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Background:Opportunely screening for diabetes is crucial to reduce its related

morbidity, mortality, and socioeconomic burden. Machine learning (ML) has

excellent capability to maximize predictive accuracy. We aim to develop ML-

augmented models for diabetes screening in community and primary care

settings.

Methods: 8425 participants were involved from a population-based study in

Hubei, China since 2011. The dataset was split into a development set and a

testing set. Seven different ML algorithms were compared to generate

predictive models. Non-laboratory features were employed in the ML model

for community settings, and laboratory test features were further introduced in

the ML+lab models for primary care. The area under the receiver operating

characteristic curve (AUC), area under the precision-recall curve (auPR), and

the average detection costs per participant of these models were compared

with their counterparts based on the New China Diabetes Risk Score (NCDRS)

currently recommended for diabetes screening.

Results: The AUC and auPR of the ML model were 0·697and 0·303 in the

testing set, seemingly outperforming those of NCDRS by 10·99% and 64·67%,

respectively. The average detection cost of the ML model was 12·81% lower

than that of NCDRS with the same sensitivity (0·72). Moreover, the average

detection cost of the ML+FPG model is the lowest among the ML+lab models

and less than that of the ML model and NCDRS+FPG model.
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Conclusion: The ML model and the ML+FPG model achieved higher predictive

accuracy and lower detection costs than their counterpart based on NCDRS.

Thus, the ML-augmented algorithm is potential to be employed for diabetes

screening in community and primary care settings.
KEYWORDS

diabetes, screening, ML-augmented algorithm, community and primary care, health
economic evaluation
Introduction

Diabetes is highly prevalent among adults worldwide and the

prevalence has been expanding in developing societies including

China and India, consequently increasing the incidence of

multiple diabetes complications including cardiovascular

disease, retinopathy, kidney disease, neuropathy, blindness,

and lower-extremity amputation (1). These complications

result in increased morbidity and mortality and impose a

heavy economic burden on patients and their health care

systems globally (2).

Fortunately, more evidence indicates that early diagnosis

and opportune management of diabetes can prevent or delay

diabetic complications and dramatically alleviate its related

morbidity, mortality, and economic burden (3–5). Diabetes

screening is crucial in the early detection and diagnosis of

diabetes. Notably, it is estimated that 50·1% of adults (231·9

million) living with diabetes were undiagnosed around the world

in 2019, since diabetes usually has a long asymptomatic phase

and blood glucose testing is not always available or accessible in

communities (1, 6). Additionally, fasting plasma glucose (FPG)

is routinely used for diabetes screening but there are a large

number of patients with isolated post-load hyperglycemia, which

makes a large proportion of patients with missed diagnosis of

diabetes (around 38% in our previous study) (7). Moreover,

further confirmatory tests such as OGTT (oral glucose tolerance

test) or HbA1c cost more and are time-consuming (8).

Therefore, it would be extremely useful for timely diagnosis

and treatment of diabetes to develop an easy-to-use, very

convenient and accessible, and economical screening system

with superior sensitivity and specificity to screen out the

residents with a high risk of diabetes in the community for

further confirmatory test of OGTT, and sift out the individuals

likely to have isolated post-load diabetes in primary care for the

confirmatory test to detect diabetes.

Risk-based screening for diabetes is currently recommended

by ADA (America Diabetes Association) and the Chinese

Diabetes Society (CDS) (9, 10). The ADA recommends the use

of the scoring table of ADA risk test (ADART), and CDS
02
recommends the use of the New Chinese Diabetes Risk Score

(NCDRS) to screen out high-risk individuals for the further

confirmative test. These two scoring tables developed by Logistic

regression (LR) based on easy-to-accessible non-laboratory

characteristics are of great help in clinical practice for diabetes

screening (8, 11). Notably, there is increasing evidence indicating

that machine learning (ML) methods are able to predict

relationships between input and output by extracting

information from a larger number of complex variables and

have shown accurate predictive ability (12, 13). It has been

increasingly introduced in health service research and has

shown a better level of prediction than traditional statistical

approaches in several domains (14–16). Recently, it is reported

by Vangeepuram, N., et al. that SomeML-based classifiers derived

from the National Health and Nutritional Examination Survey

(NHANES) dataset in the United States performed comparably to

or better than the screening guideline in identifying preDM/DM

youth (17). Herein, we hypothesized that the ML-based algorithm

has the potential to develop predictive models for diabetes

screening and be helpful to screen out people with a high risk

of diabetes in the community and individuals likely to have

isolated post-load diabetes in primary care more accurately and

conveniently for further confirmation and diagnosis opportunely,

which would outperform standard risk-scoring algorithms for

screening diabetes and increase the cost-effectiveness of detection

by reducing the false-positive screening rate.

