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Ferroptosis, an iron-dependent form of programmed cell death marked by

phospholipid peroxidation, is regulated by complex cellular metabolic

pathways including lipid metabolism, iron balance, redox homeostasis, and

mitochondrial activity. Initial research regarding the mechanism of ferroptosis

mainly focused on the solute carrier family 7 member 11/glutathione/

glutathione peroxidase 4 (GPX4) signal pathway. Recently, novel mechanisms

of ferroptosis, independent of GPX4, have been discovered. Numerous

pathologies associated with extensive lipid peroxidation, such as drug-

resistant cancers, ischemic organ injuries, and neurodegenerative diseases,

are driven by ferroptosis. Ferroptosis is a new therapeutic target for the

intervention of IVDD. The role of ferroptosis in the modulation of

intervertebral disc degeneration (IVDD) is a significant topic of interest. This is

a novel research topic, and research on the mechanisms of IVDD and

ferroptosis is ongoing. Herein, we aim to review and discuss the literature to

explore the mechanisms of ferroptosis, the relationship between IVDD and

ferroptosis, and the regulatory networks in the cells of the nucleus pulposus,

annulus fibrosus, and cartilage endplate to provide references for future basic

research and clinical translation for IVDD treatment.

KEYWORDS
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Introduction

Low back pain (LBP) is a common musculoskeletal disease in the world, and its

prevention and treatment are the major challenges in public health programs, which

contribute to severe socioeconomic and health burdens (1). Intervertebral disc (IVD)

degeneration (IVDD) has been considered as the leading cause of LBP, thereby resulting
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in a series of structural changes, such as the decrease of

intervertebral height, breakage of the existing nucleus pulposus

(NP), fissure of annulus fibrosus (AF), calcification of cartilage

endplate (CEP), and imbalance of extracellular matrix (ECM)

metabolism (2). In recent years, many new ways of programmed

cell death have been reported in studies on IVDD. In contrast to

apoptosis, necroptosis, pyroptosis, autophagy, and other types of

death procedures, ferroptosis is characterized by the iron-mediated

accumulation of lipid peroxides, morphologically manifested as

mitochondrial shrinkage, reduction of mitochondrial cristae, and

rupture of the mitochondrial outer membrane, and it has been

regarded as a new target for the treatment of IVDD (3).

The overload of cellular iron content, particularly ferrous iron,

can induce lipid peroxidation of fatty acids (4). The abnormal

mitochondrial oxidative phosphorylation pathway results from

iron overload, which produces a large amount of reactive oxygen

species (ROS) and ATP. When the ROS content exceeds the

scavenging level of the antioxidant system, polyunsaturated fatty

acids (PUFAs) on the cell membranes and organelle membranes

are oxidized to form lipid peroxides, which directly or indirectly

destroy cell structure and function, thereby resulting in cell damage

or death. Initial research on themechanismofferroptosis primarily

focuses on the solute carrier family 7 member 11 (SLC7A11)–

glutathione (GSH)–glutathione peroxidase 4 (GPX4) signaling

pathway. Recently, novel mechanisms of ferroptosis independent

of GPX4 have been discovered, which are closely related to lipid

metabolism, iron balance, and redox reactions.

Although ferroptosis has been extensively investigated in

various physiological and pathological processes, such as

tumors, injuries, viral infection, immune response, and

metabolic disorders since the item was coined by Dixon et al.

(5) in 2012, research regarding the relationship between

ferroptosis and IVDD started relatively lately (6–9). To date, a

growing number of studies have investigated the relationship

between ferroptosis and IVDD. Herein, we aimed to review

recent literature to explore the underlying mechanism of

ferroptosis and its role in IVDD and to investigate new

therapeutic targets for the treatment of IVDD.
Iron metabolism

Systemic iron homeostasis

Iron homeostasis is essential for variousmetabolic processes in

mammalian organ systems (Figure 1). Iron absorption mainly has

two sources (heme iron primarily from animal products, including

beef, fish, chicken, and liver, and non-heme iron primarily from

fruit, vegetables, eggs, and grains) in the intestine, depending on

different receptors (10). The heme iron is transported through the

intestinal epithelium by heme carrier protein 1 (11). For the non-

heme iron, ferric iron is reduced to be ferrous iron by cytochrome b

reductase 1,which is then transportedbydivalentmetal transporter
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1 (DMT1), a carrier protein, into the enterocytes (12). Ferrous iron

is exported through the iron exporter, ferroportin 1 (FPN1) (12,

13). The ferrous iron is oxidized from +2 to +3 state by hephaestin,

subsequently loading ferric iron onto transferrin (TF) for

systematic transport in the bloodstream (14). Moreover, the

systematic iron homeostasis is complemented by serum ferritin

and non-TF bound iron and regulated by the hepcidin–FPN1–

regulatory axis (15).

For intracellular iron homeostasis, ferric iron binding to the TF

in the serum can be taken up by a transferrin receptor (TFRC) on

the cellmembrane (16).The ferric iron is released fromtheTF in the

endosome because of the rapid drop of pH and then reduced by six

transmembrane epithelial antigens of prostate 3 (STEAP3) to

ferrous iron, which is subsequently transported into the

cytoplasm through the solute carrier family 11 member 2

(SLC11A2)/DMT1 (17). The transported ferrous iron stored in

ferritin or labile iron pool for further utilization is essential for

metabolic and biochemical processes, such as the regulation of the

iron-requiring enzymatic activity, iron–sulfur protein production,

and oxygen transport (18). Excess iron can be extruded into the

extracellular space via the iron-efflux protein metal transporter

protein-1/FPN1/iron-regulated transporter-1, which is the product

of the solute carrier family 40 member 1 (SLC40A1) gene (19).

