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Age-related and individual
features of the HPA axis stress
responsiveness under constant
light in nonhuman primates

Nadezhda Goncharova*, Olga Chigarova
and Tamara Oganyan

Laboratory of Experimental Endocrinology, Research Institute of Medical Primatology, Sochi, Russia
The hypothalamic-pituitary-adrenal (HPA) axis is a key adaptive neuroendocrine

system, dysfunction of which plays an important role in the increasing incidence of

stress-dependent age-related pathology. Among the environmental factors

effecting increase age-related diseases, great importance is given to

disturbances of the light-dark schedule, particularly with increased illumination

at night. While disruption of the light-dark schedule has long been recognized as a

powerful behavioral stressor, little is known regarding stress reactivity of the HPA

under constant light (CL) conditions, especially with aging and depending on the

features of stress behavior. The purpose of this investigation was to study the age-

related and individual features of the HPA axis response to acute stress exposure

(ASE) under chronic CL in nonhuman primates that are known to differ in

behavioral responsiveness to stress. Young and old female rhesus monkeys (with

control standard behavior or anxiety and depression-like behavior) were exposed

to CL (24 h light/day, 330-400 lux for 4 to 8 weeks). Control young and old

monkeys were exposed to standard lighting (SL) with natural light during the day

and darkness at night. All animals were subjected to ASE (restriction of mobility for

2 hours), functional tests with corticotrophin-releasing hormone and arginine-

vasopressin, and study of circadian rhythms of cortisol and pineal melatonin

secretion. For the first time an inhibitory effect of CL on the reaction of the

adrenal cortex to ASE was revealed in all individuals, regardless of age and

preexisting behavior stress reactivity, the mechanisms of which were age-

dependent: due to inhibition of the pituitary ACTH secretion in young animals

and mainly not affecting the ACTH secretion in old individuals. There were no

significant changes in melatonin secretion both in young and old animals. The

observed CL inhibition of adrenal cortical reactivity to ASEmay be useful to correct

increased vulnerability to ASE observed in individuals with preexisting anxiety and

depression-like stress behaviors. On the other hand, the CL induced decrease in

adrenal stress reactivity of behaviorally normal animals suggests a potential risk of

reducing the adaptive capacity of the organism under conditions of continuous

light exposure.
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Introduction

The hypothalamic-pituitary-adrenal (HPA) axis is a key

neuroendocrine system that underlies the body’s adequate

response to environmental stressors. However, its dysfunction,

accompanied by disturbances in the production of

glucocorticoid hormones, contributes to the development of

various stress-dependent diseases, including age-related, for

example mental, metabolic, cognitive, cardiovascular,

neurodegenerative, etc., the incidence of which is increasing

(1–6). Increasing incidence of age-related diseases is largely due

to rise of the proportion of aging individuals and life expectancy

and also due to expansion of the range of stressful influences in

the modern world (urbanization, environmental problems, local

military conflicts, increased mental stress at work, etc.). Among

the environmental factors effecting increase age-related diseases,

great importance is given to disturbances of the light-dark

schedule, particularly with increased illumination at night (7–

14). Technological advances have transformed modern societies

increasing the percentage of time that individuals spend indoors,

where the illumination is much lower compared to bright

sunlight or even cloudy daylight. At the same time, the

illumination on the streets at night has sharply increased due

to high levels of artificial light (11, 12, 15). Light pollution,

irregular work and activity schedules, among other factors, can

produce both transient and chronic disruption various

physiological processes such as circadian rhythms of endocrine

secretion and behavior, cognition, sleep-wake rhythm, alertness

and performance, cardiovascular system, sympathetic activity,

metabolic dysregulation, etc., and contribute to the development

of age-related stress-dependent pathology or exacerbate it (7, 9,

10, 12, 15–19).

An extensive scientific material has been accumulated,

according to which the basis of the negative impact of the

light-dark schedule disturbances on physiological processes

and health are damages in the circadian system. Thus,

numerous literature data indicate the inhibitory effects of night

lighting on pineal secretion of melatonin (MEL) (12, 13, 17, 20–

23). A lot of attention has been paid to the functioning of the

circadian system for the HPA axis in the normal conditions and

under constant light (CL) but little is known regarding stress

reactivity of the HPA axis in CL conditions.

So, it is assumed that the circadian regulation of

glucocorticoid secretion is one of the best examples of bi-

directional communication between the suprachiasmatic

nucleus (SCN) of the hypothalamus, i.e. a central light-

sensitive “master clock” and peripheral oscillators. SCN-

mediated direct and indirect (through the subparaventricular

nucleus and the dorsomedial hypothalamus) activation of

corticotrophin-releasing hormone (CRH) and arginine-

vasopressin (AVP) secretion from the hypothalamic

paraventricular nucleus (PVN) controls the rhythmic release

of adrenocorticotropic hormone (ACTH) from the pituitary
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gland, which in turn regulates the rhythmic production of

glucocorticoids in the adrenal cortex (24–28). This pathway

appears to be the main way that switches the light signal to

the HPA axis, providing the basis for the circadian release of

glucocorticoids with their zenith concentrations early in the

morning and their nadir concentrations at night for humans and

primates (25, 29, 30). In addition to this pathway, another

indirect, extrahypophyseal autonomic pathway has also been

identified. With this pathway the SCN transmits photic

information to the adrenal medulla and from there through

catecholamines to the adrenal cortex (25, 31, 32). Through this

autonomic pathway, the SCN appears to predominantly

modulate the sensitivity of the adrenal cortex to ACTH in a

time-of-day manner (30, 33, 34), in particular by regulating the

activity of the peripheral circadian clocks localized in the adrenal

cortex (25, 32, 35).

