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Mendelian randomization study
supports the causal association
between serum cystatin C and
risk of diabetic nephropathy

Baiyu Feng1, Yu Lu2, Lin Ye1, Lijun Yin1, Yingjun Zhou1

and Anqun Chen1*

1Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification,
Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China,
2Department of Health Sciences, Boston University College of Health and Rehabilitation Sciences:
Sargent College, Boston University, Boston, MA, United States
Aims: Cystatin C, an inhibitor of cysteine protease, has been used as a

biomarker for estimating glomerular filtration rate. However, the causal

relation between cystatin C and diabetic nephropathy remains uncertain.

Methods: We assessed the causal effect of cystatin C together with other five

serum biomarkers including KIM-1, GDF-15, TBIL, uric acid, and Scr on diabetic

nephropathy by Mendelian randomization (MR) analysis. 234 genetic variants

were selected as instrumental variables to evaluate the causal effect of cystatin

C (NGWAS=361194) on diabetic nephropathy (Ncase/Ncontrol up to 3283/

210463). Multivariable MR (MVMR) was performed to assess the stability of

cystatin C’s causal relationship. Two-step MR was used to assess the mediation

effect of BMI and SBP.

Results: Among the six serum biomarkers, only cystatin C causally associated

with diabetic nephropathy (IVW OR: 1.36, 95%CI [1.15, 1.61]). After adjusting for

the potential confounders BMI and SBP, cystatin C maintained its causal effect

on the DN (OR: 1.17, 95%CI [1.02, 1.33]), which means that the risk of DN

increased by 17% with an approximate 1 standard deviation (SD) increment of

serum cystatin C level. Two-step MR results indicated that BMI might mediate

the causal effect of cystatin C on diabetic nephropathy.

Interpretation: Our findings discovered that cystatin C was a risk factor for

diabetic nephropathy independent of BMI and SBP in diabetes mellitus patients.

Future research is required to illustrate the underlying mechanism and prove

targeting circulating cystatin C could be a potential therapy method.

KEYWORDS

Mendelian randomization, cystatin C, diabetic nephropathy, biomarker, glomerular
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Introduction

Diabetic nephropathy (DN), a most common complication

of diabetes mellitus (DM), is the main causes of end-stage renal

disease, and it occurs in 25% to 40% of DM patients worldwide

(1, 2). DN is often clinically diagnosed based on persistently

increased albuminuria with a ratio of microalbumin and urine

creatinine more than 300 mg/g or estimated glomerular filtration

rate (eGFR) less than 60 ml/min/1.73m2 (3). The therapeutic

options for DN were very limited. Therefore, constant search for

potential novel therapeutic targets is in big need.

Many risk factors have been recognized to be related with the

development and progression of DN in the recent decade (1).

Several studies identified plasma kidney injury molecule 1(KIM-

1) as a positive predictor of ESRD in T1DM patients and it could

predict the early decline of eGFR as well as progression to

chronic kidney disease stage 3 without macroalbuminuria (4,

5). Growth differentiation factor-15 (GDF-15) was reported to

be a predictor of the rapid deterioration of renal function (6, 7).

A recent meta-analysis indicated that total bilirubin level was

negatively correlated with the risk of DN (8). Another meta-

analysis of 25741 T2DM patients revealed that each increase of

1mg/dl of serum uric acid could increase the risk of DN by 24%

(9). Serum creatinine (Scr) and cystatin C are routinely utilized

to estimate eGFR. However, a recent study suggested that high

level of baseline cystatin C and high velocity of increase of

cystatin C in T2DM patients were more likely to develop DN in

later life (10). Recent study also reported that high serum

creatinine (Scr) variability could independently predict the

onset of albuminuria in T2DM patients (11). However, these

observational studies couldn’t conclude the causal association

between these risk factors and DN.

Mendelian randomization (MR) can explore whether risk

factors are causally linked to the outcome by analyzing genetic

variants as instrumental variables, which represents with single

nucleotide polymorphisms (SNPs). Since the gene randomly

distributed at conception, MR can mimic randomized trials and

minimize the effect of confounders biasing observational studies

(12). Benefit by the recent comprehensive meta-analysis with the

GWAS of DN, we performed MR analysis to access the possible

causal effect of these risk factors on DN. In this study, we used

MR to evaluate whether the following six serum biomarkers of

renal function or renal injury (cystatin C, KIM-1, GDF-15, TBIL,

uric acid, and Scr) casually associate with DN. Interestingly, it

turned out only serum cystatin C was casually linked to DN.