In this study, we aimed to develop and validate a ML-

augmented algorithm for diabetes screening in community

and primary care settings with data from a population-based

study in China.
Methods

Study design, participants, and
data collection

The data analyzed in the present investigation were obtained

from the Hubei Yiling center of the Risk Evaluation of cAncers
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in Chinese diabeTic Individuals: a lONgitudinal (REACTION)

study performed from October 2011. Detailed information and

the study design of the REACTION study were described

previously (18). A total of 10184 eligible subjects were enrolled

in this study. Data collection was performed by the trained staff

and a questionnaire was completed as described previously for

gathering information on demographic characteristics, data on

lifestyle, and medical history (7). Weight, height, waist

circumference (WC), hip circumference (HC), blood pressure,

and resting pulse rate (RPR) were measured according to

standard protocols. Body mass index (BMI), waist-to-hip ratio

(WHR), and waist-to-height ratio (WHtR) were calculated as

described previously (19). Participants without a self-reported

history of diabetes were provided with a standard 75 g glucose

solution, and blood sampling was conducted at 0 and 2 h after

administration. Plasma glucose was measured using the glucose

oxidase method. HbA1c was tested using finger capillary whole

blood by high-performance liquid chromatography. Participants

who had been diagnosed with cancers or diabetes before or using

antidiabetic agents, or whose data on FPG, 2hPG or HbA1c were

missing were excluded and 8425 participants were included in

this analysis. The data collected were analyzed and the flow chart

of this study was shown in Figure 1.

The present study complies with the Declaration of Helsinki,

and all procedures were approved by the Ethics Committee of

Tongji Medical College, Huazhong University of Science and

Technology. Written, informed consent was obtained from all

the participants.
Outcome

Diabetes was diagnosed based on measurement of fasting

blood glucose level, or oral glucose tolerance testing as

recommended by CDS when the study was performed, which

included the following: a FPG level of ≥7·0mmol/l, or OGTT-2h

post-load plasma glucose (2hPG) level of ≥11·1 mmol/l.
Predictors and data processing

150 non-laboratory (demographics and anthropometric)

and three laboratory features (FPG, 2hPG, HbA1c), were

included in the analysis after excluding features with more

than 20% missing data as described previously (20, 21).

MissForest was used to impute missing values for the features

with less than 20% missing data as described previously (22).

Data were divided into a development set (60%) and a testing set

(40%) and the imputation was trained in the development and

applied to the testing set to avoid data leakage. A complete case

sensitivity analysis was performed to compare the difference

before and after imputation of missing data (Supplementary
Frontiers in Endocrinology 03
Tables 1, 2). The development set was used for training and

validating models. The testing set was blind to the training,

hyperparameter tuning, and feature selection, and were only

used to evaluate the performance and health economic benefits

of models.
Models development by machine
learning for the community and
primary care

Logistic Regression (LR), Support Vector Machine (SVM),

Random Forest (RF), K-nearest neighbors algorithm (KNN),

Centroid-Displacement-based-k-NN (CDKNN) (23), Artificial

Neuron Network (ANN), and Light Gradient Boost Machine

(LGBM) were preliminarily tested as the classification

algorithms to develop the predictive models for diabetes

screening with 150 non-laboratory features. TPE (Tree of

Parzen Estimators) was used to tune hyperparameters and

improve model prediction capability (24). The hyperparameters

were reported in Supplementary Table 3. For internal validation,

5-fold cross-validation was used as reported previously (25–27). In

detail, we randomly and equally split the development set into 5

folds using the random.shuffle() function of the Numpy library in

Python, and for each iteration, we employed four folds to train the

models, and the remaining fold to validate the models

independently. The algorithm that had the best predictive ability

was selected to develop the predictive models in this study.

Shapley Additive Explanations (SHAP) analysis (28) was

employed to interpret the results and analyze the importance of

(the contribution of a feature value to the difference between the

actual prediction and the mean prediction is the estimated

Shapley value) of 150 non-laboratory features of the model

with the best performing algorithm (LGBM). Five streamlined

models were developed using 5, 10, 15, 20, 25 features of top-

ranked importance among all the non-laboratory features with

LGBM to simplify the predictive model for practice. The

streamlined model with the best predictive power and the least

number of features was selected and noted as the ML model for

diabetes screening in community care.

A large number of individuals with seemingly normal levels

of FPG (FPG<7.0mmol/L) or 2hPG (2hPG<11.0mmol/l) are

potentially diabetes patients and too many patients would not

be diagnosed opportunely using only one testing mentioned

above. However, these seemingly normal levels of FPG, 2hPG, or

HbA1c are likely to be useful in the prediction of diabetes. Thus,

we tried to develop the ML+lab models by introducing one test

(seemingly normal FPG, 2hPG, or HbA1c) in the hope of getting

an efficient, cost-effective, and convenient screening model in

primary care to decrease the missed diagnoses of diabetes and

related costs (Figure 2). That is, the ML+FPG, ML+2hPG or ML

+HbA1c models predicted isolated post-load diabetes (identified
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using 2hPG) by introducing seemingly normal FPG levels, and

isolated fasting diabetes (identified using FPG) by seemingly

normal 2hPG levels and diabetes (identified using FPG and

2hPG) by normal HbA1c, respectively.

