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Purinergic receptors are ubiquitously expressed throughout the body and they

participate in the autocrine and paracrine regulation of cell function during

normal physiological and pathophysiological conditions. Extracellular

nucleotides activate several types of plasma membrane purinergic receptors

that form three distinct families: P1 receptors are activated by adenosine, P2X

receptors are activated by ATP, and P2Y receptors are activated by nucleotides

including ATP, ADP, UTP, UDP, and UDP-glucose. These specific

pharmacological fingerprints and the distinct intracellular signaling pathways

they trigger govern a large variety of cellular responses in an organ-specific

manner. As such, purinergic signaling regulates several physiological cell

functions, including cell proliferation, differentiation and death, smooth

muscle contraction, vasodilatation, and transepithelial transport of water,

solute, and protons, as well as pathological pathways such as inflammation.

While purinergic signaling was first discovered more than 90 years ago, we are

just starting to understand how deleterious signals mediated through

purinergic receptors may be involved in male infertility. A large fraction of

male infertility remains unexplained illustrating our poor understanding of male

reproductive health. Purinergic signaling plays a variety of physiological and

pathophysiological roles in the male reproductive system, but our knowledge

in this context remains limited. This review focuses on the distribution of

purinergic receptors in the testis, epididymis, and vas deferens, and their role in

the establishment and maintenance of male fertility.
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Introduction

Purinergic signaling was first described in 1929 by Drury

and Szent-Gyorgyi who showed extracellular adenosine-induced

transient effects on the mammalian heart (1). The term

“purinergic” was then proposed by Geoffrey Burnstock who

demonstrated in 1970 that adenosine 5’-triphosphate (ATP) acts

as an extracellular mediator in the gut (2). It is now known that,

through evolutionarily conserved autocrine and paracrine

communication mechanisms, extracellular adenosine, ATP,

and other types of nucleotides activate members of the

membrane-bound purinoceptor family (3–8). Receptors that

bind adenosine were named P1 purinergic receptors, and those

that bind ATP were named P2 purinergic receptors (9)

(Figure 1). P1 receptors are G protein-coupled receptors

(GPCRs) activated by adenosine. The P2 family was later

subdivided into P2X ionotropic receptors and P2Y

metabotropic receptors. P2X receptors are ligand-gated non-

selective cation channels activated by ATP, and P2Y receptors

are GPCRs activated by adenine and several uracil nucleotides

(ATP, ADP, UTP, UDP and UDP-glucose (6, 10–19) (Figure 1).

Purinergic receptors are ubiquitously expressed throughout

the body and they participate in intercellular communication

during normal physiological and pathophysiological conditions.

This review focuses on the distribution of purinergic receptors in
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the male reproductive tract, and their role in the establishment

and maintenance of male fertility.
The purinergic receptor family

P1, P2X, and P2Y receptors are expressed by virtually all cell

types, and they participate in several cell functions, including cell

proliferation, differentiation, and death, through the modulation

of a variety of intracellular signaling pathways. Other

physiological functions regulated by these receptors include

smooth muscle contraction, vasodilatation, and transepithelial

transport of water, solute, and protons, as well as pathological

pathways including inflammation.

The P2X receptor family includes seven homotrimeric

(P2X1–7) and several heterotrimeric isoforms (e.g. P2X2, 4, 6)

(Figure 2). These isoforms can be distinguished through their

ligand affinities, activation and desensitization kinetics, as well as

specific pharmacological fingerprints (11, 20). P2X receptors are

formed by two transmembrane domains separated by a large

extracellular domain and have both their N- and C-termini

domains located on the cytoplasmic side of the plasma

membrane (21). Activation of P2X receptors by ATP triggers

conformational changes that lead to the influx of calcium and

sodium, or the efflux of potassium via the opening of a non-
FIGURE 1

Classification of purinergic receptors. Once released into the extracellular space, ATP is rapidly hydrolyzed by ectonucleotidases to generate
ADP, AMP, and adenosine. Adenosine activates P1 receptors, a family of G-protein coupled receptors (GPCRs). P2X receptors are non-selective
cation channels that open in response to ATP by their only endogenous ligand. In addition to ATP and ADP, P2Y metabotropic receptors can
mediate cellular responses to uracil nucleotides and nucleotides sugars.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1049511
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Belardin et al. 10.3389/fendo.2022.1049511
selective cation-permeable channel pore (22). The P2Y receptors