Subsequently, we analyzed the SNPs relative to cystatin C and

found that the majority of them were related to body mass index

(BMI) and systolic blood pressure (SBP). Thus, we further

validated the causal relationship between serum cystatin C and

DN by multivariable MR using SBP and BMI as confounders,

which indicated the slightly alleviated detrimental casual effect.

Besides, two-step MR indicated that BMI might play as a
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mediator between cystatin C and DN. Thus, we concluded

that cystatin C was a risk factor in the development of DN

independent of BMI and SBP in diabetes mellitus patients.
Materials and methods

Overall study design

MR analysis was used to evaluate the causal association

between serum biomarkers and diabetic nephropathy, which is

based on three assumptions: Assumption 1, the selected genetic

variants should be robustly correlated with serum biomarkers;

Assumption 2, the genetic variants should not associate with the

confounders between the relationship of biomarkers and DN;

Assumption 3, the genetic variants should only associate with

DN via serum biomarkers. Two-sample univariable Mendelian

randomization was implemented to evaluate the causal

association between multiple serum biomarkers (cystatin C,

Scr, urate, total bilirubin, KIM-1, GDF-15) and DN.

Biomarkers with significant causal effects on the outcome will

be further searched for potential confounders from published

articles and Phenoscanner V2 (http://www.phenoscanner.

medschl.cam.ac.uk/). Multivariable Mendelian randomization

that included biomarkers with significant causal effect and

their confounders will be implemented to validate their causal

association. Once a causal relationship was established, two-step

MR was used to investigate whether confounder plays as a

mediator between cystatin C and DN (Figure 1).
Ethics

The summary-level data of GWAS used in this study are

publicly accessible, and the original study have acquired ethical

approval and informed consent.
Data source and instrumental
variable selection

Instrumental variables (IV) were extracted from GWAS data

and SNPs with high linkage disequilibrium were removed.

Independent SNP is defined by r2 < 0.001 and clumping

distance >1Mb using 1,000 genomes reference panel for

Europeans (https://www.internationalgenome.org/). Genetic

variants that were highly associated with cystatin C, creatinine,

urate, and total bilirubin were selected from a GWAS cohort

conducted by the Neale Lab Consortium including 361194

individuals of European ancestry (http://www.nealelab.is/uk-

biobank). IVs for KIM-1 and GDF-15 were obtained from a

meta-analysis including up to 21,758 individuals of European
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ancestry (13). Genetic variants of confounder SBP were obtained

from a GWAS of a meta-analysis that contains over one million

European samples from International Consortium for Blood

Pressure (ICBP) and UK Biobank (UKB) (14). Genetic variants

of confounder BMI were retrieved from GWAS performed by

the Neale Lab consortium including 336,107 European

individuals (http://www.nealelab.is/uk-biobank). The BMI

GWAS used for two-step MR was obtained from the Genetic

Investigation of Anthropometric Traits (GIANT) Consortium

including 681,275 samples of European ancestry (15).

Diabetic nephropathy as outcome was defined when there

was glomerular disorders in the patients with diabetes mellitus

with the criterion of ICD-10 (code: N08.3*), summary statistics

of which was from FinnGen biobank including 213,746

European individuals (3283 cases and 210463 controls) (16).

Except for GDF-15, IVs from other exposures were extracted

with a genome-wide significant threshold (p<5E-8). Genetic

variants of GDF-15 were obtained with a lower threshold

(p<1E-5) since few IVs were identified with the original

threshold. Palindromic SNPs were further excluded from the

IV list. For those instruments that are missing in the outcome,

proxy SNP with LD score>0.8 was used. In order to satisfy MR

assumption three, SNPs with significant association with the

outcome were excluded. The F statistic was calculated using the

formula: F = beta2/se2, where beta represents the effect of SNP on

the exposure and se is the standard error of the beta, to assess

whether there is a possibility of weak instrument bias (17). R2
Frontiers in Endocrinology 03
calculated by the following formula: 2 × EAF × (1-EAF) × beta2,