In addition to controlling the circadian secretion of

glucocorticoids with the help of the HPA axis and the

extrahypophyseal nerve pathway, a number of authors assign

certain importance in its regulation to the pineal hormone MEL

(36, 37).

The publications on the functioning of the circadian system

for the HPA axis under disruption of the light-dark schedule

were carried out mainly on rodents that are nocturnal and differ

significantly from humans and primates both in the functioning

of the HPA axis and in the sensitivity of the optical system to

light. This is probably why the data on the effect of CL on the

function of the HPA axis are rather contradictory. Most studies

point to disruption of the circadian rhythm of glucocorticoid

secretion under CL conditions, accompanied mainly by an

increase in their blood concentration in rats, mice, and

hamsters (19, 38–45) At the same time, in single studies, along

with glucocorticoids, an increase in the concentration of ACTH

(40) or the absence of alterations in ACTH levels (32, 46) was

noted. In contrast to previous works, a small number of studies

have found no change (47, 48) or decrease in circulating

glucocorticoids in response to CL in rodents (43, 49, 50). In

most clinical studies, either no changes were noted in the levels

of cortisol (CORT) in response to nighttime light exposure (51–

55) or there has been its decrease (56, 57). The increase was

observed only for a short time when applying pulses of bright

light in the morning hours (52, 53) or as part of complex changes

depending on the duration of light exposure (12). Effects of CL

on HPA axis function largely appears to depend on the timing,

the intensity, and possibly the duration of the light stimulus, as

well as the spectral characteristics of light.

Unfortunately, we did not find any data on the features of

HPA axis response to stress exposure under CL in the available

literature, with the exception of the study that investigated the

effect of an artificial light at night on the function of the adrenal

cortex and the cardiovascular system in security guards working

on the night shift (58). This study revealed an increase in the

concentration of CORT and physiological prevalence of the
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vagal tone on the cardiocirculatory activity before and after the

work shifts. We have previously presented data on the inhibitory

effect of CL on the response of the HPA axis to the

administration of AVP, which, to a certain extent, mimic the

stress effect in monkeys (59). Unfortunately, all these

investigations were performed on young individuals and did

not affect the aging process, as well as individual differences. At

the same time, the problem elucidation of stress reactivity of the

HPA axis under disruption of the light-dark schedule remains

relevant, especially during aging and depending on the features

of stress behavior. Its resolve could be a source of information

useful for the development of new approaches to prevent the

increased vulnerability to stress and stress-dependent pathology

noted in individuals with anxiety and depression-like stress

behaviors (3, 6, 60–63). On the other hand, its solution is

important to understand how chronic constant lighting affects

the ability to adapt to stressful environmental factors.

The purpose of this study was to investigate the age-related

and individual features of the HPA axis response to acute stress

exposure in CL conditions, as well as the mechanisms

underlying them, on the model of rhesus monkey females with

control standard behavior and with depression-like and anxiety-

like behavior using a two-hour restriction of their mobility

(restraint, non-rigid immobilization) in metabolic cages as an

acute psycho-emotional stress exposure (ASE), functional tests

with CRH and AVP, and the study of circadian rhythms of

plasma CORT and MEL in the basal period and on the

background of CL. The planning of functional tests with the

administration of CRH and AVP was carried out in order to

assess the role of each of these neuropeptides in the mechanism

of the identified age-related disorders in the HPA axis response

to ASE in the conditions of chronic CL. As is well known and

noted above (see page 2), CRH and AVP are secreted by

neuroendocrine neurons of the hypothalamic PVN into the

pituitary portal system. These neurons receive a large number

of diverse neural signals from various parts of the brain, which

contribute to the endocrine response to stress exposure. CRH

and AVP interact with specific receptors on corticotrophs of the

anterior pituitary gland (CRH with CRHR1 and AVP with

AVP1b, respectively) to induce ACTH secretion into the

general circulation. ACTH, after binding to type 2

melanocortin receptor in the adrenal cortex, activates a

signaling cascade that usually leads to de novo biosynthesis

and release of glucocorticoids (predominantly CORT in

humans and nonhuman primates and corticosterone in most

rodents) (6, 30). In addition to stress, as noted above (see page 2)

CRH and AVP play an important role in the rhythmic release of

ACTH and CORT receiving information from the SCN about

the environment illumination (28, 30). The administration of

CRH or AVP, as in the case of ASE, is also accompanied by an

increase in the secretion of ACTH and CORT in young and old

monkeys (6). Moreover, significant differences in ACTH

response to CRH and AVP tests were found in nonhuman
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primates differing in stress behavior, with a higher rise in

ACTH secretion in individuals with anxiety and depression-

like behavior, similar to intergroup differences in ACTH

response to ASE in old female rhesus monkeys, and in

contrast to the absence of between-group differences in ACTH

response to ASE in young monkeys (6, 61).