Moreover, the intracellular iron homeostasis is regulated by iron-

responsive element binding protein 2, heme oxygenase 1 (HO-1),

and iron regulatory proteins (20, 21).
Iron overload in the blood circulation

Hematological disorders, such as hereditary hemochromatosis

associated with gene mutations of HFE, hepcidin hormone, and

TFRC, can contribute to a high serum ferritin level (22, 23). In

addition, chronic renal failure receiving repeated hemodialysis

and other chronic diseases receiving repeated blood transfusions,

including myelodysplastic syndrome and thalassemias, can

saturate the iron-binding capacity of TF in the cytoplasm,

leading to chronic iron overload (24, 25).
Intracellular iron overload

Restrictive export and excessive import of iron result in

intracellular iron overload. Genetic defects in SLC40A1 and

STEAP3 mutations restrict iron export, but they have no effect

on iron import (26, 27). Genetic mutations in SLC11A2 accelerate

iron import, leading to intracellular iron overload (28).
Iron overload in IVD

Iron accumulation in IVD is commonly observed in aging

patients suffering from diseases because of the lack of effective
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mechanisms to exert excess iron, including hereditary

hemochromatosis and thalassemia (29, 30). Meanwhile, iron

overload in IVD may result from neovascularization within the

disc, which exposes tissues to high levels of heme, a major source

of intracellular iron (31, 32). Neovascularization was initially

reported in herniated NP using histological staining in 1993, and

Shan et al. (31) found that the immature vessels during

neovascularization in herniated IVD lead to the extravasation

of red blood cells and the deposition of iron in this tissue.
Signaling pathways of ferroptosis

SLC7A11/GSH/GPX4 signaling pathway

System XC¯, consisting of SLC7A11 and solute carrier family

3 member 2 (SLC3A2), is a Na+-dependent amino acid

antiporter that is widely distributed in the plasma membrane

and is responsible for the import of extracellular cystine and the

export of intracellular glycine (33). Intracellular cystine is

immediately reduced back to cysteine by depleting NADPH,

which is a rate-limiting precursor amino acid for the synthesis of

GSH, a tripeptide consisting of cysteine, glutamate, and glycine

(34). GSH plays an important role in anti-oxidative stress,

reduction of lipid peroxidation, and protection of tissue cells,

which is a necessary cofactor of GPX4 for normal function (35).

Compared with other members of the GPXs family, GPX4 can

directly convert phospholipid hydroperoxides (PLOOHs), a
Frontiers in Endocrinology 03
form of lipid-based ROS, on cell membranes to nontoxic lipid

alcohols (PLOHs) with sufficient cellular GSH, whereas the

depletion of GSH results in the inactivation of GPX4 (36,

37) (Figure 2).

GPX4 is the major neutralizing enzyme for PLOOHs, which

protects the structure and function of cell membranes, and it has

been regarded as a specific marker of ferroptosis, which plays an

essential role in limiting lipid peroxidation (36, 38).

Selenocysteine is the key group for the catalytic function of

GPX4. PLOOH is reduced to PLOH, whereas the selenocysteine

is oxidized to selenic acid intermediate (GPX4-SeOH).

Subsequently, the selenium–glutathione adduct is produced

after the reaction between GPX4-SeOH and GSH. Then, the

selenium–glutathione adduct is converted back to selenocysteine

by reacting with the equivalent of GSH. Similarly, the oxidized

glutathione (GSSG) is produced from GSH, which is then

reduced to GSH by glutathione reductase for recycling and

utilization (35). Apart from ferroptosis, GPX4 plays a role in

pyroptosis (39), apoptosis (40), necroptosis (41), and autophagy

(42, 43), indicating that the regulation of PLOOHs may be a

hallmark in the signaling pathway for the induction of regulated

cell death.

Recently, the regulation of ferroptosis through the SLC7A11/

GSH/GPX4 signaling pathway has been explored for the

intervention of IVDD. Zhang et al. (44) demonstrated that the

promotion of methylase expression upregulated GPX4

methylation in patients with hyperhomocysteinemia (HHcy),

thereby inducing ferroptosis in NP cells (NPCs). In addition, the
FIGURE 1

Cellular iron metabolism in mammals.
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level of GPX4 protein was reduced after treatment with heme by

simulating neovascularization in a heme-induced ferroptosis

model (31). Moreover, ferroptosis in cartilage cells was

modulated via the IL-6/miR-10a-5p/IL-6R axis in the

inflammatory microenvironment (45), and the IL-6/STAT3/

GPX4 signaling pathway might be implicated in this

procedure (46).
Signaling pathways independent of GPX4

GPX4 has been regarded as the primary enzyme that

prevents ferroptosis through the conversion of lipid

hydroperoxides into non-toxic lipid alcohols (36). However,

the sensitivity of GPX4 inhibitors differs in cancer cell lines,

indicating that additional independent pathways govern the

regulation of ferroptosis (47). Therefore, current mechanisms

of intracellular defense against ferroptosis can be divided into

the SLC7A11-GSH-GPX4 signaling pathway and other signaling

pathways independent of GPX4 (Figure 3).

Bersuker et al. (48) and Doll et al. (49) identified that

ferroptosis suppressor protein 1 (FSP1), also known as

apoptosis-inducing factor mitochondrial 2, acts parallel to the

GSH-dependent GPX4 pathway with regard to the inhibition of

phospholipid (PL) peroxidation and ferroptosis. FSP1 on the

membrane reduces coenzyme Q (CoQ) by using NAD(P)H to

ubiquinol (CoQH2), which serves as a lipophilic radical-

trapping antioxidant (RTA), suppressing the propagation of
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lipid peroxides (50, 51). The loss of FPS1 improves PL

peroxidation with the normal function of GPX4, indicating an

independent mechanism of the FSP1/CoQH2/NAD(P)H

pathway during ferroptosis.

