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Identification and validation of
a prognostic risk-scoring model
based on sphingolipid
metabolism-associated cluster
in colon adenocarcinoma

Qihang Yuan1,2*†, Weizhi Zhang3† and Weijia Shang3†

1Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian,
Liaoning, China, 2Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical
University, Dalian, Liaoning, China, 3Dalian No.24 High School, Dalian, Liaoning, China
Colon adenocarcinoma (COAD) is the primary factor responsible for cancer-

related mortalities in western countries, and its development and progression are

affected by altered sphingolipid metabolism. The current study aimed at

investigating the effects of sphingolipid metabolism-related (SLP) genes on

multiple human cancers, especially on COAD. We obtained 1287 SLP genes

from the GeneCard and MsigDb databases along with the public transcriptome

data and the related clinical information. The univariate Cox regression analysis

suggested that 26 SLP genes were substantially related to the prognosis of COAD,

and a majority of SLP genes served as the risk genes for the tumor, insinuating a

potential pathogenic effect of SLP in COAD development. Pan-cancer

characterization of SLP genes summarized their expression traits, mutation traits,

and methylation levels. Subsequently, we focused on the thorough research of

COAD. With the help of unsupervised clustering, 1008 COAD patients were

successfully divided into two distinct subtypes (C1 and C2). C1 subtype is

characterized by a poor prognosis, activation of SLP pathways, high expression

of SLP genes, disordered carcinogenic pathways, and immunemicroenvironment.

Based on the clusters of SLP, we developed and validated a novel prognostic

model, consisting of ANO1, C2CD4A, EEF1A2, GRP, HEYL, IGF1, LAMA2, LSAMP,

RBP1, and TCEAL2, to quantitatively evaluate the clinical outcomes of COAD. The

Kaplain-Meier survival curves and ROC curves highlighted the accuracy of our SLP

model in both internal and external cohorts. Compared to normal colon tissues,

expression of C2CD4A was detected to be significantly higher in COAD; whereas,

expression levels of EEF1A2, IGF1, and TCEAL2 were detected to be significantly

lower in COAD. Overall, our research emphasized the pathogenic role of SLP in

COAD and found that targeting SLP might help improve the clinical outcomes of

COAD. The risk model based on SLP metabolism provided a new horizon for

prognosis assessment and customized patient intervention.
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Introduction

Colon adenocarcinoma (COAD) is a type of malignant

tumor originating from the colon gland epithelium and the

most prevalent pathological form of colon tumor. Colorectal

cancer is the fourth most prevailing malignant tumor in China,

and its prevalence is increasing (1). The clinical manifestations

of COAD differ based on the tumor’s location and stage. Due to

the unique nature of the signs of early colon cancer, some

individuals are diagnosed at an advanced stage. Currently, the

majority of patients with colon cancer may benefit from a

comprehensive treatment regimen that includes extensive

surgery, radiation, and chemotherapy (2). However, the

unfavorable effects of surgery, radiation, and chemotherapy

will also contribute to a reduction in the quality of life of

individuals suffering from colon cancer, and the prognosis for

those who cannot withstand surgical treatment, radiotherapy,

and chemotherapy remains grim. In recent years, the in-depth

investigation of tumor metabolic reprogramming and

immunological microenvironment has provided evidence that

both metabolic and immune heterogeneity plays a role in the

onset and progression of colon cancer (3). Patients having

diverse metabolic features may have a distinct immune

microenvironment and prognosis. Accurate identification of

the metabolic heterogeneity of colon cancer is a crucial

problem for the advancement of precise oncology therapy.

According to previous biological studies on sphingolipid

metabolism and its function, ceramide, ceramide-1-phosphate,

glucosylceramide, lactose ceramide, galactosylceramide,

sphingosine, sphingosine galactoside, and 1-phosphate-

sphingosine are not only inactive precursors of sphingomyelin

metabolism but also crucial effector molecules in cell signal

transduction (4). It has been shown that sphingolipids and their

metabolites play a role in several crucial processes of signal

transduction, such as cell growth, differentiation, senescence,

and programmed cell death, resulting in a wide range of cellular

biological activities (5). Since ceramide was discovered to be the

second messenger of lipids to promote apoptosis, multiple

studies have demonstrated that aberrant sphingolipid

metabolism is strongly linked to the onset and progression of

cancer; however, the exact mechanism remains unclear (6).

This study aimed at exploring the possible role of

sphingolipid metabolism in pan-cancer, particularly colon

cancer, and to provide a new scheme for the prognosis

assessment as well as tailored patient therapy. In addition, the

influence of sphingolipid metabolism on the tumor immune

milieu was investigated further, laying the groundwork for the

investigation of the link between metabolic reprogramming and

the tumor immune microenvironment. Considering the

substantial impact of sphingolipid metabolism on the survival

and treatment options of COAD patients, we developed a unique

and reliable prognostic discriminant model based on the

sphingolipid metabolism classification technique.
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Material and methods

Acquisition of COAD datasets and
SLP genes

The gene expression profiles and relevant clinicopathological

data from COAD patients were retrieved from the TCGA

(https://portal.gdc.cancer.gov/) and GEO (https://www.ncbi.

nlm.nih.gov/) datasets. The TCGA dataset consisting of 473

COAD samples was used as the training dataset, while the

GSE39582 cohort containing 566 COAD samples was used as

the validation dataset. The “sva” package (7) in R was

implemented for generating the relative gene expression

matrices from the TCGA and GSE39582 cohorts. Until now,

over 1,200 genes related to sphingolipid metabolism have been

discovered on the “GeneCards (8)” and “MSigDB (9)” platforms.