The ML model was compared with the ADART and

NCDRS. The ML+lab models were compared with the ML

model and with the corresponding NCDRS+lab models

developed by combining FPG, 2hPG, or HbA1c and the NCDRS.
Frontiers in Endocrinology 04
Model performance evaluation

We used the area under the receiver operating characteristic

curve (AUC), the area under the precision-recall curve (auPR),

sensitivity, specificity, and precision to evaluate model predictive

ability. True positive (TP), true negative (TN), false positive

(FP), false negative (FN) cases, and negative cases were

calculated for further analysis. Sensitivity (recall), a measure of
A

B

FIGURE 1

Flow diagram of the research. (A), Overview of the study. (B), Details of feature selection and model evaluation REACTION, Risk Evaluation of
Cancers in Chinese diabetic Individuals; N, the numbers of participants involved in this study; DM, person with diabetes mellitus; SHAP analysis,
Shapley Addictive exPlanations analysis; LR, Logistic Regression; SVM, Support Vector Machine; RF, Random Forest; KNN, K-nearest neighbors
algorithm; CDKNN, Centroid-Displacement-based-k-NN; ANN, Artificial Neuron Network; LGBM, light gradient boosting machine; AUC, area
under the receiver operating characteristic curve (ROC); auPR, area under the precision versus recall curve.
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the ability of the model to identify diabetes, was defined as TP/

(TP+FN). Specificity, the proportion predicted to be negative

among the non-diabetes population, was calculated by TN/(FP

+TN). Precision was defined as TP/(TP+FP). AUC was

calculated from the curve of sensitivity against 1-specificity

and auPR was calculated from the precision-recall curve.
Health economic evaluation

Individuals at high risk of diabetes are recommended to

perform the confirmatory test in clinical practice according to

guidelines (9, 10). Therefore, we attempted to identify the risk of

individuals with the ML model, ML+lab models, NCDRS, or

NCDRS+lab models in the present study, to screen out those

with high risk for the further confirmatory test. The individuals

requiring confirmatory test in this study were those who were

predicted to be positive and screening tests of FPG < 7·0 mmol/l or

2hPG < 11·0 mmol/l (if available) in the testing set. The proportion

requiring confirmatory test was calculated by dividing the numbers

of individuals requiring confirmatory test by the number of

participants in the testing set (Figure 2; Supplementary Table 4).

The costs associated with screening tests (FPG, 2hPG, or

HbA1c in the ML/NCDRS+lab models) and confirmatory tests

were made up of medical costs and non-medical costs (e.g

transportation costs). Medical costs (CNY) for FPG, 2hPG,

OGTT, and HbA1c were 9·89, 23·56, 33·45, and 84·16,

respectively as described previously (7, 29), and non-medical

costs (CNY) calculated based on the report described previously
Frontiers in Endocrinology 05
were 8·3, 27·5, 27·5, and 8·3 for FPG, 2hPG, OGTT, and HbA1c,

respectively (30). A further confirmatory test is required after the

diabetes screening, a process known as diabetes detection. The

average detection costs per participant of using predictive models

as a screening strategy were calculated by dividing the sum of the

costs associated with screening and confirmatory test by the

number of participants in the testing set (Supplementary Table 4).

In view that early diagnosis and opportune management of

diabetes can prevent or delay diabetic complications, in the present

study we tried to assess the potential complication costs, i.e. costs of

false negative were assessed by estimating the increased costs from

complications not prevented by the lack of timely and appropriate

intervention for diabetes (31). The potential complication costs per

individual with diabetes per year in China were estimated after

adjusting for medical cost differences based on a previous study

(31), ranging from (CNY) 341 to 567, 1302 to 2555, 2802 to 5611,

4428 to 8212, and 5258 to 9132 over 5, 10, 15, 20, and 25 years,

respectively. The average costs of potential complication per

participant of using predictive models as a screening strategy

were calculated by dividing the sum of potential complication

costs of all cases of FN by the number of participants in the

testing set (Supplementary Table 5) (7).
Model interpretation

SHAP analysis was employed for the interpretation of the

ML model. In detail, SHAP values were calculated for the top-10

features and converted to relative risk (RR) of diabetes to explore
A B

C D

FIGURE 2

Diabetes detection procedures of models. (A), Detection procedures of ML model and NCDRS. (B), Detection procedures of ML+FPG model
and NCDRS+FPG model. (C), Detection procedures of ML+2hPG model and NCDRS+2hPG model. (D), Detection procedures of ML+HbA1c
model and NCDRS+HbA1c model. OGTT in a and d included fasting plasma glucose and 2h post-load plasma glucose. NCDRS, New Chinese
Diabetes Risk Score; DM, diabetes mellitus; OGTT, oral glucose tolerance test; FPG, fasting plasma glucose; 2hPG, OGTT-2h post-load plasma
glucose, HbA1c, glycated hemoglobin A1c.
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the relationships between features and diabetes risk as reported

in previous studies (32). In addition, two cases of TP were

selected randomly as examples to demonstrate practically how

the ML model works. In the demonstration, their respective key

predictors were classified respectively, and the importance of

their respective predictors was assessed by calculating SHAP

values, and predictive risk of diabetes was evaluated individually

by summing their SHAP values.
Statistical analysis

Data of participants were presented as medians (IQRs) for

continuous variables and numbers (proportions) for categorical

variables. These data were tested for normality using the

Kolmogorov-Smirnov test. The Kruskal-Wallis test was used to

compare continuous variables (skewed variables) and the chi-

square test was used to compare categorical variables and the

Delong test was used to compare AUC. A 2-sided P value <0·05

was considered statistically significant. Data were analyzed using

Python 3·7 and SPSS 20·0. MissForest, LR, SVM, and RF were

implemented with the ML library “sklearn” (33), and the ANN

was implemented with PyTorch. LGBM referred to https://

lightgbm.readthedocs.io/. SHAP analysis referred to http://

github.com/slundberg/shap (28).
Results

Characteristics of participants

In the present study, 1047 (12·4%) were diagnosed with

diabetes. Principally, the age, resting pulse rate, blood pressures,

weight, BMI, WC, WHR, WHtR, FPG, 2hPG, and HbA1c were

higher, and the amount of physical activity and alcohol

consumption was lower (P<0·05) in participants with diabetes

compared to individuals without diabetes, while no significant

differences were observed in sex and numbers of smoker

(P>0·05) (Table 1).
Development and interpretation of the
ML model for community care