consist of seven transmembrane domains with an extracellular

N-terminus domain and intracellular C-terminus domain

(Figure 2). This family is formed by eight isoforms

(P2Y1,2,4,6,11,12,13,14) that are coupled to different G

proteins and activate distinct intracellular signaling pathways

(11, 21). The missing numbers in the P2Y receptor series

indicate receptors that are unresponsive to nucleotides. The

gene coding for the P2Y11 receptor is absent in the rodent

genome. The P2Y1-like receptors P2Y1,2,4,6 activate Gq and

phospholipase C (PLC). PLC hydrolyzes phosphatidylinositol-

4,5-bisphosphate to form inositol1,4,5-trisphosphate (IP3) and

diacylglycerol (DAG), leading to the release of Ca2+ from

intracellular calcium storage organelles and activation of

protein kinase C (PKC), respectively. The P2Y11 receptor

couples to both Gq and Gs, and its activation thus increases

intracellular Ca2+ and cAMP. The P2Y12-like receptors,

P2Y12,13,14 are coupled to Gi and reduce intracellular cAMP

concentration through inhibition of adenylyl cyclase (Figure 2).

P2Y receptors were later shown to modulate additional

intracellular signaling pathways, including the recruitment of

the Gbg subunit followed by activation of phosphatidylinositol-

4,5-biphosphate 3-kinase (PI3K), PLC-b2 and PLC-b3, GPCR
kinase 2 and 3, Rho, and MAPKs (23). Different affinities of the

P2X and P2Y receptors for ATP and nucleotides confer
Frontiers in Endocrinology 03
functional specificity and physiological flexibility to various

cellular functions. As such, the P2 receptor expression profile

of a given cell underlies its unique response phenotype upon

ATP stimulation. In addition, the degradation of extracellular

ATP into ADP or UDP modulates the cellular response via

activation of different P2X and P2Y receptors (24, 25). On the

other hand, ATP is rapidly hydrolyzed into adenosine by

extracellular ectonucleotidases (26–29). Adenosine binds to P1

receptors and triggers opposite effects in cells by either inducing

a decrease in intracellular cAMP, through ADORA1 (A1) and

ADORA3 (A3) receptors that are coupled to Gi/o, or a cAMP

increase through ADORA2A (A2A) or ADORA2B (A2B)

receptors that are coupled to Gs (Figure 2).
Physiological and
pathophysiological roles of
purinergic receptors

Extracellular nucleotides are released in the extracellular

fluid during cell lysis, exocytosis, or by efflux through

transport proteins located in the cell membranes (30). These

nucleotides act in an autocrine or paracrine manner to regulate

cellular activity in physiological and pathophysiological
FIGURE 2

Topology of purinergic receptors and intracellular signaling pathways. The P2X receptors have two transmembrane domains with both their N-
and C-termini on the cytoplasmic side of the plasma membrane. Activation of P2X receptors by extracellular ATP opens a non-selective cation
channel, resulting in calcium and sodium influx or potassium efflux. P1 and P2Y receptors are GPCRs possessing seven transmembrane domains
with an extracellular N-terminus domain and an intracellular C-terminus domain. P2Y1-like receptors (P2Y1,2,4,6,11) are coupled to Gq and their
activation leads to phospholipase C (PLC) activation, generation of IP3 and DAG, and intracellular Ca2+ release. The P2Y11 receptor couples to
both Gq and Gs to increase intracellular Ca2+ and cAMP. P2Y12-like receptors (P2Y12,13,14) are coupled to Gi and thus reduce intracellular cAMP
levels through inhibition of adenylyl cyclase (AC). Adenosine P1 receptors differentially regulate the intracellular concentration of cAMP. A1 and
A3 receptors are coupled to Gi/o and induce a diminution in cAMP levels, whereas A2A and A2B receptors are coupled to Gs and their activation
leads to an elevation in intracellular cAMP.
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conditions via purinergic signaling. Adenosine has been

admin i s t e r ed c l in i ca l l y s ince the 1940s to t r ea t

supraventricular tachycardia (31, 32), and P2Y12 antagonists

are widely used as anti-thrombotic agents (19). In general,

adenosine is considered to be tissue protective and anti-

inflammatory, in contrast to ATP and UDP-glucose, which are

damage-associated molecular pattern (DAMP) molecules that

have pro-inflammatory effects (31, 33, 34). In trauma, ischemia,

stroke, etc., high levels of extracellular ATP are related to

massive inflammatory response and cell death (35). Activation

of P2Y1, P2Y2, P2Y6, P2X1 and P2X7 triggers the production of

chemokines in monocytes and dendritic cells, and promotes the

recruitment of inflammatory cells to inflamed areas (36, 37).