These SLP genes were selected for further expression

profile analyses.
Identification of prognostic SLP genes

Univariate Cox regression analysis adjusted by the

Benjamini & Hochberg (BH) technique was implemented to

screen the prognostic SLP genes in both the TCGA and

GSE39582 datasets (10). After the intersection, SLP genes with

potential prognostic values in both datasets were obtained. In

addition to the univariate Cox regression analysis, KM survival

curves were also plotted for the purpose of verifying the

prognostic performances of the above 26 SLP genes with the

help of “survival” and “survminer” packages in R (11). Finally,

the “cor” function in R was applied to explore the co-expression

relationship between these 26 prognostic SLP genes in both the

TCGA and GSE39582 datasets.
The pan-cancer landscape of SLP genes

The raw data of pan-cancer comprising the mRNA expression

profiles, clinical information, single nucleotide variation (SNV)

data, copy number variation (CNV) data, and methylation data

were gathered from The Cancer Genome Atlas (TCGA) (https://

portal.gdc.cancer.gov/). The “limma” package in R was utilized for

analyzing the differential expression of SLP genes in pan-cancer-

related tumor tissues and paracancerous tissues.

TCGA database was used to collect the SNV data across 33

cancer types. The collected data include variant-type values:

Missense_Mutation, Silent, 5 ’ Flank, 3 ’ UTR, RNA,

In_Frame_Del, Nonsense_Mutation, SLPice_Site, Intron, 5’

UTR, In_Frame_Ins, Frame_Shift_Del, Nonstop_Mutation, 3’

Flank, Frame_Shift_Ins, and Translation_Start_Site. The Silent,

Intron, IGR, 3’ UTR, 5’ UTR, 3’ Flank, and 5’ Flank were

extracted for calculating the SNV percentage. SNV mutation
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frequency (percentage) of the coding region of each gene was

computed using the formula: Number of Mutated Samples/

Number of Cancer Samples. An SNV oncoplot plot was

produced by maftools (12). Moreover, each gene’s CNV was

elevated by incorporating the heterozygosity and homozygosity

of amplification and deletion, in which over 5% was considered

to be a high-frequency CNV. The R language was applied to

visualize the results of SNV and CNV of SLP genes in pan-

cancer. The methylation probe for the individual gene’s

p r omo t e r w a s a nno t a t e d u s i n g t h e R p a c k a g e

“IlluminaHumanMethylation-450kanno.ilmn12.hg19” from

Bioconductor. The Wilcoxon signed rank test was utilized for

examining the differential methylation between all genes in the

tumor as well as healthy samples, and a P-value cutoff of 0.05

was used for identifying the genes that were substantially hypo-

methylated or hyper-methylated. Furthermore, single sample

gene set enrichment analysis (ssGSEA) was employed for

computing SLP scores in individual tumor samples so as to

identify the pathways related to sphingolipid metabolism in

several human malignancies (13). In addition, based on the

SLP scores, the samples of every tumor type were classified into

two groups, comprising the top 30% and the bottom 30%. Gene

set enrichment analysis (GSEA) was then carried out similarly to

our previous studies (14, 15).
SLP-based cluster analysis

A total of 1008 COAD patients were clustered into two

subgroups following the SLP-related gene expression profiles

using the R software package “ConsensusClusterPlus” (16). The

highest number of clusters was 9, and 80% of the total samples

were drawn 50 times, clusterAlg = “km”, distance = “euclidean”.

With the aid of R software packages “survival” and “survminer”,

the Kaplan-Meier survival analysis was then performed for the

purpose of comparing the survival difference between the two

groups. Moreover, the Wilcoxon test was conducted to observe

the expression distribution of the SLP genes in both subtypes

related to SLP (17). Furthermore, 9 typical SLP-associated

pathways and 50 typical cancer-associated pathways were

downloaded from the MSigDb platform (9). The “GSVA”

package and the “Wilcox.test” function in R were employed to

assess and compare the activities of the aforementioned

pathways between the two subtypes (18).
Cluster-based analysis of tumor
immune microenvironment

Sphingolipids are implicated in the interactions between

cancer cells and immune system, as shown by a rising number
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of studies. In order to characterize the discrepancy in the

immune response between C1 and C2 subtypes at the

macroscopic level, the R program “estimate” was first used

for calculating the immune score, stromal score, tumor purity,

and estimate the score of individual COAD samples (19). The

“estimate” algorithm was developed by Kosuke et al (20).

Based on the expression data, the “estimate” method could

estimate the matrix percentage (stromalscore) and immune

score (immunescore) of tumour samples, which might be used

to indicate the presence of matrix and immune cells. Adding

the two fractions yields the estimatescore, which might be

used to estimate the tumor’s purity. Subsequently, the R

package “ggpubr” was utilized for visualizing the results. In

order to uncover the infiltration abundance of each type of

immunocytes, the CIBERSORT, MCPcounter, QUANTISEQ,

XCELL, CIBERSORT-ABS, TIMER, and EPIC algorithms

were employed to assess the immunological characteristics

of both subtypes (21). Above 7 immunological algorithms

were conducted with the help of TIMER2.0 platform, which

was a public website using the immunedeconv method to

assess the abundance of varied immunocyte infiltration.

Subsequently, a heatmap was plotted to visualize the results

at the microscopic level. Lastly, we studied the expression of

common immune checkpoint genes (ICGs) across various

subtypes for predicting the efficacy of immune checkpoint

blockade therapy (22).
Cluster-based prediction of
drug sensitivity

For estimating the sensitivity of chemotherapeutic agents,

the R package pRRophetic was employed for determining the

half-maximal inhibitory concentration (IC50) of samples in

various groups via ridge regression (23). The pRRophetic

package is a program developed by Prof. Paul Geeleher of the

University of Minnesota (23, 24). The basic principle of this

algorithm is based on the expression profile of the cell line and

the corresponding IC50 information, and then establish a model

through ridge regression, and then use this model to predict the

chemotherapeutic response of clinical samples. Subsequently,

the IC50 values across various subtypes were compared using the

Wilcoxon test. A lower IC50 value indicated a better response

to chemotherapy.
Cluster-based annotation of differentially
expressed genes

The “limma” R package was utilized for screening DEGs

across several clusters (|logFC| > 0.585, FDR < 0.05) (25). Gene
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Ontology (GO) enrichment analysis and Kyoto Encyclopedia of

