induced by STZ through

ameliorating ERK and INK signaling pathways (216, 229). For

Ab25-35-treated mice, liraglutide dose-dependently prevented

against Ab25-35-induced impairment of spatial learning and

memory, prevented depression of hippocampal L-LTP, and

upregulated intracellular cAMP level (177). In db/db mice, Ab1-
42-treated mice or hTauP301L mice, liraglutide alleviated tau

hyperphosphorylation, and prevented dysregulation of Akt and

GSK-3b in brain (161, 163, 164). Liraglutide improved learning and
frontiersin.org

https://doi.org/10.3389/fendo.2022.1033479
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Du et al. 10.3389/fendo.2022.1033479
memory performance, attenuated hyperphosphorylation of tau as

well as NFs, and prevented neurodegeneration via improving JNK

and ERK signaling in brain of 3×Tg mice (232). Liraglutide reduced

astrocytes, microglia activity and amount of Ab levels in cortical

and hippocampal CA1 and CA3 regions in 5×FAD mice (147).

While liraglutide improved spatial cognition, it also reduced

astrocytes and microglia activity, ameliorated amount of Ab levels

and mitochondrial dysfunction in cortical and hippocampal CA1

and CA3 regions, and prevented neuron loss by activating cAMP/

PKA pathway in brain of 5×FAD mice (188, 208). Lixisenatide and

exenatide have the same effect as liraglutide in AD models (84, 141,

144, 148, 157, 179, 206, 213).

Moreover, dual GLP-1 and Gcg receptor agonist, dual GLP-

1/GIP receptor agonist and GLP-1/GIP/Gcg receptor triagonist

have also been successfully applied in the treatment of AD

models. It is reported that both DA-JC4 and DA5-CH could

improve STZ-induced learning and memory impairment, reduce

levels of phosphorylated tau protein and STZ-induced chronic

inflammation response in brain (233, 237). Besides, dual GLP-1/

GIP receptor agonists (DA-JC4, DA5-CH, DA-JC1 and DA-

CH3) reduced inflammation response, amyloid plaques and tau

phosphorylation in brain, reversed memory loss, and enhanced

synaptic plasticity in hippocampus of APP/PS1 mice (186, 234,

236, 238). In 3×Tg-AD treated with DA-JC4, the ability of

recognize new object and spatial working memory was

improved, hippocampal Ab and tau pathology were alleviated,

and hippocampal synaptic plasticity also was improved as well as

levels of PSD95 and SYP were increased (235). After
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administration of Triple GLP-1/GIP/glucagon receptor agonist,

learning and memory impairment of ADmodels (APP/PS1 mice

and 3×Tg-AD mice) was improved, amyloid plaques, tau

pathology, inflammation response and oxidative stress in

brains of two AD models were ameliorated (239–241).

However, there are few clinical trials of GLP-1R agonists in

AD patients. In a randomized placebo-controlled, double-

blinded trial, although liraglutide did not affect Ab load and

cognition measures, 26 weeks of liraglutide treatment prevented

expected decline of glucose metabolism that signifies cognitive

impairment, synaptic dysfunction, and disease evolution (243).

And the effect of liraglutide might be associated with

improvement of BBB glucose transport capacity (244).

Another double-blinded, placebo-controlled study reported

that liraglutide increased intrinsic connectivity in bilateral

hippocampal, medial frontal and lateral occipital regions,

suggesting that liraglutide might reduce or delay AD

progression (245). Patients with T2DM, persons at risk for

AD, had a significantly lower associated risk of AD after

administered exenatide, liraglutide and dulaglutide (83). These

data indicate that GLP-1R agonists show great potential as a

novel treatment for preventing AD processes.
Conclusion

Increasing evidence suggests that anti-diabetes medicine,

GLP-1R agonists, have multiple neuroprotective mechanisms
TABLE 1 The effects of various GLP-1R agonists upon brain mechanisms in animal models for AD.

Drug Effect of improving
cognitive function

Effect of attenuating
neuroinflammation

Effect of reducing Ab
aggregation/deposition

Effect of reducing tau
protein

hyperphosphorylation

Effect of
enhancing

LTP

(Val8)GLP-1 +++ - - ++ +++

GLP-1(9-36)amide +++ +++ - / +++

GLP-1
(7-36)amide

+++ / / / +++

CJC-1131 +++ / / / +++

Geniposide +++ +++ + +++ +++

Exendin-4 +++ ++ +++ +++ +++

Liraglutide +++ +++ +++ +++ +++

Lixisenatide +++ ++ + ++ +++

Dulaglutide ++ / / +++ /

Exenatide +++ +++ + - /

dual GLP-1/GIP
receptor agonist

+++ +++ +++ +++ +++

Triagonist +++ +++ +++ +++ +++

Oxyntomodulin +++ / +++ / +++
/The effect of GLP-1R agonists is not mentioned;
-No effect on brain mechanism;
+The effect of GLP-1R agonists on brain mechanism is less than 50% (relative to the control group and the AD group without GLP-1R agonists);
++The effect of GLP-1R agonists on brain mechanism is between 50%-75% (relative to the control group and the AD group without GLP-1R agonists);
+++The effect of GLP-1R agonists on brain mechanism is more than 75% (relative to the control group and the AD group without GLP-1R agonists).
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in AD models, such as anti-inflammation, anti-oxidative stress,

reducing Ab aggregation/deposition and tau protein

hyperphosphorylation, reducing neuronal apoptosis and

neurotoxicity, increasing cell proliferation and neurogenesis,

increasing synaptic plasticity, and other beneficial effects. GLP-

1R agonists might have the potential to be developed as a novel

treatment of AD. Further clinical evidence is needed to verify the

effects of GLP-1R agonists on cognitive function and pathology

in AD patients.
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