Tissue-resident macrophages express P2X4, which mediates

Ca2+-dependent PLA2 and COX signaling (36). In addition,

ATP acts as a “find-me” signal to promote the effective clearance

of apoptotic cells by phagocytes through activation of P2Y2 (38).

ATP and adenosine drive neutrophil migration through P2X1,

P2Y2 and A3 receptors in an autocrine manner (37, 39).

Several other purinergic modulators are now being

considered to treat central nervous system (CNS), kidney,

heart, and lung diseases, as well as diabetes, gouty arthritis,

obesity, and cancer (6, 19, 31, 33, 34, 40–47). In the CNS, P2X

and P2Y receptors regulate synaptic transmission (48). The

P2Y13 receptor, for example, participates in pain transmission

and neuroprotection (49). P2X3,4,7 and P2Y12 and P2Y14 are

involved in maladaptive pain neuroplasticity and their

antagonists have been proposed as therapeutic agents to

reduce chronic or inflammatory neuropathic pain (44, 50).

P2Y1 and P2Y13 are involved in neuronal differentiation and

axonal elongation (51, 52), and the participation of P2Y1 is

down-regulated by the activation of P2Y13 by ADP or the

activation of P2X7 (52). During neurogenesis and early brain

development, ectonucleotidases can lead to the downregulation

of purinergic signaling, which controls progenitor cell growth

and helps neuronal differentiation (53). P2Y12 located in

microglial cells directs the extension of microglial processes

and participates in the rapid closure of the blood-brain barrier

following CNS injury (54). Microglial P2Y12 can also participate

in neuron-glia intercellular communication following its

activation by ATP secreted by neurons. This pathway further

contributes to providing a neuroprotective mechanism after

acute brain injury (55). The neurological action of purinergic

receptors is important to male reproductive function, where

neuro-muscular interactions play a key role in muscle

contractions in the vas deferens and epididymis (discussed

below). In addition, ATP participates in penile erection,

through its action in the corpus cavernosum (56–58).

Purinergic receptors also participate in the regulation of the

cardiovascular system (59). In the heart, adenosine, acting

mainly on the A1 receptor, influences the cardiac pacemakers

causing a negative chronotropic effect (60). In addition,

following a decrease in oxygen concentration, erythrocytes
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release ATP that binds P2Y1 and P2Y2 receptors in blood

vessels, leading to an increase in intracellular Ca2+ and

production of nitric oxide (NO) that results in vasodilatation

(61, 62). In the testis, purinergic signaling is also involved in

circulatory disorders through an increase in NO production in

spermatic veins and seminal plasma in patients with

varicocele (63).

In addition, luminal nucleotides and adenosine are potent

modulators of transepithelial transport in nearly all tubular

organs. Several P2X, P2Y, and all P1 receptors are

differentially expressed throughout the kidney and contribute

to the regulation of renal function (33). A particularity of several

purinergic receptors is their apical localization in epithelial cells

(4). ATP release is activated by mechanical stimulation such as

cell swelling and shear stress, and ATP together with its

hydrolysis product adenosine are part of local intrarenal

mechanisms that help regulate glomerular filtration rate (GFR)

(64, 65), and water and electrolyte transport in collecting duct

principal cells (33, 66). Renal disease is often associated with

acidosis and intra-renal adenosine has a protective effect

following kidney injury (43, 67–69). Extracellular adenosine

stimulates proton secretion in the collecting duct, via

activation of A2A and A2B receptors located on the apical

membrane of intercalated cells (70). This would contribute to

reducing acidosis, thus providing additional evidence of the

protective effect of adenosine in the kidney. In contrast,

activation of P2Y14 by UDP-glucose triggers sterile

inflammation in the kidney, through the production of pro-

inflammatory chemokines in intercalated cells, and infiltration

of neutrophils and monocytes, which contribute to renal tubule

damage following renal ischemia-reperfusion injury (45). ATP

can also have a pro-inflammatory role in the kidney via

activation of P2X7. While this receptor is barely detectable in

healthy adult kidneys, its expression is increased in rodent

models of kidney disease (33). Interestingly, P2X7 KO mice do

not develop kidney fibrosis following ureteric obstruction (71).

Activation of purinergic receptors by ATP is now proposed

to be part of a non-TLR4-mediated mechanism that protects

against bacterial infections in the urinary tract and kidney (33).