We demonstrated for the first time an inhibitory effect of CL

on the response of the adrenal cortex to acute stress exposure in

all individuals, regardless of age and behavioral patterns, the

mechanisms of which were age-dependent: due to inhibition of

pituitary secretion of ACTH in young animals and mainly

without affecting it, in old individuals.
Material and methods

Animals

Thirty five young adult (5–8 years) and 23 old (21–33 years)

healthy female rhesus monkeys (Macaca mulatta) were used in

the experiments. The monkeys originated from the Adler

monkey colony (Research Institute of Medical Primatology,

Sochi-Adler, Russia). The animals usually were housed in open

enclosures (housing 10-15 or 40-50 individuals of various ages,

including newborns and elderly animals) or cages designed for

group housing (3-5 individuals). During the experiment, the

animals were moved into individual metabolic cages in a

separate room with narrow windows, natural illumination

(usually from 06.00 h to 18.00 h) and controlled temperature

(25-28°C). Experimental and control animals were kept in

different rooms. The experiments were carried out in summer

time (June-August) when ovarian cycles are not typical for this

species of laboratory primates. The animals were fed pellets

prepared according to the technique of Altromin (Lage). The

pellet diet was complemented with fresh vegetables, fruits and

water ad libitum. Prior to the experiments, the animals were

adapted to the conditions of separate housing and to the

procedure of blood sampling for 4 weeks. During the

adaptation period, the lighting in the rooms with experimental

and control animals usually was about 60-130 lux. However,

artificial lighting was additionally turned on during the period of

room cleaning and experimental procedures on cloudy days for a

short period of time (see Methods section below).

All procedures were obtained approval of the Ethical

Committee of the Research Institute of Medical Primatology

(Sochi), and all operations in this study were conducted in

accordance with the guidelines of the European Convention

for the Protection of the Vertebrate Animals Used for

Experimental and Other Scientific Purposes” (Strasbourg,

18.III.1986), Directive 2010/63/EU of the European Parliament

and the Council of 22 September 2010 (on the protection of

animals used for scientific purposes).
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Amore detailed description of the conditions for keeping the

monkeys in the nursery, the assessment of their health and

behavior, as well as the preparing animals for experiments were

carried out according to standard methods, as described

earlier (64).

The experimental groups of monkeys
The data presented in the article were obtained as a result of

physiological experiments (acute psycho-emotional stress

modeling, experiment with administration of CRH, and

experiment with administration of AVP) for 3 years - from

2019 to 2021. In addition, in all animals, the features of the effect

of CL on the circadian rhythms of CORT and MEL were studied

every year. In the experiments of each year, experimental and

control groups of animals were distinguished, as well as the basal

period and the actual experimental period, i.e. period of CL and

experimental period for control animals with normal light-dark

schedule (standard light, SL).

The animals’ behavior was recorded while they were housed

in the metabolic cages, both during the period of adaptation, and

throughout experimentation. Depending on behavioral features,

both young and old animals were divided into two groups: with

healthy active adaptive behavior (standard behavior, SB) and

with maladaptive depression-like and anxiety-like behavior

(DAB). In 2019, 11 animals with DAB and 6 animals with SB

were used in experiments; in 2020 - 12 animals with DAB and 10

animals with SB; in 2021 - 8 animals with DAB and 11 animals

with SB.

Analysis of the life history of the experimental animals

revealed that 2 animals with DAB (№ 40176 - young, 34347-

old) and 1 control old animal (№35721) were exposed to severe

stress in early childhood (maternal deprivation due to maternal

death in the period from 1 month to 9 months) and growing up

separately from adult individuals, in the so-called “nursery” in

individual cages until age 1.2 years, and then were kept in the

cage designed for group housing, together with other immature

animals, deprived of mother, and previously lived in

the “nursery.”
Methods

Experiment with acute stress exposure (ASE)
Twenty two female rhesus monkeys were used in the

experiments. The group of young experimental animals

included 8 individuals (7.5 ± 0.5 years, 6.0 ± 0.5 years); the

group of old experimental animals also included 8 individuals

(26.3 ± 1.6 years, 6.1 ± 0.5 kg). The group of control animals

included 6 young monkeys (8.0 ± 0.45 years, 6.0 ± 0.2 kg). In this

experiment, 8 experimental animals with DAB (young – 5, old –

3), 8 experimental animals with SB (young – 3, old – 5), 4 control

animals with DAB, and 2 control animals with SB were used.
Frontiers in Endocrinology 04
Basal period