The GTP cyclohydrolase-1 (GCH1)/6(R)-L-erythro5,6,7,8-

tetrahydrobiopterin (BH4)/dihydrofolate reductase (DHFR) axis

is another unique protective mechanism for ferroptosis, which is

independent of the GSH-GPX4 system. Kraft et al. (52)

identified GCH1 as a potent antagonist of ferroptosis using a

whole-genome activation screen. The endogenous antioxidant

BH4 on the membrane generated by the enzyme GCH1 also

serves as a lipophilic RTA to selectively neutralize PUFA-PL-

OOH, which alleviates sensitivity to ferroptosis. Moreover, BH4

also participates in the synthesis of CoQ to leverage oxidative

damage under oxidative stress (52). Furthermore, DHFR serves

as an essential regulator of ferroptosis by regenerating BH4 from

dihydrobiopterin (BH2). The genetic or pharmacological loss of

DHFR’s function can also induce ferroptosis (53).
Metabolism and ferroptosis

Lipid metabolism and ferroptosis

Lipid peroxidation is an important process in ferroptosis.

PUFA-containing PLs on the cell membrane are easily oxidized

because of the highly active hydrogen atoms in the methylene

bridge, destroying the structure and stability of the lipid bilayer,
FIGURE 2

The molecular mechanism and regulation of ferroptosis.
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and disintegration of the cell membrane. Free PUFAs, such as

adrenal acid and arachidonic acid, are catalyzed by acyl-CoA

synthetase long-chain family member 4 (ACSL4) to generate

PUFA-CoA, which is then transported to the cell membrane

through lysophosphatidylcholine acyltransferase 3 (LPCAT3) by

inserting acyl groups into lysophospholipids and synthesizing

PUFA-PLs with PLs (54–56). PUFA oxidation mainly has two

forms. First, PUFA can be oxidized through an enzymatic

reaction. PUFA-PL is catalyzed by arachidonate lipoxygenase

(ALOX) into PUFA-PL-OOH (57). Zou et al. (58) found that

cytochrome P450 oxidoreductase (POR) promotes lipid

peroxidation during ferroptosis in an ALOX-independent

manner using systematic lipidomic profiling and suggested that

POR is an essential mediator of ferroptosis. In addition, PUFAs

are oxidized by other oxygenases, including NADPH oxidases

(NOXs) and prostaglandin-endoperoxide synthase 2 (PTGS2/

COX) (59, 60). Despite being upregulated during ferroptosis,

PTGS2 might not be involved in the production of lipid

peroxidation. Whether PTGS2 affects the procedure of

ferroptosis still needs further investigation (61). Second, PUFA

oxidation occurs through Fenton reaction in a non-enzymatic

way. Ferric iron, hydroxyl radicals (HO ·), and OH- are generated

during the reaction between ferrous iron and hydrogen peroxide

(H2O2). Thus, free radical ions further cause oxidative damage to

membrane lipids, particularly PUFAs. The inhibition of key

molecules, such as ACSL4, LPCAT3, ALOX, POR, and NOXs,

is of great significance to the reduction of lipid peroxidation,

thereby counteracting ferroptosis.
Frontiers in Endocrinology 05
Iron metabolism and ferroptosis

The main mechanism of the biological toxicity of iron ions is

the classical Fenton reaction, where ferrous iron reacts with

hydrogen peroxide (H2O2). Among the products of the Fenton

reaction, the hydroxyl radicals are largely destroyed, which can

not only cause oxidative damage to cells by unspecifically

attacking biomolecules, but also promote the peroxidation of

lipid components to generate various oxidation products, the

main products of which are lipid hydroperoxides (LOOHs) (57).

LOOHs can be converted to oxygen radical intermediates,

including lipid peroxyl radical (LOO ·) or alkoxyl (LO ·) (62).

Given the high proportion of PUFAs on cell and plasma

membranes, the oxygen radical intermediates cause cascade

reactions, which further aggravate the destruction of the

membranes, contributing to the disturbance of cellular

homeostasis and activation of serious biochemical reactions.

Furthermore, many different aldehydes that can be formed as

secondary products , inc luding 4-hydroxynonenal ,

malondialdehyde, hexanal, and propanal, can continuously

react with PUFAs, destroy cells, and eventually lead to

irreversible disruption of the structure and function of the cell

membranes (63–65). Finally, the free radical ions and hydroxyl

radicals generated from intracellular free ferrous ions through

the Fenton reaction oxidize PUFA on the cell membrane and

damage the protein in the cytoplasm and DNA in the nucleus

(66). Moreover, iron ions are considered as the key components

of various metabolic enzymes, including ALOX and POR.
FIGURE 3

The signaling pathways of ferroptosis independent of SLC7A11/GSH/GPX4 axis.
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Therefore, homeostasis of iron ions is important for the normal

functioning of organisms and cells.

The regulation of iron homeostasis can affect the sensitivity

of cells to ferroptosis with regard to the uptake, storage, and

efflux of iron. The knockdown of TF can suppress lapatinib-

induced ferroptosis in SKBR3 cancer cell line, and the loss of

TFRC can also decrease cystine starvation- or erastin-induced

ferroptosis (67–69). Ferritin, composed of H and L subtypes, is

the main iron storage protein primarily located in the cytoplasm,

which stores around 70%–80% newly imported iron (35). The H

subtype, ferritin heavy chain 1 (FTH1), can oxidize ferrous iron

to ferric iron and combine with it to reduce free ferrous iron and

subsequent Fenton reaction. SLC40A1, the only known iron

exporter in mammalian cells, can influence ferroptosis by

mediating iron output. Studies have shown that ferroptosis is

promoted by the knockdown of SLC40A1, whereas this

procedure is ameliorated by the overexpression of SLC40A1

(68, 70). In response to different types of ferroptosis inducers, the

level of intracellular ferric ions will increase, and various protein

transporters related to iron metabolism, such as TF, TFRC,

ferritin, and SLC40A1, will be rearranged under the

ferroptosis program.

In the oxidative stress microenvironment of IVDD

simulated by the tert-butyl hydroperoxide (TBHP), Lu et al.