Bacterial infections can induce host- or bacteria-related ATP

local signaling. Exposure of human uroepithelial A498 cells to

Escherichia coli (E. coli) induces the release of ATP and P2Y12

activation leading to IL-8 release. Interestingly, the E. coli toxin

a-hemolysin (HlyA), forms a large ATP pore in the infected cells

that contributes to the inflammatory response (72). HlyA is a

stronger inducer of IL-1 product ion compared to

lipopolysaccharide (LPS) (72).

P2X7 is one of the best characterized purinergic receptors in

the context of cancer (73), including ovarian (74), mesothelioma

(75), pancreatic cell (76), osteosarcoma cell (77), endometrial

(78) and skin cancer (79, 80). Activation of P2X7 by ATP leads

to a decrease in intracellular potassium levels, activation of

inflammasomes followed by cell death by necrosis or
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apoptosis, and mediates an inflammatory response by causing

the release of interleukin IL-1b and IL-18 (33, 36, 72, 81). This

pathway confers an anti-tumor role of P2X7 that contributes to

the immunogenic death of tumor cells. In addition, P2Y2 was

shown to inhibit cell proliferation in several cancers, such as

human colorectal carcinoma (82), human oesophageal cancer

(83), nasopharyngeal carcinoma (84), endometrial carcinoma

(85). Some antitumor therapies, such as chemotherapy and

radiation therapy, induce tissue damage and cell death, leading

to the release of many DAMP molecules – including ATP (86).

These nucleotides in the tumor microenvironment serve as the

interface of interaction with the immune system (87).

In the respiratory system, ATP participates in the secretion

of mucin through activation of P2Y2 (88) and it regulates the

respiratory rhythm (89). UDP-glucose acting on P2Y14 is

involved in airway eosinophilia associated with asthma (46). In

that study, mice treated with P2Y14 antagonists as well as mice

lacking P2Y14 had decreased eosinophilia and airway

hyperresponsiveness indicating that this receptor could be

targeted to treat asthma exacerbations and glucocorticoid-

resistant forms of asthma. P2Y12 also plays a role in bronchial

asthma (90), where it is involved in the migration of platelets to

the lung tissue and their subsequent activation following allergen

exposure (91, 92).
Purinergic receptors in the
male reproductive tract and
maturing spermatozoa

Purinergic regulation of male reproductive organs was first

described more than 20 years ago in studies showing the

physiological action of extracellular ATP and adenosine in the

vas deferens (93, 94). Years later, the role of P2X receptors in

fertility gained particular interest when P2X1 knockout mice were

proven infertile, due to a reduction in vas deferens contractions

leading to impaired sperm delivery in the ejaculate (95, 96). An

increasing number of purinergic receptors are now being described

all along the male reproductive tract. Here we focus on the role of

purinergic signaling in selected male organs, including the testis,

the epididymis, and vas deferens, as well as in spermatozoa.

Readers interested in organs located more distally in the male

reproductive tract are referred to other excellent reviews (97–99).
Testis

The testis is composed of seminiferous tubules - where

spermatogenesis takes place – that are surrounded by an

interstitial space that includes various cell types such as Leydig

cells and peritubular myoid cells. Sertoli cells in the seminiferous

tubules are responsible for the differentiation of germ cells
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located at the base of the tubule. These maturing cells migrate

along the side of Sertoli cells and become spermatozoa, which

are delivered into the tubule lumen (100–103).

Purinergic signaling is a critical component of testicular

autocrine and paracrine communication (104–111). Different

sets of purinergic receptors are expressed in the testis in a cell-

specific manner, including Leydig cells (112, 113), Sertoli cells

(108, 114), testicular peritubular cells (109), and pre- and post-

meiotic germ cells (104, 115) (Figure 3). Several P2X receptors

were initially described in the testis, including P2X1,2,3,5,7,

while P2X4 and P2X6 were not detected in this organ (115).

However, in a previous paper, P2rx4mRNA expression had been

described in mouse seminiferous tubules (116). In later studies,

P2X2, 4, 6, and 7 were detected in Leydig cells (103, 112), and

electrophysiological experiments suggested that P2X2, 4, and 6

form heteromeric channels (112).

Regarding the roles of P1 receptors in the testis, the A1

receptor was first detected in rat testes (117, 118). In a separate

study, adenosine receptors were detected in Sertoli cells by

eva lua t ing the b ind ing o f the adenos ine ana log

cyclohexyladenosine in testicular cell extracts from immature rats

(119). More recently, mRNA transcripts coding for all P1

receptors, A1, A2A, A2B, and A3, were observed in mouse

testicular peritubular cells, while only A1, A2A, and A2B

mRNAs were found in human peritubular cells (120). In the

same study, A2B protein was localized by immunocytochemistry

in human Sertoli cells, germ cells, and peritubular cells. In addition,

adenosine and the A2B agonist BAY60-6583 increased IL6 and

CXCL8 mRNA levels in isolated human testicular peritubular cells,

showing a pro-inflammatory role for adenosine in the testis.