Genes and Genomes (KEGG) analysis were carried out for

selecting and visualizing the significantly enriched GO terms

and KEGG pathways in DEGs (26–28).
DEGs-based development and
verification of a novel SLP-associated
prognostic panel

The 446 samples of COAD in the TCGA data set were sorted

into training and validation cohorts. All the samples were placed

back into the random grouping 100 times in advance to prevent

the impact of random assignment bias on the stability of

subsequent modeling, and the group sampling was done with

a training cohort-to-validation cohort ratio of 1:1. Moreover,

224 samples were present in the final training cohort and 222

samples in the final internal validation cohort 1 (i.e. test1). All

the 446 samples of COAD in the TCGA data set were rated as

the internal validation cohort 2 (i.e., test2). Moreover, 562

COAD samples in the GSE39582 data set were rated as the

external validation cohort (i.e., test 3). For DEGs between

different molecular subtypes, the univariate Cox regression

analysis was carried out using the coxph function of the

survival package in R, and a P-value of < 0.05 was taken as the

filtering threshold. Moreover, Lasso regression using R package

glmnet was carried out for the purpose of eliminating the

redundancy of prognostic genes for subsequently developing

the prognostic model (29). Finally, multivariate Cox regression

analysis and the “predict” function in R were employed for

computing the risk scores of every sample of COAD. The

samples in the training, test1, test2, and test3 were all allocated

into high and low-risk subpopulations following the median risk

score of the training cohort. KM survival curves and ROC curves

were drawn for evaluating as well as calculating the prognostic

values of SLP-APP in the aforementioned cohorts.
Differential expression analysis of
SLP-APP genes

A multidimensional cancer genomics dataset called GEPIA

incorporated mass data from The Cancer Genome Atlas

(TCGA) and the Genotype-Tissue Expression project (GTEx)

(30, 31). Boxplot could be employed to determine the expression

level of a single gene in various cancer types. We identified the

expression levels of SLP-APP genes in COAD as well as healthy

colon tissues based on TCGA and GTEx data. Human Protein

Atlas (HPA, https://www.proteinatlas.org/) was used for

determining the protein expression in different tissues and
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organs of humans from the RNA and protein levels by using

transcriptomics and proteomics techniques (32, 33). We

identified the SLP-APP protein expression in both COAD and

healthy colon tissues based on HPA data.
Functional analysis of SLP metabolism-
associated genes in COAD based on the
knock-down of HIF1a gene

On the GEO platform, we discovered knock-down

sequencing data for the HIF1a gene after a search of more

than 1200 sphingolipid metabolism genes previously compiled.

Consequently, we investigated the function and possible

mechanism of HIF1a in COAD. GSE155104 is an open cell

line knock-down sequencing data set submitted by Prof.Glaus

Garzon JF et al (34). The authors cultivated the mouse colon

cancer cell line MC38 and silenced the HIF1a gene. The

transcriptomes of control cells and knock-down cell lines were

sequenced. We gathered and compiled these sequencing data,

examined the differentially expressed genes of the two cell lines

using the limma programme, and assessed the enrichment of the

GO and KEGG ontologies.
Results

Identification of prognosis-related
SLP genes

Using the “GeneCards” and “MSigDB” databases, 1287 SLP

genes were detected (Table S1). It was found that 104 SLP genes

were significantly linked to COAD prognosis using univariate Cox

analysis in the TCGA cohort (Table S2). Similarly, 164 SLP genes

were also significantly associated with the prognosis of COAD

according to the univariate Cox analysis in the GSE39582 cohort

(Table S3). After the intersection, 26 SLP genes were finally

preserved as reliable SLP genes related to prognosis (Figure 1A).

KM survival curves of 26 SLP genes were constructed to verify

their prognostic performances (Figure 1B). The co-expression

relationship of 26 genes was shown in Figure 1C. It was found that

KCNE4 and CAVIN1 were positively correlated with most genes,

such as NRP1 and S1PR3. These 26 SLP genes included LGALS4,

FDFT1, FLOT1, RAB7A, CAVIN1, BIRC5, AGPAT1,

TNFRSF11A, AGRN, SERPINE1, NRP1, MAPK12, S1PR3,

FOXC1, ATP10A, NOS2, NOTCH4, MAPK11, IDUA, FABP4,

KCNE4, ALOX12B, ISM1, NGFR, ALPP, PAQR9. As shown in

Table 1 (35–56), the majority of genes may operate as proto-

oncogenes and affect the cell proliferation, invasion, migration,

and metastasis of COAD patients.
frontiersin.org

https://www.proteinatlas.org/
https://doi.org/10.3389/fendo.2022.1045167
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yuan et al. 10.3389/fendo.2022.1045167
The pan-cancer landscape of SLP genes

To show the pan-cancer overview of the above-mentioned

26 SLP genes and reveal their potential biological function in

cancers, we comprehensively investigated the mRNA expression

traits, mutation landscapes, and methylation levels of these genes

in multiple human cancers. Our results showed that BIRC5 was

up-regulated, whereas FABP4 was down-regulated in most

cancers (Figure 2A). Increased expression of BIRC5,

SERPINE1, and PAQR9 was detected in COAD compared to
Frontiers in Endocrinology 05
that in the paracancerous tissues. Decreased expression of