where EAF represents the effect allele frequency of the SNP,

represents the proportion of variance of the exposure explained

by SNPs (18).
Statistical analysis

In this study, inverse variance weighted (IVW) analysis was

utilized as the major statistic method. Meanwhile, MR-Egger

regression, weighted median, and MR-PRESSO were also

performed as complementary methods to validate the IVW

result. The IVW method could combine each genetic variant’s

Wald estimate in a meta-analysis model and produce unbiased

result if horizontal pleiotropy is balanced (19). MR-Egger

regression can detect pleiotropy through the intercept it

produces while its causal estimate can be largely affected by

outliers (20). The weighted median method can provide

consistent results even if as many as 50% of instrumental

variables are invalid. Mendelian randomization pleiotropy

residual sum and outlier (MR-PRESSO) (21) could detect

outliers with horizontal pleiotropy (p<0.05), and return a

corrected causal estimate after removing them. To validate the

robustness of the MR result, Cochran’s Q statistic was performed

to detect heterogeneity among instrumental variables. If

heterogeneity exists, the multiplicative random effects inverse

variance weighted method was further performed (22) to
FIGURE 1

The flow of study. MR, Mendelian randomization; IVW, inverse-variance weighted; MR-PRESSO, Mendelian randomization pleiotropy residual
sum and outlier; IVW-MRE, multiplicative random effects inverse variance weighted; BMI, body mass index; SBP, systolic blood pressure.
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validate the previous MR estimates. Leave-one-out analysis was

used to determine whether the SNPs strongly affect the stability

of causal estimates.

Multivariable MR (MVMR) was performed to assess the

stability of the significant causal relationships, which could

estimate the causal relationship between each exposure and a

single outcome, producing a causal estimate of direct effect and

adjusting pleiotropy caused by other exposures that were

included in the MVMR analysis (23). Two-step MR was used

to assess the confounder’s mediation effect (24). Firstly, IVs of

cystatin C were utilized to perform UVMR analysis against

confounder. Secondly, MVMR analysis was used to estimate

the causal effect of confounder on DN adjusted for cystatin C.

Potential confounders were obtained based on published papers

and the online search with Phenoscanner V2. We further

calculated the proportion of the mediation effect of

confounders by utilizing the product of coefficients method.

We first estimated the causal effect of cystatin C on individual

confounder, then multiplying the confounder’s effect on DN

adjusted for cystatin C, which produced the indirect effect.

Finally, we assessed the proportion of mediation effect through

dividing the indirect effect by the total effect which in this case is

the causal effect of cystatin C on DN. The standard errors were

generated by using the delta method. Results were displayed in

the form of odds ratio (OR) per an approximate 1 standard

deviation (SD) increment. In this study, the statistical power of

Mendelian randomization is calculated using mRnd (https://

shiny.cnsgenomics.com/mRnd/) with a type 1 error rate of 0.05

(25). Two-sided p<0.05 level of significance is used in all

estimates. Statist ical analysis was carried out with

‘ ‘TwosampleMR ’ ’ and ‘ ‘MR-PRESSO ’ ’ packages in R

version 4.1.3.
Results

Selection of genetic instrumental
variables of exposures

Summary information of selected IVs of 6 exposures was

presented in Table 1. The mean concentration of cystatin C,
Frontiers in Endocrinology 04
creatinine, urate, and total bilirubin obtained from UK biobank’s

website which contain the same cohort from GWAS database

used in this study but with more participants were 0.908 ± 0.176

mg/L, 72.407 ± 18.524 mmol/L, 309.398 ± 80.394 mmol/L and

9.119 ± 4.425 mmol/L, respectively. The number of IVs varies

from 11 to 243, explaining the 4.15% ~ 28.21% variance of

corresponding exposure. General F statistics of all exposures and

each selected SNP was greater than 10, suggesting that

instrumental variables were valid and robust to be included in

further MR analysis. The detailed information of all selected

SNPs of six exposures was presented in Tables S1-S6.
The significant causal effect of serum
cystatin C on DN with univariable MR

Among 6 serum biomarkers, only cystatin C has a significant

causal effect on diabetic nephropathy as a risk factor (IVW OR:

1.19, 95%CI [1.04, 1.35], p=0.009) (Figure 2). The same causal

direction was observed in MR-Egger, weighted median, and MR-

PRESSO analysis (Figure S1). Hence, the risk of diabetic

nephropathy would increase by 19% with per SD increase of

cystatin C. Cochran’s Q test of cystatin C indicates that there is

evidence of heterogeneity (IVW p<0.05), while no indication of

pleiotropy in MR-Egger (p for intercept>0.05) (Table S7).

Multiplicative random effects IVW method returned a result

resembled to IVW (OR: 1.19, 95%CI [1.04, 1.35], p=0.009)

(Figure S1). Leave-one-out analysis indicated a similar result

to Cochran’s Q-test, suggesting some SNPs might influence the

causal estimate. We further identified rs734801, a cystatin C

gene (CST3), as a significant IV that could strongly affect the MR

result from the leave-one-out analysis (Figure S2).