Our results indicated that the predictive model developed by

LGBM for diabetes screening seemingly had the best

performance, with the highest auPR of 0·319 [95%CI, 0·267-

0·386] and AUC of 0·691[95%CI, 0·641-0·733] (Figure 3A;

Supplementary Table 6), among the models created by the

seven ML algorithms (LR, KNN, CDKNN, SVM, LR, ANN,

LGBM). To simplify the used features in the model, five

streamlined models were developed with LGBM using the top-

5, top-10, top-15, top-20, and top-25 features, respectively,
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according to the feature importance. Among these models, the

AUC (0·699 [95%CI, 0·663-0·736]) of the streamlined model

with top-20 features was highest (Figure 3B). While the auPR of

the streamlined model with top-20 features (0·301[95%CI, 0·220,

0·390]) was closest to that of the model with all features. The

model with top-20 features seemed a fairly convenient and

accurate model and was adopted for the subsequent analysis,

noted as the ML model in the present study.

The top-20 important features of the ML model included

resting pulse rate (RPR), Age, systolic pressure (SBP), waist

circumference (WC), work status, WHR, etc (Figure 3C). The

most important predictors associated with the predictive power

of the model were RPR, age, and SBP, which were positively

associated with RR of diabetes (when RPR was higher than 78,

age was higher than 52 years, or SBP exceeded 135, the RR of

diabetes >1) (Figures 3D–F). The RRs of diabetes for other top-

10 important features were shown in Supplementary Figure 1. In

addition, SHAP analysis performed by taking two cases, for

example, indicated that individualized important predictors

were identified for case1(including RPR, SBP, age, etc) and

case2 (including WHR, WC, and age, etc). The magnitudes of

these predictors were also assessed (Figures 3G, H).
Comparison of the predictive ability
between ML and ML+lab models with
their corresponding counterparts

The 150 features of our predictive model included all the

features used in ADART and NCDRS, and the top-20 features of

the MLmodel comprised most of the features used in ADART (4

of 7) and NCDRS (4 of 6). In addition, our results indicated that

15 features, which were not included in ADART and NCDRS,

were also very important in the ML model (Figure 4A).

The AUC was 0·697 in the ML model in the testing set,

which was higher than that in the ADART (0·608) and NCDRS

(0·628). The auPR of the ML model (0·303) was also higher than

that of the ADART (0·168) and NCDRS (0·184) (Figures 4B, C,

Supplementary Table 7). Remarkably, the analysis in our study

indicated that the NCDRS had higher AUC and auPR compared

with the ADART. Therefore, we chose to perform further

comparisons between our models and NCDRS on sensitivity,

specificity and health economic evaluation. Our analysis

indicated that the sensitivity and specificity of the NCDRS

were 0·72 and 0·45 respectively using the cutoff recommended

by CDS, which is considered to be optimal in the Chinese

population (10). The ML model had higher sensitivity (0·80 vs

0·72) when it had the same specificity as NCDRS (0·45).

Likewise, The ML model had higher specificity (0·53 vs 0·45)

when it had the same sensitivity as NCDRS (0·72).

Our results indicated that 41% of diabetes patients have

seemingly normal FPG (FPG<7·0mmol/l), 28% of them have

seemingly normal 2hPG (2hPG<11·0mmol/l), and only 31% of
frontiersin.org
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them have a combination of increased FPG (FPG ≥7·0mmol/l)

and 2hPG (2hPG ≥11·0mmol/l) levels, which are both higher

than the diagnostic criteria (Supplementary Figure 2), implying

that using one testing of FPG or 2hPG only would lead to

numerous missed diagnosis of diabetes.

The results showed that the AUC of the ML+FPGmodel was

0·740, which was higher by 8.5% compared with the ML model

(0·682) in individuals with seemingly normal FPG levels

(P<0·05). Likewise, the ML+HbA1c model had a 8.0% increase

compared to the ML model in individuals with seemingly

normal HbA1c levels (P<0·05). While the AUC of ML+2hPG

model had no statistical difference with that of the ML model in

individuals with seemingly normal 2hPG levels (P>0·05)

(Figures 4D–F).

Moreover, the AUC of the ML+FPGmodel was higher than that

of the NCDRS+FPG model in seemingly normal FPG individuals

(P<0·05). Likewise, the AUC were higher in the ML+2hPG and ML
Frontiers in Endocrinology 07
+HbA1C models compared with their corresponding counterparts

based on NCDRS (Supplementary Figure 3).
Comparison of the health economic
costs between ML and ML+lab models
with their corresponding counterparts

Our results indicated that the proportion requiring

confirmatory test and the average detection costs per

participant using the ML model were lower than those using

NCDRS at any sensitivity. The proportion requiring

confirmatory test was 57·96% and 50·07% in NCDRS and our

ML model when they had the same sensitivity of 0·72, and

consequently, their average detection costs per participant were

¥34.98 and ¥30·41 respectively in the analysis of the present

study. These results suggested that the proportion requiring
TABLE 1 Characteristics of participants.