In Leydig and Sertoli cells purinergic signaling controls

gonadotrophin responses (106, 107, 121–124). In Sertoli cells,

ATP induced the release of calcium from intracellular stores, as

well as the influx of calcium and sodium, indicating the

participation of both P2X and P2Y receptors (105). ATP-

induced sodium-dependent membrane depolarization in these

cells triggered estradiol secretion (125). ATP also increased

intracellular Ca2+ in Leydig cells triggering the secretion of

testosterone. Moreover, in the mouse testis, Sertoli cells were

shown to release ATP and adenosine, while germ cells and

myoid peritubular cells could release adenosine (106, 122). The

secretion of these extracellular mediators is under the control of

follicle-stimulating hormone (FSH) and vitamin A (retinol), and

participates in the paracrine regulation of testicular function

(122, 126). Activation of both P2X and P2Y receptors by ATP in

testicular peritubular cells induced their contractions, which

triggered directional sperm movement within the mouse

seminiferous tubules (127). Collectively, these studies showed

that ATP participates in the autocrine regulation of Sertoli cells,

as well as in a Sertoli cell to peritubular cell communication

mechanism for the transport of spermatozoa in the testis.

Another example of testicular intercellular communication

mediated by ATP was illustrated in an elegant study published by
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Fleck et al. in 2016 (104). Intimate interactions between Sertoli

cells and the maturing germ cells are crucial for spermatogenesis.

In this study, ATP secreted by Sertoli cells was proposed to activate

P2X4 and P2X7 located in spermatogonial cells to modulate

synchronized sperm development and release. Interestingly,

ATP-induced ATP release was observed, indicating the presence

of a mechanism that could increase the paracrine radius of locally

generated signals. The testis is an immune-privileged organ whose

luminal compartment is separated from the blood circulation by

Sertoli cells that form the blood-testicular barrier. Thus, a local

cell-cell intercellular communication networkmediated by luminal

factors such as ATP and adenosine would provide an ideal

mechanism through which spermatogenesis could be performed

in a synchronized manner while being protected from the

peripheral immunological environment.
Epididymis

At their exit from the testis, spermatozoa have acquired their

overall morphology characterized by their long flagellum and head
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that contains densely packed DNA, but they remain immature

cells. They acquire their fertilization capacity as they transit in the

epididymis, a process called epididymal maturation (128–133).

Another role of the epididymis is to protect sperm from the

immune system while ensuring protection against ascending and

blood pathogens (131, 134–138). Sperm maturation, protection,

and storage occur in a unique epididymal luminal environment

that has a high osmolarity, high potassium, low sodium, and low

bicarbonate concentrations, and an acidic pH compared to blood

(139–141). Communication networks between the different

epithelial cell types that line the epididymal lumen, as well as

between epithelial cells and spermatozoa, ensure tight regulation

of this optimal environment (131, 142, 143). In addition,

transcriptionally inactive spermatozoa acquire several new

proteins that are essential for their fertilization ability as they

transit along the epididymal tubule. This process occurs via the

production of extracellular vesicles called epididymosomes, which

are produced by epithelial cells and fuse with the spermmembrane

(144–149).

In rodents, the epididymis is separated from the testis by the

efferent ducts (150), and it is segmented into four main regions,
FIGURE 3

Expression of purinergic receptors in vas deferens, testis, and epididymis. Different sets of purinergic receptors belonging to the P1, P2X, and P2Y
families are expressed in the vas deferens, testis, and epididymis. These receptors are involved in various cell functions, including smooth muscle
contraction, vasodilatation, transepithelial transport as well as inflammation, and thus play a role in the establishment of male fertility. In the vas
deferens, purinergic signaling mostly participates in the regulation of smooth muscle contraction and quality of the semen. In the testis, various
purinergic receptors are expressed in a cell-specific manner, including Leydig cells, Sertoli cells, spermatogonial cells, testicular peritubular cells,
and germ cells. These purinergic receptors play a critical role in testicular autocrine and paracrine communication. In the epididymis, different
subtypes of purinergic receptors are expressed in a cell-specific and segment-specific manner. Purinergic signaling in the epididymis is part of a
complex intercellular communication network that leads to the establishment of an optimal acidic extracellular environment.
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the initial segment (IS), the caput, the corpus, and the cauda