Although horizontal pleiotropy may exist with a p<0.05 as

suggested with the global test of MR-PRESSO, the distortion test

showed that there is no difference whether the pleiotropic

outliers were removed or not (p=0.91). Therefore, we further

removed all SNPs identified by MR-PRESSO which may cause

horizontal pleiotropy (rs10200647, rs36207014, rs734801,

rs77924615, rs80138475). The resulting data showed that

cystatin C has a greater causal association with diabetic

nephropathy (IVW OR: 1.36, 95%CI [1.15, 1.61], p=0.0004),
TABLE 1 A summary of GWAS summary statistics for six different serum biomarkers.

Exposures Dataset source Sample size NSNP R2(%) F

Cystatin C UK Biobank 361194 234 9.59 163.6084

Total bilirubin UK Biobank 361194 99 28.21 1433.199

Urate UK Biobank 361194 188 7.35 152.2644

Creatinine UK Biobank 361194 243 4.15 64.37972

Kidney injury molecule 1 levels SCALLOP 21,758 11 13.68 313.1804

Growth differentiation factor-15 levels SCALLOP 21,758 18 5.67 72.59881
frontie
NSNP, the number of SNP included in the MR analysis; R2(%), the proportion of variance explained by included SNPs of each exposure; F, the general F statistic for each biomarker.
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and Cochran ’s Q-test no longer showed evidence of

heterogeneity (IVW p>0.05) (Table S7). On the basis of the

sample size of 213746 individuals (3283 cases and 210463

controls) and setting the explained variance of 4.76%, our

study has 99% power to detect effect of serum cystatin C on

DN with an OR of 1.36.
Association of rs734801 in the CST3
gene with cystatin C and DN

As mentioned previously, rs734801 of CST3 gene, which

encoded the most plentiful extracellular inhibitor of cysteine

proteases (26), strongly affect the MR result based on the leave-

one-out analysis. We further examined rs734801, finding that it

contributed most to the genetic control of serum cystatin C,

explaining 4.7% of the variance. This SNP strongly associated

with cystatin C (beta=- 0.37, p<1E–200), but not with DN (OR

=0.99, p=0.767) (Table S1).
The significant causal effect of serum
cystatin C on DN with MVMR

Next, we performed multivariable MR to further analyze the

direct effect of cystatin C on diabetic nephropathy. Through

online searching IVs selected for serum cystatin C with

Phenoscanner V2, we found several potential confounding

phenotypes (e.g. BMI, SBP, DBP, log eGFR, hypertension,

cholesterol). Finally, we chose BMI and SBP as adjusted

confounders in the MR analysis for the following reasons:

First, BMI and SBP were the most frequent phenotypes in the

process of searching among all the potential confounding

phenotypes. Second, BMI and SBP were reported to be risk

factors in published MR analysis (27, 28). Subsequently, we
Frontiers in Endocrinology 05
implemented three rounds of MVMR: cystatin C against diabetic

nephropathy adjusted for (1) BMI alone (2) SBP alone (3) BMI

and SBP combined. It showed that cystatin C maintained its

causal effect on the outcome no matter adjusted for BMI alone

(OR: 1.17, 95%CI [1.03, 1.33], p=0.019), SBP alone (OR: 1.20,

95%CI [1.05, 1.37], p=0.009) or both (OR: 1.17, 95%CI [1.02,

1.33], p=0.02) (Figure 3).
BMI could be a mediator between
cystatin C and DN

Next, we performed two-step MR to further investigate

whether BMI, SBP functioned as mediator between cystatin C

and DN. It showed that there was a casual association between

cystatin C and BMI (b=0.05, 95%CI [0.01, 0.09], p=0.024). After
adjusted for cystatin C, BMI showed detrimental effect on DN

(OR: 1.70, 95%CI [1.39, 2.07], p<0.001). The proportion

mediated by BMI was 15.2% (95%CI [4.93%, 22.6%] (Figure 4).

Although SBP was previously shown to be a risk factor of

DN, we failed to make a conclusion that it played as a mediator

between cystatin C and DN, since a causal relationship between

cystatin C and SBP was not significant (p=0.81) (Figure 4).
Discussion

In the present study, we took advantage of MR analysis to

thoroughly examine the causal association between six serum

biomarkers (Cystatin C, KIM-1, GDF-15, TBIL, Urate, and Scr)

and DN. Among the six biomarkers, only cystatin C positively

associated with the risk of DN. There was no statistical

significance for the genetic relationship among the other five

biomarkers and DN.
FIGURE 2

The forest plot of different serum biomarkers’ effect on diabetic nephropathy. OR, odds ratio; CI, confidence interval; P.val, the p-value of IVW
MR analysis.
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Several studies have shown that high levels of serum urate

might cause CKD progression through a mechanism such as

excessive production of nitric oxide, activating the renin-

angiotensin system, stimulating the proliferation of vascular

smooth muscle cell, and obstruction from urate crystals.