After adaptation period, all animals were subjected to ASE:

moderate restraint (non-rigid immobilization, restriction of

mobility) in a metabolic cage for two hours, as described

earlier (61). Restraint was achieved by using a conventional

squeeze board to press the animal to the front wall of the

metabolic cage. The body and extremities of the animal were

not tightly immobilized. Animals were subjected to the stressor

at 15.00 h. Blood samples were taken before restraint (0) and 15,

30, 60, and 120 min during application of the stressor, and at

240 min, i.e., 2 h after termination of the stressor exposure.
Constant light (CL) period and experimental period for
control animals (standard light, SL)

The adaptation and basal periods were followed by the actual

experimental period, during which artificial light (330-400 lux)

was turned on in the room with young and old animals of the

experimental groups during the day and night continuously for 8

weeks (period of CL). At the same time in the room with young

and old animals of the control groups, the light remained the

same, i.e. standard (about 60-130 lux) with predominantly

natural light during the day and darkness at night (period of

SL). It should be noted that during the daytime, the experimental

animals were additionally exposed to natural light, similar to

that in the room with the control group of animals, that is, 60-

130 lux. For chronic CL we used white light-emitting diode

lamps with a wavelength of 400-838 nm and with a predominant

wavelength range of 513-700 nm (green, yellow, orange, red

colors) intended for residential, office, and commercial premises

(LED lamp “Navigator” 71 302 NLL-G-T8-18-230-4K-G13,

Limited Liability Company “TM Navigator”, Moscow, Russia;

made in China – Xiamen Neex Optical Electronic Technology

CO., LTD). After 7 weeks of the experimental period all

experimental and control animals were exposed ASE in the

same way as in the basal period.
Experiments with CRH administration
Nineteen female rhesus monkeys were used in the

experiments, including 6 young experimental (8.0 ± 0.45 years,

5.96 ± 0.24 kg), 5 young control (6.0 ± 0.37 years, 5.0 ± 0.4 kg), 5

old experimental (27.6 ± 0.4 kg) 2.5 years, 5.0 ± 0.3 kg) and 3 old

controls (18.0 ± 0 years, 6.7 ± 0.8 kg). In this experiment, 5

experimental animals with DAB (young – 4, old – 1), 6

experimental animals with SB (young – 2, old – 4), 5 control

young animals (1 - with DAB and 4 with SB) and 3 control old

animals (1 - with DAB and 2 with SB) were used. All

experimental and control animals twice in basal period and

after 8 weeks, respectively CL period and SL period were injected

with CRH in 0.9% NaCl (Сorticotropin Releasing Factor of

human, rat, Sigma; intravenously in a dose of 1 mg/kg body

weight). Blood samples were taken before (0 min) and 15, 30, 60,
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120, and 240 min after the drug administration. Animals were

subjected to the injection of CRH at 15.00 h.

Experiments with AVP administration
Seventeen female rhesus monkeys were used in the

experiments, including 5 young experimental (7.6 ± 0.6 years,

6.2 ± 0.6 kg), 5 young control (6.6 ± 0.4 years, 5.7 ± 0.4 kg), 4 old

experimental (24.2 ± 1.7 years, 6.7 ± 0.8 kg) and 3 old controls

(29.3 ± 2.7 years, 5.7 ± 0.7 kg). In the experiment, 11 animals

with DAB and 6 animals with SB were used. All experimental

and control animals twice in basal period and after 6 weeks,

respectively CL period and SL period, were injected with AVP in

0.9% NaCl (Arg8-Vasopressin, MP Biomedicals, LLC, France)

intravenously in a dose of 1 mg/kg body weight. Blood samples

were taken before (0 min) and 15, 30, 60, 120, and 240 min after

the drug administration. Animals were subjected to the injection

of AVP at 15.00 h.
Experiments to study the circadian rhythms of
CORT and MEL

To assess the circadian rhythms of CORT and MEL, blood

samples were taken from 12 young and 10 old experimental

animals, 10 young and 6 old control animals in the basal period

and in the CL or SL period (5 weeks) at 09.00 h, 15.00 h,

and 22.00 h.

Hormone measurements
All blood samples were taken from cubital vein of the

animals. Blood samples were collected in chilled tubes with

EDTA (10.0 mg per 1 ml of blood) as the anticoagulant. At each

time point 1.0-2.0 ml of blood was taken. Blood samples were

immediately centrifuged at 2000g at +4°C, plasma stored at −70°

C for later analysis. Plasma levels of CORT, ACTH, and MEL

were measured by immunoenzyme assay using standard

hormone kits (AlkorBio, Russia for total CORT; Biomerica

Inc., USA for ACTH; IBL international GmbH, Germany for

MEL). The ELISA method for the determination of MEL

included a stage of preliminary purification on columns with a

sorbent. The sensitivity of the assay for CORT was 10.0 nmol/l.

The intra-assay and inter-assay variation coefficients (C.V.) for

CORT did not exceed 10 and 15%, respectively. The sensitivity of

the assay for ACTH was 0.22 pg/ml. The intra-assay and inter-

assay variation coefficients for ACTH did not exceed 8 and 10%,

respectively. The sensitivity of the assay for MEL was 1.6 pg/ml.

The intra-assay and inter-assay variation coefficients for MEL

did not exceed 12 and 17%, respectively.