(71) indicated that the intercellular iron overload resulted from

FPN dysregulation that was regulated by metal-regulatory

transcription factor 1 (MTF1), and the TBHP-indued

ferroptosis was aggravated through the JNK/MTF1/FPN signal

pathway. In addition, the levels of intercellular iron in AF cells

(AFCs) and NPCs were increased by nuclear receptor

coactivator 4 (NCOA4)-mediated ferritin selective autophagy

during TBHP-indued ferroptosis (72).
Animo acid metabolism and ferroptosis

Amino acid metabolism is an important part of the metabolic

loop of organisms, and imbalances in intracellular and extracellular

cysteine, cystine, glutamate, and GSH can induce ferroptosis.

Intracellular cysteine is primarily used to synthesize antioxidant

enzymes, including GSH and thioredoxin. When cysteine is

deficient, cystathionine-b-synthase (CBS) and cystathionine

gamma-lyase are activated under oxidative stress conditions, and

cysteine is biosynthesized from methionine through the

transsulfuration pathway, thereby reducing oxidative stress–

induced ferroptosis (73). Liu et al. (74) demonstrated that the

overexpression of CBS can confer ferroptosis resistance in ovarian

cancer cells, andCBShasbeen identified as anewnegative regulator

of ferroptosis. By contrast, cysteinyl-tRNA synthetase (CARS)

positively regulates ferroptosis by limiting the transsulfuration

pathway. Hayano et al. (75) found that the loss of CARS
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contributed to the accumulation of cystathionine, induction of

the transsulfuration pathway, and upregulation of genes associated

with serine biosynthesis and transsulfuration.

The glutaminolysis pathway, in which glutamine is catabolized

to glutamate, has also been implicated in the regulation of

ferroptosis. Gao et al. (67) indicated that a-ketoglutarate
converted from glutamine can cause cysteine deprivation and

promote ferroptosis, and the limitation of glutaminolysis can

reduce the heart triggered by ischemia–reperfusion injury

through the inhibition of ferroptosis. Moreover, glutaminolysis is

catalyzed by cytosolic glutaminase (GLS1) and mitochondrial

glutaminase (GLS2); however, GLS2, instead of GLS1, is required

for ferroptosis (67, 76, 77). Mitochondria play a crucial role in

cysteine deprivation-induced ferroptosis, instead of GPX4

inhibition-induced ferroptosis, which is mediated by the potential

hyperpolarization, mitochondrial tricarboxylic acid cycle, and

electron transport chain of the mitochondrial membrane (78).
Glucose metabolism and ferroptosis

Glucose is the principal nutrient for biosynthesis and the main

source of acetyl-CoA for the synthesis of fatty acids. Under

nutritional deficiency, energy stress is induced by the depletion of

intracellular ATP and subsequent improvement of intracellular

AMP levels. In short-term and slight energy stress, the AMP-

activated protein kinase (AMPK), a sensor of cellular energy status,

participates in the adaptive responsebypromotingATP-generating

catabolism and maintaining cell survival (79). Lee et al. (80) found

that the energy stress caused byglucose starvation can partly reduce

ferroptosis by AMPK, and the activation of AMPK inhibits

ferroptosis by the phosphorylation of acetyl-CoA carboxylase and

restrains PUFA biosynthesis. In type 2 diabetic osteoporosis, high

glucose levels can induce ferroptosis via increased ROS/lipid

peroxidation/GSH depletion (81).
Transcriptional regulation
of ferroptosis

The transcription factors regulate ferroptosis-related target

genes that serve as promoters or blockers, thereby affecting the

sensitivity of ferroptosis through multiple roles in transcription-

dependent or transcription-independent mechanisms (82). Many

transcription factors, such as tumor protein 53, nuclear factor-

erythroid 2 like 2 (NRF2), Yes 1-associated transcriptional

regulator, MTF1, activating transcription factor 3 (ATF3),

transcription factor AP-2 gamma, specificity protein 1, hypoxia-

inducible factor 1 alpha, and egl-9 family hypoxia-inducible factor

2, have been found to be involved in a ferroptotic network, which

has been a new potential treatment target (83–89).
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Epigenetic regulation of ferroptosis

DNA methylation and histone modification can regulate

ferroptosis. Helicase can inhibit ferroptosis by DNA methylation

through the induction of sterol-CoA desaturase 1 and fatty acid

desaturase 2, epigenetic silencing of cytosolic long non-coding RNAs

(IncRNA) LINC00472, and promotion of nuclear lncRNA 00336 (35,

90–92). Histone 2A ubiquitination (H2Aub) and histone 2 B

ubiquitination (H2Bub) can induce SLC7A11 expression by histone

modification to reduce sensitivity to ferroptosis. Bromodomain

containing 4 (BRD4) epigenetically prevents ferroptosis by

recognizing acetylated lysine residues on histones, and demethylase 3

B (KDM3B), a histone H3 lysine 9 demethylase, can activate the

expression of SLC7A11 to reduce erastin-induced ferroptosis (93, 94).
Inducers and inhibitors of ferroptosis

The ferroptosis inducer (FINs) can be divided into four

categories: The first category is the inhibiting activity of

SCL7A11. The FINs inhibit the function of System XC¯ to

reduce the uptake of cystine and the synthesis of GHS,

including erastin, sulfasalazine, and sorafenib (5, 36). The

second category refers to the FINs inhibiting GPX4. The FINs,

including RSL3, ML162/DP17, and ML210/DP110, covalently

react with selenocysteine to inhibit the activity of GPX4 (36,

95). The third category refers to organic peroxides that cause

oxidative damage, including TBHP, artemisinin, and FINO2 (96,

97). The fourth category refers to the FINs resulting in iron
Frontiers in Endocrinology 07
overload, including exogenous hemin and hemoglobin (31, 98,

