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Obesity-driven (type 2) diabetes (T2D), the most common metabolic disorder,

both increases the incidence of all molecular subtypes of breast cancer and

decreases survival in postmenopausal women. Despite this clear link, T2D and

the associated dysfunction of diverse tissues is often not considered during the

standard of care practices in oncology and, moreover, is treated as exclusion

criteria for many emerging clinical trials. These guidelines have caused the

biological mechanisms that associate T2D and breast cancer to be

understudied. Recently, it has been illustrated that the breast tumor

microenvironment (TME) composition and architecture, specifically the

surrounding cellular and extracellular structures, dictate tumor progression

and are directly relevant for clinical outcomes. In addition to the epithelial

cancer cell fraction, the breast TME is predominantly made up of cancer-

associated fibroblasts, adipocytes, and is often infiltrated by immune cells.

During T2D, signal transduction among these cell types is aberrant, resulting in

a dysfunctional breast TME that communicates with nearby cancer cells to

promote oncogenic processes, cancer stem-like cell formation, pro-

metastatic behavior and increase the risk of recurrence. As these cells are

non-malignant, despite their signaling abnormalities, data concerning their

function is never captured in DNA mutational databases, thus we have limited

insight into mechanism from publicly available datasets. We suggest that

abnormal adipocyte and immune cell exhaustion within the breast TME in

patients with obesity and metabolic disease may elicit greater transcriptional

plasticity and cellular heterogeneity within the expanding population of

malignant epithelial cells, compared to the breast TME of a non-obese,

metabolically normal patient. These challenges are particularly relevant to

cancer disparities settings where the fraction of patients seen within the
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breast medical oncology practice also present with co-morbid obesity and

metabolic disease. Within this review, we characterize the changes to the

breast TME during T2D and raise urgent molecular, cellular and translational

questions that warrant further study, considering the growing prevalence of

T2D worldwide.
KEYWORDS

type II diabetes mellitus, intercellular communication, tumor microenvironment,
metabolic reprogramming, exosomes
Introduction

Obesity and metabolic disease poses a deepening challenge in

the United States, where the burden of Type 2 diabetes (T2D) or

pre-diabetes affects over 100 million adults (1–4). Critically, these

diseases are implicated in a variety of cancers, both with an

obesogenic environment, such as endometrium, colon, and

kidney, as well as less common malignancies such as leukemia,

multiple myeloma, and non-Hodgkin’s lymphoma (5). Obesity,

while a potent risk factor outright, is highly associated with

metabolic derangements that increase the incidence and

mortality of such cancers (6). However, there are key groups of

patients that exhibit counter-intuitive patterns of cancer

development: metabolically-healthy obese and metabolically-

obese normal weight, which are associated with a reduced and

increased cancer prevalence, respectively, compared to

metabolically-healthy normal-weight controls (7–10). The link

between T2D and breast cancer is of particular significance, with

diabetic women not only having a 40% increased risk of

developing breast cancer compared to non-diabetic (ND)

women, but also a 74% increase in overall mortality (2, 4). This

high mortality rate is associated with more advanced stages and

aggressive subtypes of breast cancer, such as estrogen receptor

negative (ER-) and triple negative breast cancer (TNBC) (11, 12).

Despite this significant risk factor, the cellular and molecular
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mechanisms underlying this comorbidity remain poorly

understood and understudied. The combination of these

illnesses is particularly challenging due to their heterogeneity

and interconnectedness. Recent developments in spatial omics

and multiplexed imaging technologies have revealed that cancers

have complex spatial organization within their three-dimensional

(3D) architectures that dictate a given cell’s spatial neighborhood,

interactions, and phenotype to influence overall tumor behavior.

The tumor microenvironment (TME), consisting of the cellular

and extracellular structures surrounding cancer cells, has been

identified to regulate essential tumor survival functions (13, 14).