Total (n=8425) Non-DM (n=7378) DM (n=1047) P

Age, yearsa 54·0 (47·0-60·0) 54·0 (47·0-60·0) 57·0 (50·0-63·0) 0·000

Sex, n (%)b 0·090

Male 2989 (35·5) 2593 (35·1) 396 (37·8)

Female 5436 (64·5) 4785 (64·9) 651 (62·2)

Smoke, n (%)b

Current smoker 1621 (19·2) 1427 (19·3) 194 (18·5) 0·789

Past smoker 353 (4·2) 307 (4·2) 46 (4·4)

Never smoker 6451 (76·6) 5644 (76·5) 807 (77·1)

Drink, n (%)b 0·006

Current drinker 1088 (12·9) 921 (12·5) 167 (16·0)

Past drinker 203 (2·4) 176 (2·4) 27 (2·6)

Never drinker 7134 (84·7) 6281 (85·1) 853 (81·5)

Physical activity, n (%)b 0·044

inactive 7595 (90·1) 6633 (89·9) 962 (91·9)

active 830 (9·9) 745 (10·1) 85 (8·1)

SBP, mmHga 135·0 (122·5-150·7) 134·0 (122·0-149·3) 141·0 (128·0-157·5) 0·000

DBP, mmHga 79·0 (71·0-87·0) 78·5 (71·0-86·7) 81·7 (74·0-90·3) 0·000

RPR, bpma 80·0 (72·3-88·0) 79·0 (72·0-87·0) 85·0 (77·0-95·3) 0·000

Weight, kga 57·0 (50·7-63·0) 56·5 (50·5-63·0) 58·5 (52·0-65·0) 0·000

Height, ma 1·56 (1·52-1·62) 1·56 (1·52-1·62) 1·56 (1·51-1·62) 0·306

WC, cma 78·0 (72·0-84·0) 77·5 (71·0-84·0) 80·3 (74·0-87·0) 0·000

HC, cma 90·0 (86·0-95·0) 90·0 (86·0-95·0) 91·0 (87·0-96·0) 0·005

BMI, kg/m2a 23·1 (21·0-25·4) 23·0 (20·9-25·2) 23·9 (21·6-26·3) 0·000

WHR, cm/cma 0·86 (0·81-0·90) 0·86 (0·81-0·90) 0·89 (0·83-0·93) 0·000

WHtR, cm/ma 0·50 (0·46-0·54) 0·49 (0·46-0·54) 0·52 (0·47-0·55) 0·000

FPG, mmol/la 5·7 (5·3-6·1) 5·6 (5·3-6·0) 7·1 (6·2-8·0) 0·000

2hPG, mmol/la 6·9 (5·8-8·3) 6·6 (5·7-7·8) 12·2 (10·3-14·9) 0·000

HbA1c, %a 5·5 (5·2-5·8) 5·5 (5·2-5·8) 6·0 (5·6-6·6) 0·000
frontiersi
aData (continuous variables non-normally distributed) are expressed as medians (interquartile range).
bData (categorical variables) are expressed as N (%).
DM, diabetes mellitus; SD, standard deviation; n (%), number of participants and percentage over the total number of participants; SBP, systolic blood pressure; DBP, diastolic blood
pressure; RPR, resting pulse rate; WC, waist circumference; HC, hip circumference; BMI, body mass index; WHR, waist-to-hip ratio; WHtR, waist-to-height ratio; FPG, fasting plasma
glucose; 2hPG, OGTT-2h post-load plasma glucose; HbA1c, glycated hemoglobin A1c.
n.org

https://doi.org/10.3389/fendo.2022.1043919
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2022.1043919
confirmatory test and the average detection costs per participant

were both lower by 12.81% in our ML model than those in the

NCDRS (Figures 5A, F, B). In addition, the ML model had

higher sensitivity (0·80 vs 0·72) when it had the same average

detection costs as NCDRS (¥34.98) and at any average detection

costs (Figure 5C). Furthermore, the average costs of potential

complications per person per year of the ML model (ranged

from ¥78.16 to ¥156.51 for 15 years) decreased by 19.7%

compared with the NCDRS (ranged from ¥97.28 to ¥194.8 for

15 years) when it had the same average detection costs as
Frontiers in Endocrinology 08
NCDRS (¥34.98) (Figure 5D). Likewise, the ML model had a

lower average costs of potential complications for 15 years per

participant than the NCDRS at any average detection

costs (Figure 5E).