However, a previous MR study showed that there is no causal

relation between serum urate levels and CKD (29) and

randomized, controlled trials (RCTs) consistently show that

lowering serum urate with allopurinol treatment has no

benefits on kidney outcomes among patients with early-to-

moderate DN (30). Consistent with this, our results suggest

that serum uric acid level didn’t casually link to DN.

Although KIM-1, GDF-15, and TBIL were previously

reported to contribute to tubular injury (31, 32) and predict

the progression of CKD (4–8). Our data did not show the

causally link of these molecules with DN. The reasons of these

discrepancies might be as follows: First, the sample sizes
Frontiers in Endocrinology 06
reported in the previous studies are too small. Second, most of

these studies are observational, which may not reveal a causal

relationship but may arise reverse causality because of

confounding factors. Third, the experimental results from

animal studies may not fully translate into patients with CKD.

Cystatin C, a cysteine protease inhibitor, regulating the

activity of cathepsins S and K, have multiple functions in

human vascular pathophysiology (33), which is usually used as

a measure for GFR. Elevated serum cystatin C routinely serves as

an early and sensitive biomarker of impaired renal function (34).

Interestingly, our data indicated that serum cystatin C is causally

correlated with DN. Additionally, we found that a single SNP

(rs734801) in the CST3 gene had a strong association with

cystatin C. Besides, we performed another MR analysis

excluding this SNP along with another four IVs (rs10200647,

rs36207014, rs77924615, rs80138475) which were identified by

MR-PRESSO, and obtained a more significant causal effect on
FIGURE 4

Forest plot of two-step MR with BMI and SBP. OR, odds ratio; CI, confidence interval; P.val, the p-value of IVW MR analysis. BMI, body mass
index; SBP, systolic blood pressure.
FIGURE 3

Forest plot of cystatin C’s effect on diabetic nephropathy adjusted for BMI and/or SBP. OR, odds ratio; CI, confidence interval; P.val, the p-value
of IVW MR analysis. BMI, body mass index; SBP, systolic blood pressure.
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DN. Consistent with us, several observational studies

demonstrated that cystatin C levels are correlated with the

prevalence of T2DM (35) and obesity in adolescents with age

of 14-17 years independently of other confounding risk

factors (36).

The mechanisms underlying the casual relationship between

cystatin C and DN are unclear. There are several potential

explanations. Firstly, cystatin C function as a cysteine proteinase

inhibitor, which regulated the protease-antiprotease activities of

the vascular wall. Thus, the imbalance between cystatin C and

cysteine cathepsins might lead to the remodeling of the vascular

wall (37). Second, cystatin C was previously reported to be involved

in the amplification of cytokines and neuroinflammation in

microglia and vascular endothelial injury (38). As inflammation

is the hallmark of DN and endothelium injury plays a pivotal role

in the occurrence and progression of DN, cystatin C may

participate in in the pathological process of DN. Third, cystatin

C promotes the proliferation of T cells and differentiation of T cells

towards Th1/Th17 cell, which promotes the immune response

(39). There is evidence that cystatin C is implicated in several

inflammatory autoimmune diseases such as rheumatoid arthritis

(40). Since both innate and adaptive immune systems and renal

inflammation contribute to the development and progression of

DN (41), cystatin C may promote inflammation in DN. However,

whether elevated serum cystatin C results in DN progression

through endothelium injury, remodeling of vascular wall, and

the immune response requires further investigations.

Our study has some limitations: First, since the GWAS

derives from European ancestry, generalizability to other

ethnicities is limited. Second, due to lacking of individual-level

data of GWAS, we cannot explicitly present the baseline data of

participants or further stratify serum cystatin C to calculate

more detailed causal effect. Third, despite we adjust potential

pleiotropy, there is still chance for other confounders to

influence the causal estimate. Hence, future research is

warranted for further validating our findings.
Conclusions

Our results suggest that there was a causal relationship

between serum cystatin C and DN in diabetic patients, which

warns us that cystatin C is not only a biomarker bur also a risk

factor for DN progression.
Frontiers in Endocrinology 07
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