However, standard molecular tools, such as Oncotype, which are

used in the clinic to assess personalized risk of recurrence do not

account for the profound TME differences seen in T2D patients,

with only one measure of mammary adipose inflammation

(CD68) and no way to account for differing metabolism. Thus,

patients with comorbid T2D may receive a dangerously low score

that inaccurately estimates their true risk of progression and

metastasis. Oncologists therefore urgently need improved

diagnostic and therapeutic methods for patients with this

comorbidity. Considering that diseased cells immediately

adjacent to tumor are not passive structures but instead are

active actors in tumor progression, we describe the impact

of the TME on this complex yet increasingly common

comorbidity (Figure 1).
Systemic effects

Insulin resistance-related metabolic reprogramming, a

context-dependent and dynamic process that results from

interactions between cancer cells and their local and systemic

environments, includes three main aspects, 1) hyperinsulinemia,

2) hyperglycemia, and 3) dyslipidemia (15, 16).

Hyperinsulinemia is often seen in T2D as a result of insulin

resistance, in which an impaired tissue response to insulin

results in the pancreas increasing insulin levels to compensate

and manage blood glucose levels. The significance of insulin

signaling towards breast cancer progression has long been noted
frontiersin.org

https://doi.org/10.3389/fendo.2022.1044670
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ennis et al. 10.3389/fendo.2022.1044670
(17). Primarily, tumor cells widely overexpress insulin receptors

(IRs) and insulin-like growth factor receptors (IGF-Rs) (18–21).

These receptors can directly bind circulating insulin to activate

downstream signaling pathways, such as PI3K/AKT/mTOR and

the Ras/MAPK/ERK pathways, to increase mitosis and therefore

cancer cell proliferation and invasion (22–29). Subsequent

activation of the b-catenin signaling pathway via PI3K/AKT

has been associated with cancer stemness and chemoresistance

(30). Downregulation of IRs on tumor cells has been

demonstrated to reduce tumor growth and lung metastasis in

xenograft models of athymic mice (31). Moreover, though IR

expression is highly expressed in the majority of early stage

breast cancers, this expression is not clearly downregulated in

the context of hyperinsulinemia (32). Additionally, IGF binding

proteins, which limit the activity of IGF-1, are reduced in the

presence of high levels of insulin (33, 34). Moreover,

hyperinsulinemia can in turn increase IGF-1 expression in the

liver and stimulate cell growth (18). Inhibition of IGF-IR has

been shown to decrease growth of breast cancer in vitro (35, 36).

While hyperinsulinemia is seen as a primary causal factor for

cancer, hyperglycemia has also been shown to positively

associate with cancer incidence (37). It is well established that

tumor cell proliferation needs glucose as an important source of

fuel for ATP production as well as synthesis of DNA via the

pentose-phosphate pathway (18). Further, hyperglycemia can

promote epithelial-to-mesenchymal transition (EMT) to induce

metabolic reprogramming by upregulating glucose uptake and

lactate release (38, 39). As such, multiple large cohort and case-

control studies have found that hyperglycemia is positively
Frontiers in Endocrinology 03
correlated with the risk of cancer (40–43). Critically,

hyperglycemia does not exert a uniform effect on tumor

growth in all in vivo models. For example, insulin-independent

hyperglycemia increases the size of liver tumors and reduces

apoptosis in a tumor-prone animal model, whereas in T1D in

vivo models tumor growth is reduced by insulin (44, 45).

However, improved glycemic control with compounds such as

metformin has a mixed effect on cancer risk in diabetic patients,

indicating that hyperglycemia may be an independent risk factor

for cancer (46–51).