99). The inhibitors of ferroptosis include antioxidants (e.g.,

butylated hydroxytoluene, butylated hydroxyanisole,

tetrahydronaphthyridinols, ferrostatin-1, liproxstain-1, vitamin

E, and vitamin K), iron chelators (e.g., deferoxamine [DFO],

deferasirox [DFP], deferiprone [DFX], and ciclopirox),

ferroptosis-related enzyme inhibitors (e.g., ALOX inhibitors,

including baicalein, zileuton, and cinnamyl-3,4-dihydroxya-

cyanocinnamate; ACSL4 inhibitors, including thiazolidinediones

and triacsin C; and NOX inhibitors, including diphenylene

iodonium and 2-acetylphenothiazine), and protein degradation

inhibitors (5, 35, 100–103) (Figure 4).
Ferroptosis and IVDD

The IVD is a special structure without blood vessels in an

ischemic and hypoxic microenvironment under normal

physiological conditions, the steady balance of which is the

basis for the maintenance of normal function. IVDD is a

chronic process that commonly causes LBP; however, the

specific cause of IVDD remains unclear. Published studies

have demonstrated that IVDD is a complex process with

multifactorial interactions, which is primarily characterized by

ECM destruction and cell phenotype changes, as well as

apoptosis, autophagy, pyroptosis, necroptosis, and ferroptosis

of IVD (31, 104–107). The term ferroptosis was first coined in

2012. Since then the molecular mechanism and regulatory

network of ferroptosis have been exponentially investigated in
FIGURE 4

The inducers (marked red) and inhibitors (marked blue) of ferroptosis.
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many degenerative diseases, such as Parkinson’s disease,

Alzheimer’s disease, kidney degeneration, atherosclerosis,

osteoporosis, and osteoarthritis (OA) (108–113). Although

studies on ferroptosis in IVDD have been conducted in recent

years, increasing evidence has shown that ferroptosis is

associated with IVDD and is involved in degenerative

processes of NP, AF, CEP, and ECM (Table 1).
Ferroptosis in NP

The property of resident progenitor cells in NP is altered by

IVDD (117). The healthy NP primarily consists of chondrocyte-

like cells, whereas the degenerative NP is primarily composed of

chondrocyte-like cells, inflammatory cells, and fibroblast-like

cells, which shrank extensively and became yellowish and fibrous

(118). Zhang et al. (119) performed single-cell RNA sequencing

analysis of NPCs isolated from normal controls and from

patients with IVDD. Gene Ontology and Kyoto Encyclopedia

of Genes and Genomes analyses revealed that ferroptosis

pathways were enriched in mild IVDD. The pathways

identified by scRNA-Seq were validated using a rat model of
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IVDD, and the levels of iron (a sign of ferroptosis), FTL, and

HO-1 (two important regulators of ferroptosis) were assessed.

They found that NP in the degenerative group was associated

with remarkably higher iron levels and lower levels of ferritin

light chain and HO-1 than in the control group, indicating that

ferroptosis played a role in the progression of IVDD. Shan et al.

(31) found that the increased level of iron primarily resulted

from the high level of heme caused by neovascularization in

degenerative NP, thereby inducing cytotoxicity and ferroptosis

and accelerating the progression of IVDD. This result is also

supported by scRNA-Seq analysis reporting endothelial cells

only in IVDD samples, and the proportion of endothelial cells

increased with the severity of IVDD (119).

Ferroptosis is regulated by multiple pathways during IVDD.

Lu et al. (71) detected a decreased expression of FPN and the

occurrence of ferroptosis under oxidative stress conditions

simulated using TBHP in human NPCs in vitro and in vivo.

They found that the downregulation of FPN, but not TFRC and

DMT1, primarily accounted for the intercellular iron overload

and ferroptosis in TBHP-induced human NPCs, whereas the

overexpression of FPN inhibited ferroptosis through the JNK/

MTF1/FPN signaling pathway. Therefore, the decreased nuclear
TABLE 1 Mechanism and intervention methods of ferroptosis in IVDD.

Study Induction of
ferroptosis

Mechanism Effects on cells Intervention method

Zhang
et al.
(44)

Hcy to simulate the
pathological
condition of HHcy

Promotion of methylase expression and the
upregulation of the GPX4 methylation.

Inducing
ferroptosis in
NPCs

Folic acid reducing the ability of HHcy to promote
IVDD

Bin
et al.
(45)

IL-6 to simulate
inflammatory
condition

IL-6/miR-10a-5p/IL-6R axis Inducing
ferroptosis in
cartilage cells

Inhibiting miR-10a-5p and subsequently derepressing
IL-6R signaling pathway

Lu
et al.
(71)

TBHP to simulate
oxidative stress
condition

FPN downregulation and intercellular iron overload Inducing
ferroptosis in
NPCs.

Enhancing the nuclear translocation of MTF1 by
suppressing the JNK pathway and ameliorating the
progression of IVDD

Shan
et al.
(31)

Heme to simulate
neovascularization
condition

Increased heme catabolism, downregulation of GPX4,
and intercellular iron overload, which might be
mediated by the Notch pathway

Inducing
ferroptosis in
NPCs.

Inhibiting of the Notch signaling pathway

Yang
et al.
(72)

TBHP to simulate
oxidative stress
condition

NCOA4-mediated ferritinophagy and intercellular iron
overload

Inducing
ferroptosis in
NPCs and AFCs.

Silencing NCOA4 to alleviate ferroptosis

Li et al.
(114)

TBHP to simulate
oxidative stress
condition

Upregulation of ATF3 and ROS products Inducing
ferroptosis in
NPCs.

Silencing ATF3 by miR-874-3p and alleviating IVDD

Wang
et al.
(115)

FAC to simulate iron
overload condition

Mineralization of endplate chondrocytes and oxidative
stress

Inducing
ferroptosis in
endplate
chondrocytes.