(151). In humans, efferent ducts occupy a large portion of the

proximal epididymis, which is then divided into the caput,

corpus, and cauda (152). To our knowledge, very little is

known about purinergic signaling in the efferent ductules,

except that the pro-inflammatory receptor P2Y14 is expressed

in ciliated cells in the proximal regions and unidentified

epithelial cells in the distal regions of the human efferent ducts

(153). However, elaborate paracrine and autocrine purinergic

signaling networks are present in the epididymis. The

epididymal epithelium is lined by several cell types including

narrow cells (located exclusively in the rodent IS), and clear cells

(CC), principal cells (PC), and basal cells (BC).

As mentioned above, several purinergic receptors are located

on the luminal side of transporting epithelia (4). The epididymis

was the first intact epithelial organ where apical P2 receptors

were shown to modulate transepithelial transport (154). Ten

years later, the role of A1 and A2A receptors in the contractility

of the cauda epididymis was demonstrated (155). Various

purinergic receptors belonging to the P1, P2X, and P2Y

families, and numerous ectonucleotidases are expressed in the
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epididymis in a cell type-specific and segment-specific manner

(Figure 3) (7, 95, 98, 156–163).

In the cauda epididymis perfused in vivo, the addition of

adenosine or ATP to the luminal perfusate induced the

redistribution of the proton pumping V-ATPase from

intracellular vesicles to the apical membrane in CC in rats

(158) and mice (164) (Figure 4). Luminal acidification in this

organ is essential for the maintenance of sperm in a quiescent

state during their storage and favors the transfer of proteins from

epithelial cells to spermatozoa via epididymosomes (140, 141,

148, 165–168). V-ATPase apical accumulation in CC depends

upon elevations of intracellular cAMP and calcium (169–171).

In the rat epididymis, the apical accumulation of V-ATPase

elicited by luminal adenosine was inhibited by myristoylated

protein kinase A inhibitor, indicating the contribution of either

A2A or A2B receptors (158). Because only A1, A2B, and A3 were

detected in epithelial cells isolated by laser-cut microdissection,

and because A1 and A3 induce a decrease in cAMP, it was

postulated that A2B was responsible for the adenosine action.

This was further confirmed in the mouse epididymis, where A2B

was located in the apical membrane of CC and where its specific
FIGURE 4

Cell-cell crosstalk model of purinergic regulation in the epididymis. Model showing the participation of purinergic regulation in the coordinated
interaction between principal cells and clear cells, leading to the establishment of an optimal acidic luminal environment in the epididymis.
Located on the apical membrane of PCs, CFTR activation stimulates ATP secretion by the pannexin-1 channel (PANX-1). Extracellular ATP is
then hydrolyzed into adenosine by ectonucleotidases (EctoN) that are present on the apical surface of the epithelium. Luminal ATP activates the
P2X4 receptor, and adenosine activates the A2B receptors located on the apical membrane of CC. Activation of A2B by adenosine leads to an
elevation in intracellular cAMP. Activation of the cAMP/PKA pathway then induces V-ATPase apical membrane accumulation. Intracellular
calcium also facilitates V-ATPase membrane accumulation in CCs, following P2X4 receptor activation by luminal ATP. The redistribution of V-
ATPase from intracellular vesicles to the apical membrane results in the formation and elongation of V-ATPase-enriched microplicae in CCs,
which stimulates proton secretion. The P2X4 and A2B receptors are also located on the apical membrane of PC, and their role in PC function is
currently being evaluated.
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agonist, BAY60-6583, induced V-ATPase apical accumulation in

CC (164). A2B was also localized in the apical membrane of PC

and its role in the regulation of these cells is currently being

evaluated in our laboratory. V-ATPase-dependent proton

secretion is activated at luminal alkaline pH (70, 164, 172).

However, how these cells can sense and respond to variations in

their extracellular environment remains incompletely

understood. Modulation of purinergic signaling by

extracellular pH would provide such a pH sensory mechanism.

Indeed, some P2X receptors such as P2X4, as well as

ectonucleotidases are activated at an alkaline pH (173–175).

Increased hydrolysis of luminal ATP into adenosine by

ectonucleotidases at alkaline pH versus acidic pH was shown

to participate in V-ATPase dependent proton secretion (164).

On the other hand, activation of P2X4 by ATP could provide an

additional mechanism through which V-ATPase-dependent

proton secretion would be activated at alkaline pH.