Dyslipidemia, characterized by elevated circulating levels of

cholesterol, triglycerides, and free fatty acids, is also

independently associated with an increased cancer prevalence

(20, 52). Both elevated low-density lipoprotein and reduced

high-density lipoprotein levels, the main transporters of

cholesterol, have been demonstrated to be prognostic factors

of breast cancer initiation, progression, and metastasis regardless

of metabolic status (53–59). Cholesterol-lowering agents, such as

lipophilic statins, have been shown to be protective against

breast cancer recurrence and death (59). 27-hydroxycholesterol

(27HC) is a primary metabolite of cholesterol, generated upon

exposure to cytochrome P450 oxidase sterol 27-hydroxylase A1

(CYP27A1), a key enzyme in regulating cellular cholesterol

homeostasis (59–61). 27HC acts as an ER agonist, activating

the PI3K/AKT/mTOR and beta-catenin signaling pathways to

stimulate cell proliferation and protein synthesis in ER-positive

breast cancer (59, 61). Critically, high levels of CYP27A1

expression correlate with high-grade breast tumors, while

inhibition of this enzyme reduces tumor growth in hormone-
BA

FIGURE 1

Overview of dysfunction within the diabetic breast TME. A complex array of cell types in the TME engages intercellular communication. (A) In
addition to well described, systemic factors that are present at abnormally high levels in patients with obesity-driven diabetes, such as free fatty
acids, glucose, insulin and IGF-1, which can promote proliferation, plasma exosomes are also altered in diabetes and carry intercellular
instructions that promote tumor progression and metastasis. (B) Locally, adipocytes in the TME of diabetic patients are inflamed and
dysfunctional, releasing proinflammatory cytokines that can alter the function of immune infiltrates, promoting T cell exhaustion through
immune checkpoint engagement. These abnormal adipocytes also release adipokines and exosomes that carry payloads capable of
reprogramming tumor cells to more aggressive and metastatic phenotypes. Additionally, fibroblasts respond to elevated levels of HIF1a in the
local TME to further support the metabolic reprogramming of tumor cells. Figure created with Biorender.com.
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dependent breast cancer (61, 62). Cholesterol, triglycerides, and

fatty acids are known to be critical lipid constituents of the cell,

composing a majority of the cellular membrane. Highly

proliferative cancer cells therefore benefit from the altered

lipid metabolism associated with dyslipidemia to provide these

essential building blocks (52, 63–66).
Local effects

In addition to global changes in signaling pathways, breast

cancer with comorbid T2D also results in perturbations to the

local TME. The breast TME is composed of several cell types that

can all experience unique dysfunctions that work to promote

tumor proliferation, invasion, and metastasis.
Adipocytes

Adipocytes are the most prevalent cell type by mass within the

breast TME (67). Cancer-associated adipocytes (CAAs) have been

demonstrated to promote breast cancer progression (68–70), as

they function as an active endocrine tissue to release adipokines

(e.g., IL-6, TNFa, leptin, and adiponectin) that can suppress an

active immune response (71) and play critical roles in tumor cell

proliferation, as well as matrix metalloproteinases that are

important for tumor invasiveness (72). T2D and obesity are

major contributing factors of inducing adipocyte abnormalities,

which are known to promote cancer cell proliferation, invasion,

and resistance to chemotherapy and radiotherapy (6). Breast

cancer cells adapt to their unique TME to meet their needs for

proliferation and cell survival via reprogramming their metabolic

pathways (70, 73, 74). Accordingly, it has been reported that fatty

acid oxidation and pathways required for formation of cell

membranes and storage are upregulated in breast cancer (75,

76). In accordance with the need for fuel in proliferation, breast

cancer cells develop ways to utilize FAs, such as de novo fatty acid

synthesis (77). In human epidermal growth factor receptor 2

positive (HER2+) breast cancers, key enzymes involved in this

process, fatty acid synthase and acetyl-CoA-carboxylase-a, are

upregulated via the PI3K/Akt/mTOR pathway (65, 77). Breast

cancer cells obtain fuel from its TME through an increased uptake

of FAs from CAAs, which requires lipoprotein lipase and fatty

acid binding protein 5 and 7, which are all overexpressed in TNBC

(53, 77, 78). Despite the significance of CAA-mediated lipid

transfer towards breast cancer progression, experiments utilizing

primary CAAs from patients with comorbid T2D, who would be

experiencing dyslipidemia and having these pathways further

perturbed, is lacking. Muller and others have demonstrated that

TNBC and ER+ breast tumor cells and nearby CAAs, particularly

at the tumor’s invasive front, are likely to engage in crosstalk in a

spatially organized manner that elicits tumor EMT and cancer

stem-like cell (CSC) formation (79–81). Hursting and colleagues
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have demonstrated that obesity promotes these two pathways,