LGALS4, TNFRSF11A, FABP4, and NGFR was detected in

COAD compared to that in the paracancerous tissues

(Figure 2A). As depicted in Figure 2B, the CNVs of RAB7A,

BIRC5, SERPINE1, and FABP4 were relatively high in most

cancers. Significant SNV mutation of SLP genes (especially for

NOTCH4 and ATP10A) was observed in COAD, LUAD,

SKCM, and UCEC (Figures 2C, D). High methylation levels of

PAQR9 were observed in most cancers, especially in the COAD

(Figure 2E). Nevertheless, NOS2 exhibited a relatively low
B

CA

FIGURE 1

Prognostic performances of SLP genes in colon adenocarcinoma. (A) The results of univariate Cox regression analysis: Green represents 104
genes obtained by TCGA screening, red represents 164 genes obtained by geo screening, and 26 SLP genes obtained by intersection; (B) KM
survival curves of 26 SLP genes; (C) Co-expression relationship between these 26 SLP genes in both TCGA and GEO cohorts.
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methylation level in most cancers. More importantly, these SLP

genes were significantly linked to many typical immune-related

pathways, including PD-1, IL-10, and chemokine signaling

pathways (Figure 2F). Overall, these findings suggested a close

a s soc i a t i on be tween SLP metabo l i sm and tumor

immune microenvironment.
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SLP-based cluster analysis

The 1008 samples of COAD could be classified into various

clusters by following the consensus of mRNA expression of SLP

genes. When the value of the clustering index “k” increased from 2

to 9, k = 2 was shown as the optimal point for attaining the largest
TABLE 1 Contributions of 26 sphingolipid metabolism-related genes in COAD.

Gene
Symbol

Expression
Levela

Roleb Functional Phenotype Molecular Mechanism References

LGALS4 Down-regulation TSG cell proliferation IL-6/NF-kB/STAT3 signaling pathway Kim et al. (35)

FDFT1 Up-regulation POG cell proliferation
tumor growth

NAT8 and D-pantethine Jiang et al. (36)

FLOT1 Up-regulation POG cell proliferation Unknown Baig et al. (37)

RAB7A Unknown Unknown Unknown Unknown Unknown

CAVIN1 Down-regulation Unknown Unknown Unknown Unknown

BIRC5 Up-regulation Unknown cell viability
apoptosis induction

BMF and Eomesodermin Wang et al. (38)

AGPAT1 Up-regulation POG Unknown Unknown Karagiota et al.
(39)

TNFRSF11A Up-regulation POG cell migration, invasion, and
metastasis

Ca2+-calcineurin/NFATC1-ACP5 axis Liang et al. (40)

AGRN Up-regulation Unknown Unknown Unknown Unknown

SERPINE1 Up-regulation POG cell migration
cell death

MMP1 Kim et al. (41)

NRP1 Up-regulation POG endothelial cell migration
angiogenesis

EGF and mitogen-activated protein kinase signaling
pathways

Parikh et al. (42)

MAPK12 Up-regulation POG inflammation b-catenin/Wnt activities Yin et al. (43)

S1PR3 Up-regulation POG Cell proliferation
migration invasion apoptosis

Unknown Grbčić et al. (44)

FOXC1 Up-regulation POG Cell growth
metastasis

SNAIL1/epithelial-to-mesenchymal transition Li et al. (45)

ATP10A Up-regulation Unknown Unknown Unknown Unknown

NOS2 Up-regulation POG invasiveness metastasis
apoptosis autophagy

NO/nitrosative stress Castro et al. (46)
Spiegel et al. (47)

NOTCH4 Down-regulation TSG cell proliferation migration invasion
apoptosis

NOTCH4-GATA4-IRG1 axis Scheurlen et al.
(48)
Wu et al. (49)
Zhang et al. (50)

MAPK11 Down-regulation Unknown Unknown T-type Ca (2+) channel/CDKN1A/BBC3/PUMA Dziegielewska(51)

IDUA Down-regulation Unknown Unknown Unknown Unknown

FABP4 Up-regulation POG Cell invasion metastasis fatty acid transport Tian et al. (52)

KCNE4 Up-regulation POG Unknown Unknown Liu et al. (53)

ALOX12B Unknown Unknown Unknown Unknown Unknown

ISM1 Up-regulation POG cell migration proliferation epithelial-mesenchymal transition Wu et al. (54)

NGFR Down-regulation TSG cell proliferation
invasion
colony formation
apoptosis
chemosensitivity

S100A9 Yang et al. (55)
Chen et al. (56)

ALPP Unknown Unknown Unknown Unknown Unknown

PAQR9 Unknown Unknown Unknown Unknown Unknown
Expression Levela: The increased expression level of genes in tumour tissues relative to normal or precancerous tissues is termed up-regulation, while the reduced expression level of genes in
tumour tissues is termed down-regulation. Of note, this result was derived from the matched literatures or GEPIA2 platform (http://gepia2.cancer-pku.cn/#analysis)
Roleb: TSG: tumor suppressor gene; POG: proto-oncogene.
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B C
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E

F

A

FIGURE 2

Pan-cancer overview of SLP genes. (A) Expression levels of 26 SLP genes in pan-cancer: Orange represents upregulation, green represents
downregulation, and the circle size shows the degree of difference; (B) Copy number variation status of 26 SLP genes in pan-cancer; (C) Single
nucleotide variant frequency of 26 SLP genes in pan-cancer; (D) Single nucleotide variant types of 26 SLP genes in pan-cancer; (E) The
methylation levels of 26 SLP genes in pan-cancer; (F) Relationship of 26 SLP genes with immune pathways of pan-cancer.
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differences (variations) between clusters (Figures 3A, B).

Moreover, the interference between clusters was the least when

k = 2 (Figures 3C, D). The COAD cohort was then sorted into

cluster 1 (n = 255) and cluster 2 (n = 753) (Figure 3D). KM

survival curves of the clusters indicated that C2-like COAD

patients had higher rates of survival when compared to the C1-

like COAD patients (p < 0.001, Figure 3E). The expression levels

and pathway activities of SLP metabolism were substantially

different between the two subtypes (Figure 3F). Most SLP genes

were up-regulated in the C1 subtype. Meanwhile, the activities of

most SLP pathways were also significantly increased in the C1

subtype. These findings indicated the activation of SLP

metabolism might promote the progression and degree of

COAD malignancy, thus contributing to the poor prognosis.