Significant ATP concentration was measured in the luminal

perfusate collected in the vas deferens following luminal

perfusion of the cauda epididymis indicating that epididymal

epithelial cells secrete ATP (176). The cell line (DC2)

representing epididymal PC (177) also secretes ATP (176). In

the perfused cauda epididymis, the pannexin inhibitor

carbenoxolone (CBX) partially prevented luminal pH recovery

from an alkaline pH and inhibited alkaline pH-induced V-

ATPase apical accumulation (164). Altogether, these results

showed that ATP secretion by PC, followed by its rapid

hydrolysis to produce adenosine, participates in the pH-

induced activation of V-ATPase-dependent proton secretion

by CC (164). This indicates the presence of a PC-CC crosstalk

to activate proton secretion in CC (Figure 4). Interestingly,

Cystic Fibrosis Transmembrane Regulator (CFTR), the gene

mutated in cystic fibrosis also participates in ATP secretion by

PC (176). Cystic fibrosis is associated with male infertility, and it

will be interesting to determine whether dysfunction in ATP

secretion might be involved in this medical condition.

In addition to its physiological role, purinergic signaling in the

epididymis might also play a pro-inflammatory role. Epididymitis

is a relatively common disorder compared to orchitis in outpatient

clinics (178). ATP and UDP-glucose are DAMPs that could

potentially trigger sterile inflammation by activating purinergic

receptors in the epididymis. Pro-inflammatory purinergic

signaling in the epididymis was recently indicated by the

increase in CXCL10 expression induced in epithelial cells

following exposure to damaged male germ cells (179). Although

not investigated, damaged germ cells might release DAMPs, such

as ATP and UDP-glucose, and activate purinergic receptors

located on the apical membrane of epididymal epithelial cells.

Interestingly, UDP-glucose which activates P2Y14 might

participate in inflammatory disorders of the epididymis. In

particular, accumulation of spermatozoa in the epididymis

following vasectomy may induce congestive epididymitis and

subsequent tissue structural and functional alterations. P2Y14 is
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expressed by BC in all epididymal regions of non-vasectomized

men, as well as in PC located in the corpus and cauda regions

(153) (Figure 5). A subpopulation of CC located in the caput

region also showed strong P2Y14 labeling. In vasectomized men,

an increase in P2RY14 mRNA was observed in the corpus and

cauda, and stronger apical labeling was detected in PC in the

corpus region (153). Interestingly, the interstitium of the corpus

and cauda epididymis of vasectomized men was characterized by

the presence of numerous CD45+ leukocytes, compared to non-

vasectomized men. Several CD45+ leukocytes were also observed

in the corpus lumen following a vasectomy, where they appeared

to have internalized spermatozoa. Thus, this study highlighted the

potential role of P2Y14 in the generation of an inflamed-prone

environment in the epididymis following vasectomy. In addition,

UDP-glucose is involved in the homeostasis of the bacterial

envelope, and bacteria themselves could modulate ATP secretion

by epithelial cells (33, 72). Future studies will be required to test the

role of purinergic signaling in pathogen-induced epididymitis.

In spermatozoa isolated from the mouse epididymis, P2X2

participates in an ATP-mediated intracellular Ca2+ increase (180).

While spermatozoa from P2rx2 KO mice have normal functional

parameters, the fertility of P2rx2-/- males rapidly declines with

frequent mating. It was suggested that P2X2 confers a selection

advantage by enhancing the continuous production of functional

sperm under conditions of high demand. ATP is also involved in

acrosomal exocytosis, a process that releases enzymes essential for

sperm penetration into the egg (181).
Vas deferens

While several purinergic receptors are located in the vas

deferens (Figure 3), purinergic signaling in this tissue is best

known for its action on smooth muscle contraction and semen

quality, which has been demonstrated in several species

including humans (93, 95, 97, 182–185). Vas deferens smooth

muscle contraction is initiated by motor nerve stimulation and is

mediated by ATP and noradrenaline, which act as co-

transmitters of the motor response in several species (185–

187). In rats, guinea pigs, and rabbits, vas deferens muscle

contraction is biphasic, and ATP acts through P2X receptors

to stimulate the initial fast phase of contraction (186, 188–190).