thus suggesting a causal link between obesity and the associated

metabolic derangement with TNBC development (82). However,

the contribution of other key adipokines and cytokines in this

obesity-associated CSC/EMT circuit must be further examined, as

preliminary studies indicate that the leptin-adiponectin ratio

imbalances do not fully account for all of the observed effects of

diet-induced obesity on TNBC (83).

During an investigation into the role of CAAs in breast

cancer progression, our group has recently implicated crosstalk

from adipocyte-derived exosomes in driving EMT and cancer

aggressiveness. Interest in exosomes, long ignored and thought

to be merely cellular disposal systems, has recently been growing.

Adipocyte-derived exosomes contain a significant payload of

microRNAs that, when applied in a co-culture system with

breast cancer cell lines, upregulate genes involved in CSC

formation and invasion. Provocatively, fold-changes in these

gene expression patterns were greater if the adipocytes had first

been rendered insulin resistant or were isolated from patients

with T2D (67). This finding supports the idea that the TME is

likely more dangerous, leading to increased incidence and

metastasis, when the patient has comorbid T2D, which is

consistent with observations made in the Black Women’s

Health Study (84). A similar phenomenon has been observed

in mouse models of diet-induced obesity using breast cancer cell

lines in E0771, where obesity causes insulin resistance and

metabolic abnormalities in adipocytes that promote expansion

of metastasis (85).
Fibroblasts

Fibroblasts, also known as cancer-associated fibroblasts

(CAFs), are the most abundant cell type in the breast TME

(86). These cells are derived from resident fibroblasts and a

diverse population of mesenchymal cells upon exposure to

proinflammatory cytokines such as TNFa and IL-1b (86, 87).

Such cytokines are prevalent in the diabetic TME as they are

secreted by diseased adipocytes, though little is known about

how this may influence the development of CAF outgrowth (88).

Provocatively, recent work from Zhu and colleagues report that

adipocytes can de-differentiate into fibroblast-like precursor cells

during breast tumor progression, with the ability to transform

into functional pro-tumorigenic stromal cells such as

myofibroblast- or macrophage-like cells (89). Though this

phenomenon has not been identified in the context of T2D,

the impact of metabolically impaired adipocytes on this

mesenchymal transition and subsequent breast cancer

progression demands further study. Once differentiated, CAFs

exist as highly heterogeneous components of the TME that

secrete a variety of soluble factors, such as chemokines and

growth factors, that promote both tumor initiation, progression,

and invasion (87, 90–92). A key pro-tumorigenic program of
frontiersin.org
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CAFs is their function as metabolic support for proliferating

tumor cells (93, 94). Their catabolic phenotypes are induced by

high levels of reactive oxygen species during oxidative stress

upon hypoxia-inducible factor 1a (HIF1a) and nuclear factor k
B (NFkB) signaling within the TME (95). This metabolic shift

towards lactate and pyruvate production works to fuel

biosynthetic pathways of cancer cells, which can then rely on

CAFs to provide a nutrient-rich TME (96). Critically, increased

levels of lactate within the TME is known to acidify the area, thus

inhibiting effector T cell function and potentially contributing to

the failure of anti-tumor therapy in these patients (97–100).

HIF1a stability and function are dysregulated by hyperglycemia,

and disruption of this aberrant signaling can improve insulin

sensitivity (101–104). Within the diabetic breast TME, higher

levels of HIF1a and subsequent oxidative stress contribute to

hypoxia (101, 103, 105). Hypoxia is a driving force of tumor

progression as it stimulates vascularization (VEGF, ANG1,

ANG2, MMPs, LOX, CAIX, CXCR4), upregulates EMT/CSC

signatures (SNAI1, SNAI2, TWIST1, SOX9, SOX2, OCT4,

NANOG), and contributes to drug resistance (106–109).