Furthermore, the activities of typical cancer-related pathways

exhibited remarkable differences between the C1 and C2

subtypes (Figure 3F). Specifically, the NOTCH signaling

pathway, TGF-b signaling pathway, apoptosis, angiogenesis, and
Frontiers in Endocrinology 08
hypoxia pathways were significantly activated in the C1 subtype,

which also might be responsible for the poor prognosis of the

C1 subtype.
Comparison of the immune landscape
between two clusters

First, the R “estimate” package was employed for

investigating the immune-related scores between the two

subtypes, and these scores including stromal, immune, and

estimate scores were substantially higher in the C1 subgroup

(Figure 4A). To elucidate the infiltration distribution of each

type of immunocytes between C1 and C2 subtypes, multiple

deconvolution algorithms, including TIMER, CIBERSOFT,

MCPCOUNTER QUANTISEQ, and EPIC, were performed.

Similarly, the results demonstrated a higher abundance of B

cells, CD4+ T cells, CD8+ T cells, and macrophages in C1 than
B C D E

F

A

FIGURE 3

Consensus clustering and molecular characterization of colon adenocarcinoma. (A, B) Results of hierarchical clustering analysis show that the
difference between clusters is the largest when k = 2; (C) When k = 2, the interference between clusters is minimal; (D) The cohort was
classified into C1 and C2 clusters; (E) KM survival curve of two clusters: Purple represents C1 and green represents C2; (F) Heat map results of 9
typical SLP-related pathway activation, 26 SLP gene expression and 50 typical cancer-related pathway activation between the two subtypes.
** indicated p < 0.01, *** indicated p < 0.001, **** indicated p < 0.0001.
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in C2 (Figure 4B). Moreover, the expression levels of common

genes of immune checkpoint were then compared between both

subgroups; and the results showed the up-regulation of most of

these genes (including PDCD1LG2, TIGIT, TNFSF4, LAG3,

CD86, CD40, and CD48) in C1 (Figure 4C).
Comparison of the drug sensitivity
between the subgroups

While taking into account the significant contribution of

molecularly targeted therapy to the improvement of prognosis

among individuals suffering from COAD, we evaluated the

expression profile characteristics of various clusters by using the
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R package “pRRophetic” so as to find sensitive targeted therapeutic

agents for C1 and C2 subtypes. The findings of our study revealed

that the C1 subtype might gain benefit from Bexarotene, Dasatinib,

DMOG, Embelin, Imatinib, Nilotinib, Pazopanib, and Sunitinib;

however, the C2 subtype might benefit from AKT.inhibitor.VIII,

BIBW2992, BIRB.0796, GW.441756, Metformin, Methotrexate,

Pyrimethamine, and Sorafenib (Figure 5).
Identification of differentially expressed
genes and functional enrichment analysis

To explore the variations of biological functions between the

clusters, 1381 DEGs between these clusters were detected.
B

C

A

FIGURE 4

Cluster-based tumor immune microenvironment analysis. (A) ESTIMATE algorithm-derived immune-related scores between the two clusters,
including stromal score, immune score, tumor purity, and estimate score; (B) The distribution of infiltration of the cells involved in the immune
system between the clusters using a variety of immune algorithms, such as TIMER, CIBERSOFT, CIBERSOFT-ABS, QUANTISEQ, MCPCOUNTER,
XCELL, and EPIC; (C) The common immune checkpoint genes’ expression levels in both the subgroups. * indicated p < 0.05, ** indicated p <
0.01, *** indicated p < 0.001, ns indicated not significance.
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GO analyses indicated that DEGs were primarily enriched in

extracellular matrix structural constituents, glycosaminoglycan

binding, collagen binding, integrin binding, growth factor

binding, and regulation of cell adhesion (Figure 6A). KEGG

analysis demonstrated a primary involvement of DEGs in

complement as well as coagulation cascades, focal adhesion,

ECM-receptor interaction, as well as in chemokine and PI3K-

Akt signaling pathways (Figure 6B).
Identification and verification of SLP-
associated prognostic panel

446 and 562 COAD samples retrieved from the TCGA

database and the GEO database, respectively (all containing

entire mRNA expression and survival data) were utilized

for sorting the samples into various cohorts. The current

study consisted of four cohorts: the training cohort (224

TCGA samples, making up 50% of the total), test1 cohort

(222 TCGA samples, making up 50% of the total), test2

(all 446 TCGA samples), and test3 cohort (562 GEO samples).

Particularly during the validation of SLP-APP, the test1 and
Frontiers in Endocrinology 10
test2 cohorts were employed for the internal, whereas, the test3

cohort was employed for the external validation.

The risk score model was initially constructed as per the

training cohort. Univariate Cox regression analysis carried out

on every DEG indicated that 55 of the 1381 DEGs were potential

prognostic indicators (Tables S4, S5). Subsequently, LASSO

regression analysis was carried out for eliminating collinearity

among the 55 candidate genes and to prevent over-fitting of the

prognostic model (Figures 7A, B). Finally, ten genes (i.e.,

TCEAL2, GRP, EEF1A2, LSAMP, C2CD4A, RBP1, ANO1,

HEYL, IGF1, and LAMA2) were utilized in a multivariate Cox

proportional hazards regression analysis for establishing a novel

SLP-APP (Figure 7C). The risk scores on the basis of the risk

model were calculated by the “predict” function in R, and the

samples were categorized into high- and low-risk groups having

the median risk score as the cut-off value. The levels of the 10

signature genes were then examined in the two groups

(Figures 8A–D). The samples’ risk scores were ranked from

low to high, and a scatter plot was used to visualize the survival

status. According to the findings, an increase in risk scores led to

a rise in patient fatalities and a decrease in their duration of

survival (Figures 8E–H). The survival curves of training, test1,
FIGURE 5

Cluster-based targeted-drug sensitivity analysis.
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test2, and test3 cohorts displayed a remarkably lower length of

survival in the group with a high risk as compared to the group

with a low risk (Figures 9A–D). Moreover, the ROC curve

indicated that, in the training dataset, AUC values for one-,

two- and three-year OS were 0.818, 0.878, and 0.854, respectively

(Figure 9E). In the test1 dataset, AUC values for one-, two- and

three-year OS were 0.646, 0.660, and 0.603, respectively

(Figure 9F). In the test2 dataset, AUC values for one-, two-

and three-year OS were 0.730, 0.784, and 0.749, respectively

(Figure 9G). In the test3 dataset, AUC values for one-, two- and

three-year OS were 0.615, 0.641, and 0.607, respectively

(Figure 9H). Overall, these findings verified that the 10-gene

signature showed a satisfactory prognostic prediction effect.
Differential expression analysis of
SLP-APP genes