The average detection costs per participant were lower in the

ML+FPG model and were higher in the ML+2hPG and ML

+HbA1c models compared with the ML model (Figure 5F). The

sensitivity was higher and the average costs of potential

complications per participant were lower in the ML+FPG

compared with the ML model. However, the sensitivity was
ED F

A

B

G H

C

FIGURE 3

Development and interpretation of the ML model. (A), Compared the AUC and auPR among the models with seven algorithms. (B), Compared
the AUC and auPR among streamlined models and the model with all features. (C), Importance of the features in the ML model. The input
features on the y-axis are ordered by descending importance and the values on the x-axis indicate the mean impact of each feature on model
output magnitude based on SHAP analysis. (D–F), The relative risk of diabetes of RPR (D), Age (E), and SBP (F). Each point represented the
predicted relative diabetes risk of each individual. The relative risk value above 1·0 for specific features represent an increased risk of diabetes.
(G-H), Personalized risk prediction for two cases from the validation set of the ML model. The y-axes represent the input features ordered by
descending importance. f(x) is the personalized model output for a participant. If f(x) is larger than e[f(x)], the patient has a higher risk of diabetes
relative to the background population. Each arrow represents how a specific feature increases (red) or decreases (blue) the participant’s risk for
diabetes. LGBM, light gradient boosting machine; ANN, Artificial Neuron Network; RF, Random Forest; SVM, Support Vector Machine; LR,
Logistic Regression; KNN, K-nearest neighbors algorithm; CDKNN, Centroid-Displacement-based-k-NN; RPR, resting pulse rate; WHR, waist-
to-hip ratio; SBP, systolic blood pressure; BMI, body mass index; WC, waist circumference; WHtR, waist-to-height ratio; DBP, diastolic blood
pressure; HC, hip circumference.
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lower and average costs of potential complications for 15 years

per participant were higher in ML+2hPG and ML+HbA1c

models compared with the ML model (Figures 5G, H).

Moreover, the average detection costs per participant

decreased in the ML+FPG model compared with the

NCDRS+FPG model. The sensitivity was higher and the average

costs of potential complications per participant were lower in the

ML+FPG model than in the NCDRS+FPG model. Likewise, the

sensitivity was higher, and the average detection costs per

participant as well as average complication costs per participant

were lower in the ML+2hPG and ML+HbA1C models compared

with their corresponding counterparts based on NCDRS

(Supplementary Figure 4).
Discussion

In the present study, we attempted to develop an easy-to-use

ML-augmented prediction model for diabetes screening using
Frontiers in Endocrinology 09
population-based data from China. Our analysis indicated that

the ML model developed with non-laboratory features for

community care had superior predictive accuracy, and could

lower average detection costs per participant by 12.81%

compared with the NCDRS even if it had the same sensitivity

as NCDRS. Additionally, the ML+lab models which were

developed for primary care by adding laboratory tests to the

ML model, had even better predictive accuracy. Remarkably, the

ML+FPG model had considerable accuracy and lower average

detection costs compared with the ML model.

In recent years, there is a growing body of evidence

indicating that ML seems very promising in risk predictions

for disease (32, 34, 35). In this study, our ML model had higher

sensitivity, specificity, AUC, and auPR compared to the NCDRS,

implicating that our ML model seemed to have superior

predictive accuracy. As a data-driven method, ML is widely

considered to be able to detect complex nonlinear relationships

and probable interactions between variables and outcomes (36).

Additionally, ML is capable of mining more information from
ED F

A B C

FIGURE 4

Comparisons of features and prediction performance between ML and ML+lab models with their corresponding counterparts. (A), Compared
features between the ML model and ADART and NCDRS. (B, C), Compared the ROC (B) and PR (C) curves between the ADART, NCDRS, and the
ML model. vs AUC (ML model), P< 0·05; the cutoff points of ADART and NCDRS recommended by ADA and CDS (Risk score ≥ 5 and ≥ 25,
respectively) were plotted as two points in ROC and PR curve; the corresponding horizontal and vertical coordinate values of these two points
are marked on the coordinate axis. (D–F), Compared the ROC curves between the ML model with ML+FPG model (D) in individuals with
seemingly normal FPG levels (P< 0·05), ML+2hPG (E) model in individuals with seemingly normal 2hPG levels (P> 0·05), and ML+HbA1c model
(F) in individuals with seemingly normal HbA1c levels (P< 0·05). ADA, America Diabetes Association; CDS, Chinese Diabetes Society; ADART, ADA
risk test; NCDRS, New Chinese Diabetes Risk Score.
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big data compared to Logistic Regression and consequently,

more predictors could be handled in predictive models

developed by ML (37). Remarkably, there is a rich library of

available machine learning methods used for developing models

to deal with a specific problem, and it is crucial to select an
Frontiers in Endocrinology 10
appropriate ML method to improve the performance of the

models (4). Recent studies indicate that diabetes prediction

models developed based on images, electronic health records,

or structured data obtained from their societies, using machine

learning algorithms such as Decision Tree, Naive Bayes, SVM,
E

D
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A

B

G

H

C

FIGURE 5

Comparison the health economic costs between ML and ML+lab models with their corresponding counterparts. (A-B), Compared the
proportion requiring confirmatory test (A) and average detection costs (B) between the ML model and NCDRS at a different level of sensitivity.
(C), Compared the sensitivity between the ML model and NCDRS at a different level of average detection costs. (D), Compared the average
costs of potential complications in the next 5-25 years between the ML model and NCDRS when the average detection costs was ¥34·98
(When using the cutoff point of the CDS guideline, the average detection costs of NCDRS were ¥34·98). (E), Compared the average costs of
potential complications between the ML model and NCDRS at a different level of average detection costs. (F), Compared the average detection
costs at a different level of sensitivity between the ML model with ML+lab models. g-h, Compared the sensitivity (G) and the average costs of
potential complications for 15 years (H) at a different level of average detection costs between the ML model with ML+lab models. The number
on the horizontal line (A-C) represents the relative reduction of the proportion requiring confirmatory test, average detection costs, and
increase of sensitivity of the ML model compared to the NCDRS. The numbers in the bar chart (D) represent the range of average costs of
potential complications. The dotted lines in (G, H) represent the basic average detection costs of the ML+lab models which are the costs of
screening test of these models. Shaded areas represent the range of average costs of potential complications for 15 years.
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ANN, etc., achieve superior performance and demonstrate their