Despite the importance of metabolic reprogramming in cancer

biology, the role of CAFs in the diabetic TME have yet to be

fully investigated.
Macrophages

Macrophages form a critical and diverse component of the

breast TME (86, 87). They can exist as tissue resident cells or

differentiate from circulating monocytes that are recruited to the

tumor site via chemokines secreted by cancer and stromal cells

(86, 87, 110). Once in the breast TME, macrophages can have

both proinflammatory (M1-like) and anti-inflammatory (M2-

like) functions. During normal immunological responses, most

macrophages are leaning towards the M1-like phenotype and

engage in responses to pathogens (111). The M2-like phenotype,

however, is associated with T helper 2-type cytokines and is

typically associated with wound healing and tissue remodeling

(111). Most tumor-associated macrophages (TAMs) are leaning

towards the M2-like phenotype as this class promotes cell

proliferation and breast cancer progression via anti-

inflammatory signaling pathways (IL10, CCL2, CCL17, CCL22,

TGFB) (112). TAMs have been reported to support invasion and

metastasis by secreting EGF1 and TNFa, which promote EMT

and enhance the stemness and angiogenesis of cancers (113).

Many studies have linked high TAM levels to a worse prognosis,

suggesting that TAM depletion or reprogramming may serve as

a key therapeutic target (114, 115). The common anti-diabetic

drug metformin has been shown to modulate macrophage

polarization, specifically by decreasing the percent of M2-like
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AMP-activated protein kinase (AMPK)-NFkB signaling (116).

This suggests that metformin could be therapeutically

advantageous in facilitating macrophage reprogramming.

Within the diabetic and obese TME, macrophages are

known to play a critical role in local adipocyte inflammation.

M1-like macrophages accumulate within adipose tissue and

produce factors that deregulate adipocyte signaling processes,

increase production of reactive oxygen species, and potentiate

insulin resistance (110, 117–119). They can form a characteristic

crown-like structure around the hypertrophied and dying

adipocytes (110, 118, 119). This mammary adipose tissue

inflammation is thought to contribute to the link between

metabolic derangements and worse breast cancer prognosis

(110, 117, 120–122). Critically, in patients with breast cancer

and comorbid obesity, the presence of crown-like structure

accumulation is associated with more aggressive, high-grade

tumors (110, 114, 117). Despite these demonstrated functions,

additional studies are needed to understand the potential clinical

utility of crown-like structure accumulation as a biomarker of

breast cancer risk or prognosis.
T cells

Another major component of the breast TME are tumor-

infiltrating lymphocytes (TILs) (123–125). Importantly, although

inflammation regulation in T2D has centered around

macrophages, recent evidence suggests that T cells are vital for

metabolic inflammation and insulin resistance associated with the

disease (123, 126–131). The majority of TILs are T cells, which can

be further subdivided into CD4+ helper and CD8+ cytotoxic

T cells. The ratio between these two TIL populations is a critical

prognostic indicator of breast cancer progression, with infiltration

of CD8+ T cells associated with longer survival (124, 132–135).

Miya and colleagues demonstrated that diabetic patients exhibit a

decreased proportion of peripheral CD8+ T cells after glucose

loading compared to nondiabetic control subjects (136). However,

it is unclear how this finding may extend to the local TME of

breast cancer patients with comorbid T2D. The effect of these cell

populations is regulated by a balance between co-stimulatory and

co-inhibitory signals at immune checkpoints. These regulatory

pathways, involving molecules such as programmed death-1 (PD-

1), typically work to inhibit T-cell function in order to prevent

inappropriate immune reactions (137–139). However, these

pathways are known to be hijacked by tumor cells to evade

immune detection and clearance (137–139). Tumors are able to

upregulate the expression of cognate ligands, such as programmed

death-ligand 1 (PD-L1), on their cell surface, which reprogram

local TILs towards an inhibitory state known as immune
frontiersin.org
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exhaustion (137–139). Immune exhaustion is a unique