The GEPIA2 database was utilized for comparing the mRNA

expression levels of SLP-APP genes between cancer and

paracancerous tissues. In the TCGA cohort, the transcriptomic

levels of C2CD4A and GRP were substantially higher in COAD

samples than in paracancerous tissues; nevertheless, the

transcriptomic levels of EEF1A2, IGF1, and TCEAL2 were

substantially lower in COAD samples than in paracancerous

tissues (Figure 10A). In the TCGA and GTEx cohorts, the
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transcriptomic level of C2CD4A was substantially higher in

COAD samples as compared to the paracancerous tissues;

however, the transcriptomic levels of EEF1A2, IGF1, LAMA2,

LSAMP, and TCEAL2 were significantly lower in COAD

samples than paracancerous tissues (Figure 10B). The protein

expression levels and cell location of SLP-APP genes in both

cancer and adjacent tissues were observed using the HPA

database (Figure 11).
Functional analysis of SLP metabolism-
associated genes in COAD based on the
knock-down of HIF1a gene

We obtained the raw data of transcriptome sequencing after

knocking down HIF1a gene, including 16941 gene expression of

3 paired MC38 cell lines. Compared with control cell lines,

knock-down of HIF1a gene in MC38 cell lines showed

extremely distinct molecular characteristics. A total of 1074

DEGs were identified, with 660 up-regulated genes and 414

down-regulated genes (Figure 12A). The top 20 DEGs were

shown in the heatmap form (Figure 12B). GO and KEGG

analysis indicated that these DEGs were mainly enriched in

the following terms: regulation of oxygen levels, NAD metabolic

process, pyruvate metabolic process, cell−cell junction, GTPase

regulator activity, MAPK signaling pathway, HIF−1 signaling
BA

FIGURE 6

Functional enrichment analysis of DEGs between the subgroups. (A) The gene ontology enrichment results; (B) The KEGG enrichment results.
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pathway, FoxO signaling pathway, and glycolysis (Figures 12C, D).

Overall, these findings validated the regulatory role of HIF1a in

metabolism reprogramming of COAD.
Discussion

Colon adenocarcinoma is the primary cause of cancer-

related mortalities in humans, and its onset and progression

are influenced by the presence and activity of sphingolipid

components in tumors (57, 58). According to reports,

sphingolipid is a bioactive molecule that plays a crucial

regulatory function in the majority of body cells, including cell

development control, proliferation, and programmed cell death,

as well as the regulation of exosome production (59, 60). As

demonstrated in the studies, the majority of the enzymes
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engaged in sphingolipid metabolism are responsible for the

development of colon cancer (61, 62). Accumulating evidence

has suggested that ceramide and sphingosine 1-phosphate (S1P)

served as the crucial contributor in the occurrence and

progression of COAD. The process of SLP metabolism can be

roughly divided into the following steps: sphingomyelin-

ceramides-sphinganine-S1P-hexadecenal. Some SLP-

metabolizing enzymes have been reported to be dysregulated

in human colon cancers (63). Majority of the enzymes have the

potential to increase the ratio of sphingosine-1-phosphate (S1P)

to ceramide, which in turn promote colon cancer cell survival,

proliferation and cancer progression (63, 64). Colon cancer is

associated with a reduction in alkaline-sphingomyelinase

activity, which in turn decreases the hydrolysis of

sphingomyelin and production of ceramide (65). The absence

of ceramide in colon cancer may contribute to its growth because
B

C

A

FIGURE 7

The process of LASSO-Cox regression analysis. (A, B) Lasso regression was performed to filter the candidate genes. (C) Multivariate Cox
regression analysis aids in developing the prognostic model. * indicated p < 0.05, ** indicated p < 0.01, *** indicated p < 0.001
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of its ability to suppress the proliferation of tumor cells (66). In

addition, the phosphorylation of sphingosine by sphingosine

kinases 1 (SK1) results in the formation of S1P, which promotes

the growth of colon cancer cells. Studies on human colon cancer

specimens have shown that the expression level of SK1 was

significantly higher in COAD than normal mucosa (67). During
Frontiers in Endocrinology 13
metastasis, the expression of SK1 steadily rises (68). Collectively,

disorders of enzyme activities contribute to the aberrant

expression of substrates and products of SLP metabolism, and

further promote the occurrence and progression of COAD. In

addition, the aberrant gene expressions involved in sphingolipid

metabolism may contribute to colon cancer growth and
B

C D

E

F

G

H

A

FIGURE 8

Distribution of model gene expression and patients’ survival between the subgroups with high and low risk. The model gene’s expression levels
between subpopulations with high as well as low risk in (A) train, (B) test1, (C) test2, and (D) test3 cohorts. The survival status of colon
adenocarcinoma between subpopulations of high and low risk in (E) train, (F) test1, (G) test2, and (H) test3 cohorts.
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influence the treatment response of colon cancers as well.

Additional research into SLP metabolism may offer a new

therapeutic target for colon cancer (58).