potential to be helpful for diabetes screening (38, 39). We

employed seven ML algorithms for diabetes screening using

data from our population-based study in China, including

LGBM, ANN, SVM, RF, KNN, CDKNN and LR, which are

reported to have good performances in developing predictive

models with high accuracy in recent studies (40–44). Our results

indicated that the LGBM model had the best predictive accuracy

among the models developed with the five algorithms in our

societies. It is considered that LGBM acts as the state of the art in

developing predictive models for tabular data (32), and a very

recent study indicates that Gradient Boost Machine (GBM)

performed better than logistic regression (LR), classification,

and regression tree (CART), artificial neural networks (ANN),

support vector machine (SVM) and random forest (RF) (45),

which might be important explanations of our results that the

ML model seemed to have higher predictive accuracy compared

with NCDRS. Noteworthy, we tested the ensemble algorithm

that combined the classifiers of LR, RF, ANN, and LGBM with

the same features as the ML model for predicting diabetes. The

results indicated that the ensemble algorithm had a slightly

higher AUC than LGBM, while there was no statistically

significant difference (Supplementary Figure 5, P>0·05). New

algorithms for designing accurate and effective models for

diabetes screening still need further investigation in the future.

Notably, we analyzed the performance of our models with

methods recommended in the current guideline for screening

diabetes in adults and the results indicated that our models

seemed to perform better. Similarly, a very recent study by

Vangeepuram, N., et al. indicated that some ML-based classifiers

derived from the NHANES dataset in the United States

performed comparably to or better than the screening

guideline in identifying preDM/DM youth, which is another

important evidence that ML model seemed to have better

performance compared with recommendations of the current

guidelines (17). In addition, the diabetes prediction models

constructed by Binh P.Nguyen et,al and Wei et,al achieved

good prediction performance using 1321 features (including

various laboratory tests) and environmental chemical

exposures that are not routinely tested in daily life,

respectively (46, 47). Our ML model used 20 features that are

easily available in daily life and clinical practice in order to make

the prediction model more convenient for use in the community

and primary care settings. Additionally, we evaluated the

proportion requiring confirmatory test and the average

detection costs to assess the health economic benefits of the

ML models in practice, which is a new attempt compared to

previous ML diabetes prediction studies (4, 17, 45, 47–53).

Our analysis demonstrated that the MLmodel could save the

average detection costs per participant by 12.81% compared with

NCDRS, without sacrificing sensitivity. The cost saving was

mainly attributed to the higher predictive accuracy, which

consequently enhanced specificity and decreased the false-
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positive rate in the ML model, resulting in a considerable

decline in the number of confirmatory test and related costs

(54). In addition, the ML model could lower the average costs of

potential complications per participant by 19.7% compared with

NCDRS in this study, which might be ascribed to the increase in

predictive accuracy and sensitivity, as well as the decreases in

misdiagnosis in the MLmodel compared with NCDRS, lessening

the incidence of complications and corresponding costs for the

lack of timely detection and intervention of diabetes.

Remarkably, the features used in our ML model are readily

obtainable information, enabling residents to estimate their risk of

diabetes in communities without seeing their doctors for any

medical examinations or laboratory tests. Most of the variables

(RPR, WC, sleep-associated issues, etc) in the ML model were

routinely collected in clinical practice in China, and those variables

involved in the ML models which are not routinely collected by

medical practitioners (education, work status, etc) can be quickly

obtained by easy-to-use questionnaires, which are different from

those variables in diabetes predictive models including tongue

features and environmental chemical exposure developed in very

recent studies (47, 51, 52), and might be a little bit more convenient

in practice. Thus, the MLmodel is potentially beneficial for diabetes

screening in communities and primary care settings with greater

convenience and accessibility, as well as higher predictive accuracy

and less cost as mentioned above. Moreover, the ML model could

be hopefully further developed and presented in open and accessible

web pages to make it easier and more available for residents to

evaluate the risk of diabetes in communities, and the information

increasingly inputted in the ML model for risk prediction is very

helpful to improve the performance of the model in turn, which is

an advantage of ML (28).

FPG, 2hPG, or/and HbA1c are important screening and

diagnostic tests of diabetes (9). It should be noted that all these

tests are not usually employed for detecting diabetes in the same

individuals at the same visit in clinical practice and one testing of

them only may lead to underdiagnosis of diabetes (9). Actually,

there are a large number of diabetes with seemingly normal FPG

or 2hPG levels since the concordance between the FPG and

2hPG tests is imperfect (55), which is also observed in our

present investigation. It is reported that seemingly normal FPG,

2hPG, and HbA1c were important predictors of future diabetes

(56–58). Thus, we tried to develop the ML+lab models by

introducing FPG, 2hPG, or HbA1c with seemingly normal

levels for diabetes screening in primary care settings. Our data

indicated that introducing FPG, 2hPG, or HbA1c in individuals

with normal levels of these testing increased the efficiency and

accuracy of the predictive models. Moreover, the predictive

accuracy of ML+FPG and ML+HbA1c models in individuals

with normal levels of these testing seemed higher than that of

ML model in all participants. These results suggested that it

seemed practical and beneficial to adapt ML+lab models to

screen out diabetes patients with seemingly normal FPG,

2hPG or HbA1c. That ML could mine maximal information
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from the simple features might be an important explanation for