differentiation state for T cells, in which they become

metabolically impaired and lose their effector functions to create

an immunosuppressive TME (137–139). Both PD-1+ TILs and

PD-L1+ tumors are associated with a worse prognosis for breast

cancer patients (123, 124). Critically, circulating T cells in diabetic

patients are known to have high surface expression of PD-1 (137,

140, 141). Immunotherapeutic strategies that aim to reverse this

exhausted microenvironment have been gaining traction recently.

Studies have shown that treatment with the anti-PD-1 agent

pembrolizumab, in combination with chemotherapy as

neoadjuvant therapy, resulted in a significant reduction in the

risk of disease progression for patients with high-risk early-stage

TNBC (142–145). However, little research has been done into

whether breast cancer patients with comorbid T2D benefit from

these same effects. Deepening our understanding of TIL biology

and the role of exhaustion in T2D and breast cancer may be key in

unraveling underlying disparities.
Spatial organization

Recent developments in spatial transcriptomic technologies

have revealed that cancers have complex spatial organization

within their three-dimensional architectures that dictate a given

cell’s spatial neighborhood, interactions, and phenotype to

influence overall tumor behavior (13, 14). Of note, immune

responses, such as immunoregulatory pathways, are highly

spatially organized processes within the breast TME (13, 146).

Specifically, regulatory T and exhausted T cells co-occur in space

with highly proliferative tumor cells, linking this spatially

suppressed TME to poor patient outcomes (147). In addition,

the adipocytes immediately adjacent to a breast tumor are

known to be active actors in tumor progression, with

investigators beginning to probe secretory and spatial

relationships among breast adipocytes in invasive cancers with

histological evidence of crosstalk (79–81). The spatial

organization and transcriptional relationships among breast

cancer cells and nearby adipocytes, particularly at the tumor

invasive front, are likely to engage in exosome crosstalk that

elicits tumor EMT and CSC formation. Taken together, the TME

is likely more dangerous when a breast cancer patient has

comorbid T2D. Deepening our understanding of how this

increasingly common comorbidity may impact spatial

heterogeneity, architecture, and signaling will be critical in

improving therapeutic outcomes for these patients.
Treatment opportunities

The first-line medication for treatment of T2D is metformin, a

biguanide drug that lowers glucose production by the liver through

inhibiting the mitochondrial respiratory chain, activating AMPK,
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lowering cAMP, and reducing the expression of gluconeogenic

enzymes, thus enhancing insulin sensitivity (148). Even though

metformin has been used for more than 60 years in the clinic,

several studies have demonstrated new indications andmechanisms

of action for the drug as an anti-tumor agent (149). Given that

metformin activates AMPK, it thereby inhibits mTOR pathways

and decreases circulating insulin levels, with hyperinsulinemia being

tied to worse breast cancer prognosis. It also inhibits the

proliferation and invasion of cancer cells, which could limit

metastatic spread (150–155). The Adjuvant Lapatinib and/or

Trastuzumab Treatment Optimization trial tested metformin use

in HER2+ breast cancer, showing an improvement in prognosis

(156, 157). Other clinical studies have correlated metformin use

with improved breast cancer-specific survival in HER2+ breast

cancer, though not in TNBC (158). Goodwin and colleagues

recently reported (159) a lack of survival benefit of metformin for

either ER/PR+ or ER/PR- breast cancer patients. We consider that

these results are skewed due to the exclusion of T2D patients and

lack of stratification by patient BMI as improper exclusion criteria

by considering all patients metabolically healthy, therefore the

results are unsurprising. However, recent work has demonstrated

that activation of AMPK upregulates the expression of EMT and

stemness genes (NANOG, SOX2, BMI1), through the

transcriptional upregulation of TWIST1 (160). This AMPK-

driven stemness has been shown to play an important role in

breast cancer drug resistance, thus complicating the effect

metformin may have on breast cancer. This unexpected,

potentially dangerous pathway of AMPK activation by

metformin, which appears to increase survival of circulating

metastatic breast cancer cells, demands further study.