Statistical analysis
The experimental values are presented in tables and figures

as means ± S.E.M. The statistical comparisons of hormone level

differences at various time intervals after the start of exposure in

comparison with the initial levels of the same hormones and
Frontiers in Endocrinology 05
between the corresponding values of hormones under CL and SL

and in the basal period and also the age and behavioral group

differences were performed using one- and two-way analysis of

variances (ANOVA) including post hoc Tukey’s honest

significant difference test for paired comparisons (Statistics 10

software package, Stat Soft. Inc., USA). The amplitude of the

circadian rhythm of CORT was calculated as the difference

between the hormone concentrations at 09.00 and 22.00 h,

and the amplitude of the circadian rhythm of MEL was

calculated as the difference between its concentrations at 22.00

(or 21.00) and 09.00 h. The areas under curves representing

hormone concentration as a function of time (0-240 min,

response area) were calculated using the trapezium formula.
Results

Effect of chronic CL on the
response of the HPA axis to ASE
and its possible mechanisms in
young female rhesus monkeys

Effect of CL on the HPA axis stress
responsiveness

Dynamics of ACTH and CORT levels in young female

rhesus monkeys (without division by type of behavior) in

response to acute stress exposure (ASE) under basal conditions

and after 7 weeks of exposure to CL indicates the inhibitory

effect of CL on the magnitude of the rise in ACTH and CORT

concentrations (Figures 1A, B). In addition, CL reduced the

initial levels of СORT (Figure 1B). The areas under curves

representing dynamics of ACTH and CORT in response to

ASE on the background of CL were also significantly lower

than in basal period (Figures 2A, B). At the same time, there

were no significant changes in both the areas of response of

ACTH and CORT concentrations (see Figures 2C, D) and the

dynamics of their response (Figures 3A, B) to ASE in animals of

the control group in the basal period and on the background of

standard lighting. A decrease in the magnitude of the rise in

ACTH in response to ASE under conditions of CL was

statistically significant for both animals with DAB and SB

(Table 1). The decrease in the magnitude of the rise in the

level of СORT on the background of CL was characteristic of

animals with DAB (Table 1) and was also observed in animals

with SB. Thus, the response area of CORT in three experimental

animals with SB in the basal period was 227940, 204960 and

191700 nmol/l×min but under CL it was 214200, 130350 and

124200 nmol/l×min, respectively.

Thus, the obtained experimental data indicate the inhibitory

effect of CL on the response of the HPA axis to ASE by

suppressing both ACTH and CORT secretion in all

experimental young animals, regardless of behavioral

characteristics. In order to study the possible mechanisms of
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the inhibitory effect of CL on the HPA stress reactivity, we

performed functional tests with the administration of CRH and

AVP, the main central drivers of the HPA axis, and also

evaluated the effect of CL on the circadian rhythm of the

activity of the adrenal cortex and the pineal gland.
Reaction the HPA axis to
administration of CRH

It was found that in the group of experimental animals

(without subdividing them according to the type of behavior),
Frontiers in Endocrinology 06
the concentration of ACTH in response to CRH administration

on the background of CL did not statistically significantly differ

from the corresponding values in the same animals under basal

period. However, in the group there was a large individual

variability in the response of ACTH to CRH, both on the

background of CL and under basal period (Table 2). At the

same time, a certain pattern was revealed, according to which,

according to the magnitude of the rise in the level of ACTH to

the administration of CRH, animals of the experimental group

could be divided into 2 subgroups: (1st) with a high response (3

individuals with DAB) and (2nd) with a low response (3
A B

C D

E F

FIGURE 1

Dynamics of ACTH and CORT levels in peripheral blood plasma in young experimental female rhesus monkeys in the basal period (BP) and on
the background of chronic constant lighting (CL) in response to ASE (A, B), administration of CRH (C: -D- the animals with SB and -o- with DAB
in the basal period; …o… animals with SB and □ with DAB at CL period) (D), and AVP (E, F) (mean ± S.E.M.). ●p <0.05; ●●p<0.01; ●●●p<0.001
- vs. relative values in the basal period.
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individuals with SB) (Figure 1C). In animals with DAB, the

concentration of ACTH on the background of CL 120 and

240 min after the administration of CRH was statistically

significantly higher compared to similar values in the basal

period. At the same time, the magnitude of the increase in the

level of ACTH in animals with SB on the background of CL

remained the same as in the basal period (Figure 1C). The

response area of ACTH concentration in animals of the 2nd

subgroup was significantly lower compared with the

corresponding values in animals of the 1st subgroup both in

the basal period and on the background of CL (Figure 2A). In

control animals, there were no statistically significant changes in

the dynamics of ACTH concentration and in response areas to

the test with CRH on the background of SL (Figures 2C and 3C).