DFO, NAC and ferrostatin-1 rescuing high dose iron-
induced IVDD and cartilage endplate calcification

Yu
et al.
(116)

IL-1b to simulate
inflammatory
condition

Decreased NRF2 expression and upregulation of ROS
products

Inducing
ferroptosis in
NPCs.

circ_0072464 shuttled by BMSC-secreted EVs
inhibiting NPC ferroptosis by downregulation of miR-
431 and upregulation of NRF2.
IVDD, Intervertebral disc degeneration; Hcy, homocysteine; HHcy, hyperhomocysteinemia; NPCs, nucleus pulposus cells; TBHP, tert-butyl hydroperoxide; FPN, ferroportin; MTF1, metal-
regulatory transcription factor 1; GPX4, glutathione peroxidase 4; NCOA4, nuclear receptor coactivator 4; AFCs, annulus fibrosus cells; ATF3, activation transcription factor 3; ROS,
reactive oxygen species; FAC, ferric ammonium citrate; DFO, deferoxamine; NAC, N-acetyl-cysteine; NRF2, nuclear factor-erythroid 2 like 2; BMSC, bone marrow mesenchymal stem cells;
EV, extracellular vesicle.
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translocation of MTF1 under TBHP treatment contributes to the

reduced expression of FPN and ferroptosis in human NPCs.

Meanwhile, hinokitiol, a natural tropolone derivative, can

increase the nuclear translocation of MTF1, restore FPN, and

attenuate TBHP-induced ferroptosis by suppressing the JNK

pathway in human NPCs, as well as in the NP tissue of IVDD.

Moreover, ferritinophagy is involved in TBHP-induced

ferroptosis of NPCs through NCOA4-mediated ferritin-

selective autophagy in an autophagy-dependent manner (72).

NCOA4, a selective cargo receptor mutually combining with

ferritin, transports ferritin to the autophagosomes with the

occurrence of oxidative stress in IVD cells, thereby releasing

free iron to induce ferroptosis (72, 120, 121). A newly published

clinical study also proved that serum ferritin was negatively

correlated with the degree of IVDD, which can be used as a

clinical predictor of IVDD severity (122). Furthermore, Shan

et al. (31) showed that heme-induced ferroptosis of human

NPCs by the inhibition of the GPX4 protein can be rescued by

DFO treatment. In addition, heme-induced ferroptosis might be

mediated by the Notch signaling pathway, with substantial

changes in the mRNA and protein levels of Notch1, Notch2,

Jag1, Jag2, Hes1, Hes2, and Hey1.

MicroRNAs (miRNAs) and short non-coding RNAs

(ncRNAs) primarily downregulate the expression of target genes

andmodulate the relateddownstreampathways bydirectly binding

to the 3′-untranslated regions of the target genes, thereby regulating
ferroptosis in human NPCs and IVDD. Li et al. (114) established a

rat model of IVDD with TBHP and found that the overexpression

of ATF3 induced ROS production and ferroptosis by suppressing

SLC7A11. In addition, bioinformatics analysis and molecular

experiments demonstrated that ATF3 is a direct target of miR-

874-3p, indicating that the upregulation of ATF3 partially results

from the downregulation of miR-874-3p in IVDD. Extracellular

vesicles (EVs) derived from most cell types have been increasingly

considered as important mediators of cell-to-cell communication

and biomarkers of diseases, and they are involved in

pathophysiological processes of IVDD (123, 124). Exosome-

transported circular RNAs (circRNAs) have also been confirmed

to exert effects on the regulation of IVDD (125). CircRNAs serve as

miRNA sponges, contributing to the downregulation of miRNA

and upregulation of miRNA downstream targets (126). Yu et al.

(116) found that the uptake of EVs extracted from mouse bone

marrow mesenchymal stem cells (BMSCs) by NPCs alleviated

IVDD. In vitro and in vivo experiments showed that

circ_0072464 shuttled by BMSC-derived EVs reduced ferroptosis

in NPCs through the inhibition of miR-431 and upregulation of

miR-431-mediated NRF2, indicating a potential biotherapeutic

target for the treatment of IVDD.

Ferroptosis of NPCs and IVDD is also regulated by DNA

methylation. HHcy, characterized by increased total

homocysteine in plasma and its close relation to DNA

methylation, results from the high concentration of

homocysteine (Hcy) in serum caused by the deficiency of folic
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acid or the excessive intake of methionine (127–129). Zhang

et al. (44) demonstrated that Hcy aggravates oxidative stress and

induces ferroptosis in NPCs through the promotion of

methylase expression and upregulation of GPX4 methylation.

They also confirmed that HHcy is an independent risk factor for

IVDD and that HHcy accelerates IVDD in vivo, which can be

rescued by folic acid and the methylase inhibitor 5-AZA.
Ferroptosis in AF

AF, which is divided into the inner (proteoglycan and

collagen II rich) and outer regions (collagen I rich), has strong

resistance to traction and compression, preventing the NP from

protruding outwards (130). The AFCs in the outer region tend to

be fibroblast-like and parallel to collagen fibers, whereas the

AFCs in the inner region can be more oval (131). Yang et al. (72)

investigated the expression of ferroptosis marker proteins in the

AFCs of a rat model exposed to TBHP at different

concentrations. They found decreased expression of FTH and

GPX4 and increased expression of PTGS2 and ACSL4 with an

increase in TBHP concentration in AFCs, indicating the

existence of oxidative stress–induced ferroptosis in rat APCs.

Moreover, ferroptosis in AFCs is upregulated by NCOA4-

mediated ferritinophagy in response to TBHP treatment,

indicating new insights into the treatment of IVDD. The

composition and structure of AF are unique and critical for

the maintenance of disc anisotropy, elastic mechanical loading,

and homeostasis. However, most published research focuses on

NPCs, and studies on the effects of ferroptosis on AFCs are rare.

Therefore, further studies on the relationship between AFCs

must be conducted in the future.
Ferroptosis in CEP

CEP interfaces the disc and vertebral body with a thin

horizontal layer of semi-porous thickened cancellous bone and

hyaline cartilage, serving as the predominant route for nutrition

supply and waste product exchange within the IVD (131, 132).