Metformin has also been shown to have a beneficial effect in

the regulation of T cell functions, providing a potential

therapeutic for immune exhaustion via TSC1/mTOR (149).

Many previous studies have linked the anticancer effects of

metformin to the differentiation of T cells (149, 161). For

instance, the use of metformin has been reported to increase

the expression of CD8 and CD69 while decreasing PD-1 in TILs,

thus increasing the number of CD8+ T cells while protecting

them from apoptosis and exhaustion (161). Cytokines seem to be

key in this process, as metformin upregulates the secretion of

interferon g, IL-2, and TNFa via AMPK (162, 163). Since the

recent emergence of microRNAs as crucial regulators of T cell

differentiation, there are reports showing metformin increasing

miR-7 expression in an AMPK-dependent pathway and

inhibiting the action of miR-107, which is linked to insulin

sensitivity and the expression of PD-1 (161). Several ongoing

clinical trials are examining whether metformin has benefit in

the context of immune checkpoint blockade in treatment of solid

tumor, such as NCT03048500 for non-small cell lung cancer,

and NCT03800602 for refractory, microsatellite-stable

colorectal cancer.

Overall, though most current studies that examine

metformin’s use in breast cancer have reported a mixed
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picture on its efficacy, they demonstrate a potential therapeutic

benefit of metformin in patients with breast cancer and

comorbid T2D. It is clear that metformin holds considerable

promise with regard to a potential antitumor agent.
Conclusions and future directions

Over 100 million Americans with T2D or pre-diabetes are

predisposed to more aggressive tumors, but the mechanistic basis

for this differential risk remains unclear and understudied (1).

Herein, we have outlined the current state of knowledge on the

relevant cell types and mechanisms underlying this comorbidity.

However, many questions remain on how cell diversity

within the diabetic breast TME may impact tumorigenesis,

proliferation, or even drug resistance in these patients. For

example, it is unclear how related obesity, via an increase in

dysfunctional adipocytes, may change the heterogeneity of the

TME and how any subsequent changes may support a diversity

of transcriptional states key in pro- and anti-tumorigenic

processes. Furthermore, understanding the interplay between

the TME and T2D is further complicated by the need to

simultaneously understand how intercellular crosstalk is

organized at the tissue level and how multiple regulatory

layers of cellular identity might play distinct roles. As

previously stated, these layers can encompass alterations in

cellular composition, tissue architecture, RNA expression,

cytokine expression, lipid content, metabolomics, and other

types of molecular analytes that work in concert to create the

underlying disease phenotypes. Nevertheless, with the advent of

single cell RNA sequencing and, specifically spatial omics and

multiplex imaging technologies, the field of oncology is entering

a new era of technological innovation where the necessary

multimodal spatial datasets can be created that will aid in

providing the necessary systems-level understanding of these

complex and multifaceted disease phenotypes and interactions.

Thus, these approaches offer novel methods in studying breast

cancer as well as other cancer types differentially impacted by

T2D. Further investigating the effects of the metabolically

disturbed TME cell types on intercellular communication and

cancer pathogenesis will be critical in identifying biomarkers and

novel therapeutic targets for patients with breast cancer and
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comorbid T2D. These patients have been excluded and clinical

trial design should be adapted among cancer disparities

consortia to include them in well-defined groups with

sufficient statistical power. We propose that investigating the

mechanisms of intercellular crosstalk with tumor cells in a T2D

setting is crucial to fully understand how this comorbidity might

be working, integrating metabolic and immune exhaustion

signatures like tumor progression, metastasis, and immune

checkpoint. Utilizing this holistic approach will be crucial in

revealing novel insights into tumor progression and metastasis

in T2D patients and adopting multiple levels and perspectives of

metabolism and intercellular communication within the TME.
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