An analysis of the dynamics of the CORT level in female

rhesus monkeys in response to the administration of CRH under

basal conditions and on the background of CL revealed no

significant differences in general, except for the CORT

concentration 15 min after the administration of CRH. It was
Frontiers in Endocrinology 07
statistically significantly lower on the background of CL than in

the basal period (Figure 1D). There were no statistically

significant differences in the areas of the response of CORT on

the background of CL and in the basal period (Figure 2B). In

addition, there were no essential differences in the dynamics of

CORT concentration and the CORT response area on the

background of CL and in the basal conditions in control

animals (Figures 2D and 3D).

Reaction the HPA axis to administration of AVP
The dynamics of ACTH level in experimental and control

young female rhesus monkeys in response to the administration

of AVP in the basal conditions and on the background of CL and

SL is shown in Figures 1E and 3E. As can be seen, the CL led to a

pronounced decrease in the magnitude of the rise in ACTH

concentration in young primates before the start of AVP

administration (0 min), as well as 15 and 240 min after its

administration (Figure 1E). In addition, in response to

the administration of AVP, a statistically significant decrease
A B

C D

FIGURE 2

The areas under the concentration curves of ACTH and CORT in response to ASE, administration of CRH (including animals with SB and DAB for
ACTH) and AVP in young experimental (A) ACTH, (B) CORT and control (C) ACTH, (D) CORT female rhesus monkeys in basal period and on the
background of CL or standard lighting (SL) (mean ± S.E.M.). ●p <0.05; ●●p<0.01 - vs. the values in basal period; * p <0.05; ** p<0.01 - vs. the
relative values in the animals with DAB.
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was observed in the ACTH response area (Figure 2A). At the

same time, in control animals, in response to AVP, there were no

statistically significant differences in the ACTH response in the

basal period and on the background of SL (Figures 2C and 3E).

The magnitude of the concentration of CORT rise in the test

with AVP in the animals on the background of CL 60 and

120 min after administration of the drug as well as the area of the

CORT response, were significantly lower than in the basal period

(Figures 1F and 2B). At the same time, the dynamics of CORT

concentration and the response area of CORT in control animals
Frontiers in Endocrinology 08
in response to the injection of AVP practically did not differ

from similar values in the basal period (Figures 2D and 3F).

Thus, the reaction of the HPA axis to the test with AVP on

the background of CL was significantly lower compared to the

basal period and was similar to the response of the HPA axis to

ASE. It should be noted that in this experiment the majority of

experimental (4 individuals out of 5) and control (3 individuals

out 5) animals belonged to the DAB type. Therefore, all of the

above in the experiment with AVP primarily applies to animals

with DAB.
A B

C D

E F

FIGURE 3

Dynamics of ACTH and CORT levels in peripheral blood plasma in young control female rhesus monkeys in the basal period (BP) and on the
background of standard lighting (SL) in response to ASE (A, B), administration of CRH (C, D), and AVP (E, F) (mean ± S.E.M.).
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Blood plasma CORT and MEL at different times
of the day

The blood plasma CORT at different times of the day in

experimental female rhesus monkeys (combined group of

animals with SB and DAB) showed a pronounced decrease at

15.00 compared to similar values in the basal period (Figure 4A).

In addition, in experimental animals, an increase in the level of

CORT at 22.00 was noted with a corresponding decrease in the

amplitude of the circadian rhythm (Figure 4A). In control

animals, there was a tendency to a decrease in the level of

CORT at 15.00 and an increase at 22.00 on the background of
Frontiers in Endocrinology 09
SL, which, however, were accompanied by a statistically

significant decrease in the amplitude of the circadian rhythm

(Figure 4B). Apparently, CL is not a specific factor that induces

an increase in the concentration of CORT at night, but its

presence enhances this process.

The plasma MEL at different times of the day in

experimental and control female rhesus monkeys (combined

groups of animals with SB and DAB) demonstrated no

significant changes at 09.00, 15.00 and 22.00, as well as in the

amplitude of its circadian rhythm on the background of CL, as

well as on the background of SL (Figures 4С, D).
TABLE 1 Dynamics of ACTH and CORT concentration in peripheral blood plasma and the area under the curve of ACTH and CORT response (0-
240 min) to ASE in young experimental female rhesus monkeys with DAB and SB in the basal period and under CL (mean ± S.E.M.).

Experiment conditions Time, min S 240

0 15 30 60 120 240

DAB (n=5)

ACTH, pg/ml pg/ml×min

Basal period 52 ± 10 102 ± 20
#

137 ± 15
##

141 ± 18
#

111 ± 10 23 ± 10 25320±
2160

CL 23 ± 10 45 ± 10
●

53 ± 7
●●

97 ± 10
#

54 ± 10
##●

12 ± 3 12775±
1900●

CORT, nmol/l nmol/l×min

Basal period 715 ± 66 – 870 ± 40
##

967 ± 7
#

1007 ± 30
##

880 ± 33 218617±
4959

CL 435 ± 88
●

– 764 ± 18
#●

924 ± 36
#

992 ± 50
#

620 ± 98
●

192450 ± 26100●
(S.E.M.)