Animal research and clinical observations have shown that

the SLP metabolism of colon cancer cells has altered

dramatically (66). To determine the extent to which SLP

metabolism influences the prognosis of COAD patients and
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which genes influence the course of COAD, further research is

required. In this work, we began by identifying the genes of SLP

metabolism that exhibited a strong link to the prognosis of

individuals suffering from COAD. Then, a pan-cancer study of

these genes was conducted to highlight the significant impact of

genes associated with SLP metabolism on a range of human

malignancies. Based on the SLP metabolic genes, an
B

C D

E F G H

A

FIGURE 9

Assessment of the predictive ability of the SLP cluster-based prognostic model. Survival curve plots in (A) train, (B) test1, (C) test2, and (D) test3
cohorts. Receiver operating characteristic curves in (E) train, (F) test1, (G) test2, and (H) test3 cohorts.
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unsupervised cluster analysis was carried out, and a prognostic

risk score model was developed for estimating the probability of

survival among patients with COAD.

Studies have shown that sphingolipids and enzymes that

comprise the S1P pathway influence the development of ovarian

cancer (69). Moreover, SLP metabolism affects the amount of

estrogen in the body, thereby influencing the onset and

progression of prostate cancer; however, the precise

mechanism has not been elucidated. In our investigation, we

chose sphingolipid metabolic genes for pan-cancer analysis, and
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the findings indicated that the BIRC5 protein was expressed at a

high level in most of the malignancies, consistent with earlier

research (38, 70, 71). BIRC5 is a tiny, multi-subtype protein

whose role is to suppress apoptosis and promote cell growth

(72). Additionally, reduced NGFR expression was observed in

COAD. NGFR, a member of the tumor necrosis factor receptor

family, is a multifunctional cell surface receptor that stimulates

cell survival and differentiation during neural development,

among other tasks (73). Yang and colleagues have shown that

the NGFR expression is mainly down-regulated in colorectal
B

A

FIGURE 10

mRNA expression levels of model genes between colon adenocarcinoma and paracancerous/normal tissues using (A) TCGA cohort and (B) TCGA
+GTEx cohorts. * indicated p < 0.05.
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cancer (55). NGFR inhibits tumor cell proliferation, migration,

and invasion by inducing apoptosis and G1 phase arrest, which

is useful in inhibiting the onset and advancement of tumors (55).

More importantly, through the activation of S100A9, NGFR

enhances the chemosensitivity of colorectal cancer cells by

promoting the apoptotic and autophagic effects of 5-

fluorouracil. Consistent with our result, the deletion of NGFR

protein in colorectal cancer is linked to a poor OS in people

suffering from colorectal cancer, which is an independent

predictor of the prognosis of colorectal cancer (74).

Sphingolipids play a crucial role in the plasma membrane

and have been shown to modulate the activity of surface

receptors on immune cell surfaces (75). These metabolites

have a role in the secretion of bioactive mediators such as S1P

and ceramides, which control the crucial pathways necessary for

the activation of immune cells and affect lymphocyte efflux and

migration into the tumour microenvironment (TME) (76).

Ceramide promoted the tumor-associated macrophages

(TAMs) to differentiate into M1-like macrophages through

activation of the protein kinase C pathway (77). Following

this, M1-like macrophages induced tumor death via secreting

IL-6, IL-10, IL-12, and TNF-a (75). Ceramide-mediated

alterations of the rate of T helper 1 cell (Th1) and Th2 in

host-TME led to TME skewed toward proinflammatory milieu,

and then inhibit tumor growth (75). Moreover, C2-ceramide

exerts its anti-tumor activity by increasing the percentage of

CD8+T cells and producing perforin and granzyme B (77).

However, S1P enhanced the expression of Bcl-2 in

macrophages and encouraged the polarization of M2-like

macrophages, which further facilitated tumor evasion (78, 79).

Collectively, SLP metabolism is intimately associated with

tumour immunity, and changing levels of sphingolipid

metabolism are crucial determinants regulating TME.

Similarly, our findings revealed that PD-1, IL-10, and
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chemokine signal pathways are among the several immune-

related pathways that are substantially connected with these SLP

genes. Overall, our findings indicate that individuals with colon

adenocarcinoma have an aberrant SLP process and that the

metabolic reprogramming of tumors is intimately tied to their

immunological microenvironment. The pan-cancer description

of the SLP genes provides a good framework for future research

into additional malignancies.

Consequently, based on genes associated with sphingolipid

metabolism, 1008 individuals with COAD were effectively

classified into two metabolic subgroups (C1 and C2 subtypes).

Patients with subtype C1 had an active sphingolipid metabolism

pathway and relatively high levels of sphingolipid metabolism

genes, but their prognoses were poor. These findings showed that

the sphingolipid metabolism might have a detrimental role in the

pathophysiology of colon adenocarcinoma, and that focused

intervention of the sphingolipid metabolic pathway might

improve the clinical outcomes of COAD patients. More

importantly, we discovered that the NOTCH signaling pathway,

TGF-b signaling pathway, apoptosis, angiogenesis, and hypoxia

pathways were considerably active in the C1 subtype, which might

be one of the causes of the subtype’s poor prognosis. The NOTCH

signaling system is a highly conserved developmental pathway

essential for apoptosis, tissue structure, and morphogenesis (80,

81). Increasing data suggest that this pathway is aberrant in several

types of malignant tumors and may regulate oncogenes or tumor

suppressors (82). Staudacher et al. revealed that the TGF-b
signaling pathway is strongly linked to the incidence and

progression of advanced colon cancer (83).