The degeneration of CEP has been regarded as the primary

predictor of IVDD, which reduces tissue diffusivity and changes

the biochemical microenvironment of IVD, leading to reduced

glucose and oxygen concentrations, increased lactate levels, and

decreased PH within the disc, thereby initiating IVDD (133–

135). The overload of iron and ferroptosis plays a role in the

degeneration and calcification of CEP. Wang et al. (115)

explored the connection between iron overload and

degeneration of CEP and found that oxidative stress mediated

by iron overload induced endplate chondrocyte ferroptosis,

which can be reversed by iron chelation, antioxidants, and

ferroptosis inhibition, indicating that ferroptosis plays an

important role in endplate chondrocyte degeneration. Bin
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et al. (45) demonstrated aberrant expression of interleukin (IL) 6

(IL-6) and its receptor in cartilage specimens obtained from

patients with IVDD. Furthermore, they showed that cartilage

cell ferroptosis is induced by IL-6 through oxidative stress and

iron homeostasis. Furthermore, miR-10a-5p partially inhibited

IL-6-induced ferroptosis by suppressing IL-6R expression,

indicating that the IL-6/miR-10a-5p/IL-6R axis is a potential

target for IVDD treatment.

Chondrocytes are the predominant cell type in ECP and

articular cartilage. Thus, studies reporting the mechanisms of

articular cartilage degeneration caused by ferroptosis in OA are

inspiring and learnable for the intervention of IVDD. Jing et al.

(136) indicated that iron overload in chondrocytes induced by

pro-inflammatory cytokines contributes to oxidative stress and

mitochondrial dysfunction through the upregulation of TRF1

and downregulation of FPN. In a study by Yao et al. (137), lipid

ROS and ferroptosis in chondrocytes were induced by IL-1b and

ferric ammonium citrate (FAC), but they were attenuated by

Ferrostatin-1 that activated the NRF2 antioxidant system. The

overexpression of NRF2 upregulated the level of GPX4

expression and ameliorated ferroptosis.
Ferroptosis and ECM

Under normal circumstances, the components of the ECM

in the IVD are continuously updated through anabolism and

catabolism, and the cells in the IVD associated with ECM form a

coordinated functional system (138). However, the imbalance of

anabolic and catabolic activities might result in ECM

degradation, which is a pathological characteristic of IVDD

(139). ECM metabolism is modulated by iron overload

and ferroptosis.

The ECM of NP primarily consists of collagen II,

proteoglycan, and chondroitin sulfate (140). In NPCs, the levels

of collagen II, proteoglycan, matrix metalloproteinases (MMPs,

particularly MMP13), disintegrin, and metalloproteinase with

thrombospondin motifs (ADAMTSs, particularly ADAMTS4

and ADAMTS5) can reflect the degree of ECM degradation

during the progression of IVDD (141, 142). The overexpression

of circ_0072464 can promote the levels of collagen II and

proteoglycan and reduce the levels of MMP13 and ADAMTS5

by sponging miR-431, upregulating NRF2, and suppressing

ferroptosis (116). Meanwhile, the overexpression of ATF3 in

NPCs not only aggravates TBHP-induced ferroptosis, apoptosis,

and ROS production by suppressing SLC7A11 and superoxide

dismutase 2, but also enhances ECM degradation by reducing the

levels of proteoglycan and collagen II (114).

In endplate chondrocytes, the iron overload induced by FAC

treatment enhanced the expression of MMP3 and MMP13 and

reduced the expression of collagen II, thereby accelerating the
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degeneration of CEP and ECM (115). The study conducted by

Camacho et al. (143) also demonstrated that iron overload was

involved in chondrocyte-mediated ECM degradation. Meanwhile,

erastin, an inducer of ferroptosis, reduces the expression of

collagen II and increases the expression of MMP13 in

chondrocytes (137). Furthermore, the inflammatory factor IL-1b
accelerated iron uptake in chondrocytes, which was then

promoted after co-treatment with FAC, because IL-1b can

promote the expression of TFRC and DMT1 but downregulate

the expression of FPN1, thereby aggravating iron accumulation in

chondrocytes (136). Finally, co-treatment with IL-1b and FAC

upregulated the expression of ECM-degrading enzymes, including

MMPs and ADAMTS5.
Ferroptosis and IVDD treatment

Ferroptosis, characterized by iron-dependent lipid peroxidation

and the accumulation of ROS within the IVD, is implicated in the

pathogenesis of IVDD. Thus, ferroptosis opens a new therapeutic

target for the intervention of IVDD with regard to the regulation of

iron metabolism, chelation of iron, and antioxidants (113).

Moreover, the key components in the signaling pathways are

essential regulators of ferroptosis inhibition.

Classical iron chelators such as DFO, DFP, and DFX have

been used for the clinical treatment of iron overload in

thalassemia major (144). However, there is no clinical evidence

of iron chelation therapy for the treatment of IVDD.

Nevertheless, iron chelators have shown promising results in

the inhibition of ferroptosis in vivo and in vitro in IVDDmodels.

In addition, antioxidants, including Ferrostatin-1 and N-acetyl-

cysteine (NAC), can exert protective effects against iron-induced

abnormalities in IVDD. DFO and Fer‐1 reversed the decreased

expression of FTH and GPX4 and the upward levels of

autophagy and ferritinophagy induced by TBHP treatment in

NPCs and AFCs (71, 72). In the tissue of CEP, the

administration of DFO, NAC, and Ferrostatin-1 substantially

inhibited iron overload-induced IVDD by alleviating endplate

calcification and IVD collapse in a mouse model (115).