SB (n=3)

ACTH, pg/ml pg/ml×min

Basal period 18 ± 3 88 ± 20 111 ± 36 53 ± 10 38 ± 9 5 ± 1# 14480±
2300

CL 5 ± 3
●

28 ± 10 39 ± 10 39 ± 10 25 ± 9 5 ± 1 6552±
1590●

# p < 0.05; ## р < 0.01 – vs. the corresponding values before ASE (0 min); ● p<0.05; ●● р< 0.01 – vs. the values in basal period.
TABLE 2 Dynamics of ACTH concentration (pg/ml) in peripheral blood plasma and the area under the curve of ACTH response (0-240 min) to
CRH administration in young experimental female rhesus monkeys in the basal period and under CL (mean ± S.E.M.).

Experiment conditions Time, min S 240,
pg/ml×min

0 15 30 60 120 240

Basal period 18 ± 6 23 ± 5 62 ± 10
##

92 ± 20
#

34 ± 9 4 ± 0,5 10624±
2340

CL 39 ± 10 50 ± 20 90 ± 30 120 ± 38
#

120 ± 46 16 ± 6 19610±
6450

# p < 0.05; ## р < 0.01 – vs. the corresponding values before CRH administration (0 min).
frontiersin.org

https://doi.org/10.3389/fendo.2022.1051882
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Goncharova et al. 10.3389/fendo.2022.1051882
Effect of chronic CL on the response of
the HPA axis to ASE and its possible
mechanisms in old female rhesus
monkeys

Effect of CL on the HPA axis
stress responsiveness

The CL had no significant effect on the dynamics of ACTH

concentration and the response area of ACTH to ASE in the

behaviorally combined group of old animals (Figures 5A and

6A) and also in the animals with SB (Table 3). However, a slight

decrease in the concentration of ACTH was observed in two

animals with DAB (Table 3). At the same time, in contrast to

ACTH, the magnitude of the rise in CORT level in response to

ASE on the background of CL, including the response area of

CORT, was significantly lower than in the basal period

(Figures 5B and 6B).

Thus, in old animals, in contrast to young animals, there was

no significant decrease in the ACTH response to ASE induced by

CL. At the same time, CL induced a significant decrease in both

the basal level of CORT and the magnitude of its rise in response

to ASE for all animals, regardless of behavior. Apparently, CL in

old animals inhibits the magnitude of the rise in the
Frontiers in Endocrinology 10
concentration of CORT in response to ASE, mainly without

affecting the secretion of ACTH. In order to elucidate the

mechanisms underlying the inhibitory effect of CL on the

stress reactivity of the adrenal cortex in old female rhesus

monkeys, as in the case of young animals, we studied the

response of ACTH and CORT to tests with the administration

of CRH and AVP, as well as the circadian rhythms of CORT and

MEL in basal conditions and on the background of CL.

Reaction the HPA axis to
administration of CRH

As shown by a functional test with CRH, in old

experimental female rhesus monkeys on the background of

CL, there were no significant changes in the magnitude of the

rise in ACTH concentration compared to the basal period,

except for the point of 240 min, where a statistically significant

increase in the level of ACTH was noted (Figure 5C). There

were no statistically significant changes in the ACTH response

area (Figure 6А). In control animals, there were also no

significant changes in the ACTH response to the test with

CRH on the background of standard illumination (Figures 7А

and 8A). The response of CORT to the administration of CRH

on the background of CL in old female rhesus monkeys, as in
A

C

B

D

FIGURE 4

The concentration of CORT and MEL at different times of the day and the amplitude of their circadian rhythms in behaviorally combined groups
of young experimental (n=12; A, C) and control (n=10; B, D) female rhesus monkeys in the basal conditions and under the CL or SL conditions
(mean ± S.E.M.). ● p<0.05; ●● р< 0.01 vs. the values in basal period.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1051882
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Goncharova et al. 10.3389/fendo.2022.1051882
the case of young females, did not undergo significant changes,

except for the significantly lower values of the CORT level

15 min after the administration of CRH, compared to the

response of CORT in basal period (Figure 5D). The response

area of CORT to the injection of CRH did not undergo

statistically significant changes in experimental animals

(Figure 6B). There were no significant changes in the

dynamics of the plasma CORT and the response area to the

administration of CRH in the control group of animals on the

background of SL (Figures 7В and 8B).
Frontiers in Endocrinology 11
Reaction the HPA axis to administration of AVP

In the experiment, 5 old female rhesus monkeys were used (3

individuals with DAB and 2 individuals with SB). In contrast to

young animals, the CL did not lead to a significant decrease in

the magnitude of the rise in ACTH concentration and the area

response to the administration of AVP in old female rhesus

monkeys (Figures 5E and 6A). There were no significant changes

in the ACTH response to the administration of AVP in control

old animals (Figures 7С and 8A). At the same time, it should be
A B

C D

E F

FIGURE 5

Dynamics of ACTH and CORT levels in peripheral blood plasma in old experimental female rhesus monkeys in the basal period (BP) and on the
background of chronic constant lighting (CL) in response to ASE (A, B), administration of CRH (C, D), and AVP (E, F) (mean ± S.E.M.). ●p <0.05;
●●p<0.01 - vs. relative values in the basal period.
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noted that polymorphism was observed in the reaction of ACTH