the effectiveness of our ML+lab models screening out diabetes

(59). It is reported that introducing laboratory tests, such as

urine glucose, LDL-c, and triglyceride increased the predictive

accuracy of diabetes predictive models by LR (45, 60), which

seemed to be consistent with our findings in this study. Notably,

the detection costs were decreased in the ML+FPG model and

increased greatly in the ML+2hPG and ML+HbA1c models

compared with the ML model, due to the testing of FPG

costing much less than the testing of 2hPG and HbA1c (61).

Moreover, our results indicated that the ML+FPG model had

lower average detection costs compared with the NCDRS+FPG

model. These results implied that the ML+FPG model had

appreciable advantages in predictive accuracy and the lowest

costs among the ML+lab models, the NCDRS+FPG model, and

the ML model. The FPG test was most often used by health care

professionals in clinical practice for it is convenient and

relatively inexpensive. Therefore, the ML+FPG model was the

most suitable for primary care among the ML+lab models, for its

considerable predictive accuracy, low costs, and easily-

accessibility, and was potentially to become a new screening

strategy for diabetes in primary care with notable advantages in

efficiency, economy, and convenience.

Additionally, SHAP analysis was used to perform a post hoc

analysis of the model with all available features in the present

study. Our data indicated that some predictors, including RPR,

Age, SBP, WC, WHR, and BMI, were of significant value in the

ML model, which is consistent with previous studies that these

are important predictive factors in diabetes predictive models

developed by LR and gradient boosting. Typically, the resting

pulse rate is often used as an alternative to resting heart rate

measurements. Increasing evidence suggested that resting heart

rate was associated with type 2 diabetes (62, 63), and recent

studies revealed close relevance of resting heart rate and diabetes

(64, 65). Detailedly, resting heart rate is an indicator of

sympathetic activation, which inhibits the insulin secretion

from the pancreas and sympathetic overactivity can impair

glucose uptake in skeletal muscle by inducing vasoconstriction

and reducing skeletal muscle blood flow (66). These mechanisms

might explain the association between RPR and diabetes. The

years of cell phone use seemed relevant to age in our present

study and are reported to be closely related with socioeconomic

status, which might be an important explanations for the close

relevance between the years of cell phone use and diabetes (67).

Additionally, we identified several predictors, such as sleep

duration and wake time, which are reported to be closely

associated with FPG and/or HbA1c by multiple linear

regression analysis, implying that more attention should be

paid to these predictors in the prevention and management of

diabetes (68, 69). Furthermore, our results indicated that WC, a

useful measure of central obesity, was more important in

predicting diabetes compared with BMI in our ML model,
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which seems consistent with previous studies that WC is

considered to be a more reliable measure of fat distribution

and closely related with diabetes (70). It is reported that Asians

including the Chinese population have more central obesity but

less generalized obesity defined by high BMI. These results

suggest that we should pay more attention to central obesity in

the prevention, screening, and management of diabetes in the

Chinese population.

Moreover, our SHAP analysis by taking two cases randomly

for example identified different individualized predictors for the

two selected cases, suggesting that the cutting-edge SHAP

analysis in our ML model was able to screen out the crucial

predictors individually for the subjects. The personalized

predictors screened out would be helpful for the subject tested

to get advice and take measures more accurately and precisely to

prevent or treat diabetes (71).

It should be noted that we were unable to determine the

detection costs and potential complication costs in the real world

in the present study, although we attempted to estimate the costs

using rewarding methods reported previously and adjust the

costs based on economic and medical conditions in China. These

findings require verification by further studies and it should be

interpreted cautiously. Additionally, our data set was obtained

from Han Chinese population in Hubei Province, which is

located in central China, and the generalizability of our

models and the findings need further testing with data from

more regions and ethnic groups. Noteworthy, we had aimed to

preclude the effects of medications as much as possible originally

and we made great efforts to exclude the effects of antidiabetic

agents on diabetes determination. Regretfully, we were not able

to exclude the effects of other medications including those may

affect RPR due to the missing data. In addition, the features

employed in the models (e.g., RPR) were closely related with

diabetes but not always play causal roles in the development of

diabetes. Thus, it should be noted cautiously while interpreting

the models, the importance of features, and the relationship

between/among them, and further research is necessary to

confirm the prevention and intervention strategies to take

accordingly. Moreover, it would be of great help for us to

further iterate models with new algorithms based on the newly

inputted data to improve the predictive performance and

generalizability of the models in the future.

Notwithstanding these limitations, the ML model developed

for diabetes screening in community care had good predictive

accuracy and less average detection costs compared with the

NCDRS. The ML+FPG model created for diabetes screening in

primary care achieved higher predictive accuracy and lower

detection costs than the ML model and NCDRS+FPG model.

Thus, we tentatively put forward that the ML-augmented

algorithm might have the potential to become an efficient and

practical tool for diabetes screening in community and primary

care settings.
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