Considering that the process of metabolic reprogramming in

tumors may be accompanied by an immune microenvironment

imbalance, we investigated the possible variations in the immune

microenvironment between C1 and C2 metabolic subtypes in

depth. Intriguingly, the C1 subtype with active sphingolipid
FIGURE 11

Protein expression levels and cellular location of model genes between colon adenocarcinoma and paracancerous/normal tissues using the
HPA database.
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metabolism is coupled by strong infiltration of cells of the

immune system and high expression levels of the immune

checkpoints. Specifically, the infiltration abundance of B cells,

CD4+T cells, CD8+T cells, and macrophages was greater in the

C1 subgroup than that in the C2 subgroup, and immune

checkpoint-associated genes (such as PDCD1LG2, TIGIT,

TNFSF4, LAG3, CD86, CD40, and CD48) were up-regulated

in C1 subgroup. Masugi et al. found that the PDCD1LG2

expression in colorectal cancer tumors was inversely connected

with Crohn’s lymphoid response, indicating that the

PDCD1LG2 might prevent the formation of tertiary lymphoid

tissue in colorectal cancer (84). Furthermore, by studying the

evolutionary genetic algorithms, Alderdice and colleagues found

that IL2RB is a potential predictive biomarker of immune

checkpoint therapy for colorectal cancer, which is consistent

with our study (85). Immune checkpoint inhibitors are a new

method of immunotherapy, which does not simply refer to
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improving the immunity of the body, but to improving the

immune microenvironment around the tumor, thereby

activating the activity of immune cells in the body to achieve

the purpose of anti-tumor (86). The current immune checkpoint

inhibitor treatment method has set off a boom in many tumors

and has also achieved significant clinical progress, including lung

cancer, lymphoma, melanoma, bowel cancer, and multiple other

tumor treatments (87). The findings of this research provide a

fresh approach to the future therapy of immunological

checkpoints for colon cancer.

Finally, we assessed the ability of genes involved in

sphingolipid metabolism to predict COAD survival rate. The

findings demonstrated that patients with high risk had

considerably lower survival rates than those with low risk. The

AUC value of our prognostic model shows excellent diagnostic

performance in the training set, internal verification set, and

external verification set. In conclusion, the findings of this study
B
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FIGURE 12

Functional validation of HIF1a gene in MC38 cell lines of mouse colon adenocarcinoma. (A) The volcano plot represents the differentially
expressed genes between HIF1a-KD (knock down) and control cell lines. (B) The top 20 differentially expressed genes were shown in the
heatmap. (C) GO anlysis of differentially expressed genes. (D) KEGG analysis of differentially expressed genes.
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revealed that the prognostic model based on sphingolipid

metabolism might reliably predict the likelihood of survival for

COAD patients. Our predictive diagnostic model comprises ten

genes associated with sphingolipid metabolism, including

TCEAL2, GRP, EEF1A2, LSAMP, C2CD4A, RBP1, ANO1,

HEYL, IGF1, and LAMA2. Taglia et al. have reported that GRP/

GRPR is responsible for promoting the binding of CD16+ and

CD94+ natural killer cells following inducing expression of Hsp72

by signaling via focal adhesion kinase, thus contributing to tumor

cell cytolysis (88). EEF1A2 served as an epithelial-mesenchymal

transition-related gene that was found to be closely linked to the

clinical outcomes of colon cancer, which was consistent with the

outcomes of our study. Zhou et al. demonstrated that reduced

expression of TCEAL2 may be associated with renal cell

carcinoma carcinogenesis (89). Furthermore, Chang et al.

demonstrated that LSMAP, a tumor suppressor, influences the

incidence and progression of lung cancer by regulating the

epithelial-mesenchymal transition pathway (90). C2CD4A is a

possible diagnostic marker for colon cancer, and its expression is

strongly associated with the tumor stage of colon cancer, which is

almost compatible with our results (91). As an intracellular

molecular chaperone, RBP1 is highly down-regulated in most

malignancies in humans, such as breast cancer (92). Jiang et al.

demonstrated that the expression of ANO1 is associated with

advanced colon cancer lymphatic metastasis (93). The epidermal

growth factor receptor/extracellular signal-regulated kinase signal

pathway activation influences the onset and progression of colon

cancer by upregulating the expression level of ANO1 in colon

cancer (93). Weber et al. reported that the overexpression of

HEYL might suppress the formation and migration of tumor cells

following inhibiting the intravasation of metastasis-initiating cells

(94). Gao et al. have reported that IGF1 was associated with the

pivotal precursor to colorectal cancer (95). Lee et al. uncovered

that the methylation level of LAMA2 had a crucial role in the

onset and advancement of colorectal cancer (96). Although the

functions of these hub genes in COAD need additional

investigation, our analysis reveals that they are key prognostic

variables and may be possible treatment targets.

There are still various significant limitations that need

additional investigation. Initially, we simply investigated the

prognostic significance of SLP genes in COAD. Due to the

limitation of RNA-sequencing, this study presents genes that

encode enzymes that are mainly transcription factors and

growth factors that are indirectly involved in the metabolism of

sphingolipids, such as EEF1A2, GRP, HESR, IGF1, LAMA2, etc.

However, the expression of certain genes such as SMPD1,

SMPD3, SGMS1, SGMS2, ASAH1, ASAH2, etc, that encode

enzymes directly related to the SLP metabolism was not

detected, and some genes were not associated with the clinical

outcomes of COAD. More research based on new sequencing

technologies are required to uncover the potential contributions of
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genes that encode enzymes directly related to the SLP metabolism

in COAD. Secondly, even though our analysis confirmed the

varied expression levels of genes related to the risk model at the

mRNA as well as the protein levels, this research would become

more comprehensive if in-depth biological experiments are

further conducted. Consequently, more well-designed

experimentation is required to confirm our results. Nevertheless,

despite the aforementioned limitations, it is undeniable that this

study made the first thorough investigation of SLP genes in

COAD and summarization of the pan-cancer overview of SLP

genes. Additionally, the cluster and risk score may be used

independently to assess the prognosis in people suffering

from COAD.
Conclusion

In our investigation, we examined 26 SLP genes strongly

linked to the prognosis of COAD patients. Pan-cancer

characterization of SLP genes highlighted their crucial role in

the onset and progression of tumors. Individuals suffering from

COAD were effectively sorted into two metabolic subgroups as

per the features of SLP gene expression. Active sphingolipid

metabolism subtypes were associated with the unbalanced local

tumor immune microenvironment and poor clinical outcomes.

Based on the metabolic classifier, we developed a unique and

reliable prognostic model for patients with COAD, which gives a

new perspective on the prognostic assessment of cancer patients.
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