Meanwhile, the FAC-induced ECM degradation and the

decrease of mitochondrial membrane potential can be reversed

by DFO or NAC (136). Furthermore, DFO partially reduced the

inhibition of IL-6 on miR10a-5p in cartilage cell ferroptosis

through the promotion of GPX4 and FPN1 and suppression of

DMT1 expression (45). However, the long-term use of iron

chelators may lead to iron deficiency in cells, which is

detrimental to cellular metabolism. Thus, the safe application

of iron chelators needs further investigation.

EVs, exosomes, and ncRNAs are involved in the regulation

of gene expression related to ferroptosis, which has emerged as a

potential therapeutic strategy for IVDD (116, 145, 146). The
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upregulation of miR-10a-5p inhibited IL-6R expression, thereby

partially reducing IL-6-induced ferroptosis in chondrocytes (45).

In addition, circ_0072464 shuttled by BMSC-secreted EVs

suppresses ferroptosis in NPCs through the upregulation of

miR-431-mediated NRF2 (116). At present, considerable

research is needed to identify new ncRNAs and related

mechanisms for the treatment of IVDD. Furthermore, the

exact route of administration, safe dosing, and related dose

toxicity of EVs, exosomes, and ncRNAs remain major

problems in the application of regenerative medicine in

clinical practice.

In addition, previous studies have demonstrated that

hinokitiol ameliorates the activation of protein kinase B and

mitogen-activated protein kinase to inhibit platelet activation

and alleviate ferroptosis-related neurotoxicity through iron

chelation and regulation of the NRF2 pathway (147, 148).

Recently, Lu et al. (71) indicated that hinokitiol alleviates

IVDD by upregulating MTF1, restoring FPN, and suppressing

the JNK pathway, thereby attenuating TBHP-induced NPC

ferroptosis. Furthermore, folic acid, a coenzyme in the

methionine cycle, has been regarded as another ferroptosis-

related therapeutic drug for IVDD caused by Hcy through the

downregulation of GPX4 methylation and oxidative stress,

thereby rescuing ferroptosis-induced NPC degeneration (44).

In addition, other antioxidants and drugs, such as vitamin E,

vitamin K, and curcumin, have exerted protective effects on

ferroptosis (149–152). Moreover, the essential regulators of

ferroptosis, such as ferritin, FPN1, NRF2, GPX4, GSH, HO-1,

and TFRC, can be selected as the regulation targets for the

treatment of IVDD. However, studies concerning the

therapeutic effects of new bioactive compounds on ferroptosis-

induced IVDD are rare and worthy of further studies.

The therapeutic efficacy of regulating iron homeostasis and

ferroptosis to alleviate osteoporosis and OA was regarded as a

potential option and reference for the treatment of IVDD.

Icariin, the main active ingredient of Herba Epimedii, has

antioxidant and antiosteoporosis functions by preventing iron

overload-induced bone loss and regulating iron accumulation in

vitro and in vivo (153). Icariin also attenuated IL-1b-induced
degeneration of ECM and ROS in human OA cartilage via the

activation of the Nrf2/ARE signaling pathway (154). Resveratrol,

a member of the stilbene family of phenolic compounds, can

reverse iron overload-induced bone loss by upregulating the

levels of FOXO1 in osteoporotic mice (155). In addition, Tian

et al. (156) demonstrated that NAC exerted protective effects

against iron-mediated mitochondrial dysfunction and protected

osteoblasts from iron overload-induced apoptosis. Moreover,

melatonin (N-acetyl-5-methoxytryptamine), an effective

endogenous antioxidant, can suppress high-glucose-induced

ferroptosis by activating the Nrf2/HO-1 signaling pathway to

improve bone microstructure in individuals with type 2 diabetes

and osteoporosis (81). Furthermore, the upregulation of
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mitochondrial ferritin reduced osteoblastic ferroptosis under a

high-glucose environment, whereas the deficiency of

mitochondrial ferritin induced mitophagy via the ROS/PINK1/

Parkin pathway in individuals with type 2 diabetes and

osteoporosis (157). Therefore, mitochondrial ferritin might be

another potential target for the treatment of type 2 diabetes and

osteoporosis. Moreover, the endothelial cell‐secreted exosomes

antagonized glucocorticoid‐induced osteoporosis in vitro and in

vivo via the suppression of ferritinophagy‐dependent ferroptosis

(158). Lu et al. (159) also indicated that EVs from endothelial

progenitor cells suppressed the ferroptotic pathway of

osteoblasts by restoring levels of GPX4 and System XC¯.

Collectively, the pathophysiological progression of osteoporosis

and OA is associated with iron metabolism disorder, ROS, and

lipid peroxidation, which might provide potential therapeutic

strategies for IVDD.
Conclusions and perspectives

As a highly disabling disease, IVDD has attracted

increasing attention worldwide. Growing evidence has shown

that ferroptosis is involved in the pathophysiological processes

of IVDD; thus, regulation of ferroptosis has become a new

therapeutic target for IVDD. In this review, we summarized the

pathogenesis and mechanisms of ferroptosis, the relationship

between ferroptosis and IVDD, and the choice of IVDD

treatment by inhibiting ferroptosis. Recent studies have

demonstrated that ferroptosis is mainly regulated by

SLC7A11/GSH/GPX4, FSP1/CoQH2/NAD(P)H, and GCH1/

BH4/DHFR pathways. Ferroptosis is accompanied by

metabolic imbalances of lipids, iron, amino acids, and

glucose and is modulated by transcriptional and epigenetic

regulation. The interaction and crosstalk between ferroptosis

and IVD components in terms of NP, AF, CEP, and ECM

provide remarkable insights into the prevention and treatment

of IVDD. However, studies on ferroptosis in IVDD are still at a

relatively early stage, and simulations of ferroptosis in IVDD

are mainly induced by oxidative stress and inflammation.

Other factors, such as hypoxia, acidic microenvironments,

and compression, are needed to confirm the universality of

ferroptosis in IVDD. Therefore, further research is required to

investigate the specific mechanisms, molecular targets, and

associated signaling pathways of ferroptosis to develop

further understanding and effective options for intervention

in IVDD.
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