In later studies, ATP was shown to play opposite roles through

inhibition of noradrenaline release mediated by P2Y12 or P2Y13

receptors, and the increase in noradrenaline release mediated by

homomeric P2X1, P2X3 or heteromeric P2X2/P2X3 receptors

(187). Confirmation of the role of the P2X1 receptor located on

the smooth muscle membrane in the contractile response

elicited by ATP was demonstrated in several additional studies

(95, 183, 184). In support of this, null-mice for the P2X1 receptor

have a 90% fertility reduction caused by reduced nerve-induced

vas deferens smooth muscle contraction (95). Of note, no effect

on spermatozoa was observed in these mice.
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In addition to ATP, adenosine is also a key mediator of

smooth muscle contraction in the vas deferens (93) and the

epididymis (191). The A1 and A2 receptors were shown to

enhance or inhibit contractions, respectively (187, 192, 193).

A2B inhibited contractions in both the prostatic and epididymal

regions of the vas deferens, while A2A was involved in the

prostatic region only (193, 194). Inhibition of contractility by

A2B was later shown to be mediated via the release of

noradrenaline and activation of potassium channels, which

involved the participation of both protein kinase A and G (195).

Regarding the purinergic modulation of transepithelial

transport in the vas deferens, luminal but not basolateral

adenosine stimulates anion secretion in cultured epithelial cells

isolated from porcine and human vas deferens (196, 197).

Adenosine also rapidly increased anion secretion in freshly

excised human vas deferens (196). ATPgS, the non-

hydrolysable form of ATP, was without effect, excluding the

role of ATP receptors in the modulation of anion transport.

Significant increase of cAMP was elicited by luminal adenosine

indicating the role of A2A or A2B receptors (196). Extensive

purinergic signaling that operates on the luminal side of the

epithelium was proposed to modulate the luminal environment

in which spermatozoa transit during ejaculation. Similar to the

epididymis, adenosine may be produced in the vas deferens

following ATP secretion and hydrolysis by ectonucleotidases. Of

note, in the kidney ATP secretion is activated by flow (33), and it

is possible that bicarbonate secretion would be increased in the
Frontiers in Endocrinology 09
vas deferens following ejaculation-induced flow. Bicarbonate

induces a cAMP increase in spermatozoa through direct

activation of bicarbonate-activated adenylyl cyclase (sAC;

ADCY10) (198). This process is essential to initiate sperm

motility and capacitation. Thus, activation of bicarbonate

secretion in the vas deferens would help prime spermatozoa

while they start their long journey to reach and fertilize the egg.

Finally, P2Y14 is expressed in BC and in the apical membrane of

PC in the human vas deferens, indicating its potential role in

immune responses triggered by the DAMP molecule UDP-

glucose in this organ (153).
Conclusion and perspective

Infertility is a major public health issue that affects nearly 1

in 7 couples in North America, and male infertility is the culprit

in up to half of these infertility cases (199, 200). Importantly, 40-

50% of male infertility is still labeled idiopathic (201), illustrating

our incomplete knowledge about male reproduction health.

Male infertility is caused by defective spermatogenesis and/or

by sperm that have reduced fertilization functions, and the

establishment of male reproductive health depends on several

physiological processes that take place in the testis and the post-

testicular reproductive tract. Purinergic signaling plays a variety

of physiological and pathophysiological roles in the male

reproductive system, but our knowledge in this context
FIGURE 5

Localization of the pro-inflammatory P2Y14 receptor in the human epididymis. Top panels: Double immunofluorescence labeling for P2Y14
(red) and the B1 subunit of the V-ATPase (V-ATPase: green) in the human caput epididymis. Two V-ATPase-positive clear cells are shown (arrow
and arrowhead). Only one clear cell is labeled for P2Y14 (arrow). Basal cells show strong labeling for P2Y14. Scale bar = 20 µm. Bottom panels:
Double immunofluorescence labeling for P2Y14 (red) and cytokeratin 5 (KRT5: green) in the human cauda epididymis. Principal cells show
strong apical labeling for P2Y14 (arrows). P2Y14 is also detected in KRT5-positive basal cells. Scale bar = 40 µm. Modified from Belardin et al.
Andrology 2022.
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remains limited. While several purinergic receptors are

expressed in the testicular and post-testicular tract, only P2X1

was shown to be indispensable for the establishment of male

fertility. The vast array of purinergic receptors located all along

the male reproductive tract could certainly provide several

compensatory mechanisms, which would mask the crucial role

of each receptor. When and how these individual receptors

become dysfunctional and drive specific disease processes in

the male reproductive tract is just starting to be elucidated.

Future progress in our understanding of purinergic signaling in

male reproduction will depend on increasing information

regarding the molecular structures of P1, P2Y, and P2X

receptors, the generation of novel knock-out mice, and the

development of specific receptor agonists and antagonists.
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