to the administration of AVP under CL. So, in 3 old

experimental animals, as well as in young female rhesus

monkeys, a decrease in the magnitude of the increase in

ACTH concentration was observed in response to the

administration of AVP. Thus, the response areas of ACTH

concentration in the basal period and under CL were

respectively: 20880, 20784 and 5602 pg/ml×min and 4512,

10728 and 3912 pg/ml×min. Similar to the dynamics of the

level of ACTH, the concentration of CORT in the peripheral

blood plasma in old experimental female rhesus monkeys in
Frontiers in Endocrinology 12
response to the AVP administration under CL did not undergo

significant changes compared to the basal period (Figures 5F and

6B). There were no significant changes in the response of CORT

to AVP in control animals on the background of SL (Figures 7D

and 8B). It should be noted that in old animals with a

pronounced decrease in the magnitude of the rise in plasma

ACTH on the background of CL, there was also a slight decrease

in the level of CORT. Thus, the response area of ACTH for

240 min in the animals under discussion was 225600, 203520,

214800 nmol/l×min, respectively, in the basal period and

199440, 182160 and 189600 nmol/l×min under CL.
A B

FIGURE 6

The areas under the concentration curves of ACTH (A) and CORT (B) in response to ASE, administration of CRH and AVP in old experimental
female rhesus monkeys in basal period and on the background of CL (mean ± S.E.M.) ●●p<0.01 - vs. the values in basal period.
TABLE 3 Dynamics of ACTH concentration (pg/ml) in peripheral blood plasma and the area under the curve of ACTH response (0-240 min) to
ASE in old female rhesus monkeys with SB and DAB in the basal period and under CL (mean ± S.E.M.).

Experiment conditions Time after the onset of ASE, min S240,
pg/ml×min

0 15 30 60 120 240

SB (n=5)

Basal period 19 ± 6 30 ± 8 50 ± 6 31 ± 8# 29 ± 6 9 ± 1 7960±
680

CL 9 ± 3 26 ± 10 46 ± 10 44 ± 10# 25 ± 4# 9 ± 1 7190±
2100

DAB (n=2)

BP-30858 66 150 140 90 74 27 24024

BP-31868 25 145 80 105 60 12 19608

CL-30858 80 130 66 105 330 80 18288

CL-31868 33 70 60 105 56 12 15048

#p < 0.05 – vs. the corresponding values before ASE (0 min).
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Blood plasma CORT and MEL at different times
of the day

As in young female rhesus monkeys, the concentration of

CORT in old animals on the background of CL was statistically

significantly lower compared to the basal period at 15.00 and was

characterized by a tendency to increase at 22.00 (Figure 9A). In

control animals, significant changes in the concentration of

CORT at different times of the day on the background of SL

were not detected (Figure 9B). Significant changes in the

circadian rhythm of MEL on the background of CL in old

female rhesus monkeys, like young females, were not revealed

either in comparison with the basal period or in comparison

with control animals (Figures 9C, D).
Discussion

As a result of the research, we demonstrated for the first time

an inhibitory effect of CL on the response of the adrenal cortex to

ASE applied in the afternoon (start at 15.00) in young mature

and old female rhesus monkeys. Inhibition of the function of the

adrenal cortex under CL was characteristic of both for animals
Frontiers in Endocrinology 13
with DAB and with control SB. Although the inhibition of the

function of the adrenal cortex was detected in all the examined

animals, regardless of age and behavior, the mechanism of the

inhibitory effect of CL on the stress reactivity of the adrenal

cortex, apparently, is age-dependent. So, young mature female

rhesus monkeys were characterized by an inhibitory effect of CL

both on the magnitude of the rise in CORT secretion and on the

magnitude of the rise in ACTH levels and its absence in control

animals with normal light-dark schedule. At the same time, a

decrease in the magnitude of the rise in the level of ACTH

preceded a decrease in the magnitude of the rise in plasma

CORT (see Figures 1-3). Therefore, it can be considered that the

inhibitory effect of CL on the secretion of CORT in young

monkeys is due to the inhibition of ACTH secretion.

Apparently, the inhibitory effect of CL on stress activation of

ACTH secretion in young animals is conditioned by the SCN-

mediated inhibition of activation of AVP secretion from the

hypothalamic PVN that controls the release of ACTH from

the pituitary gland. This is indicated, on the one hand, by the

literature data on the existence of such a neuronal pathway,

through which information about the illumination of the

environment is transmitted from the SCN to the adrenal
A B

C D

FIGURE 7

Dynamics of ACTH and CORT levels in peripheral blood plasma in old control female rhesus monkeys in the basal period (BP) and on the
background of standard lighting (SL) in response to administration of CRH (A, B) and AVP (C, D) (mean ± S.E.M).
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cortex through the activation of CRH/AVP containing neurons

of the medial parvocellular PVN and modulation of the

circadian secretion of CRH and AVP, as well as pituitary

ACTH and glucocorticoids by the adrenal cortex (24, 26, 28,

30). On the other hand, the inhibitory effect of CL on stress

activation of ACTH secretion is confirmed by our results on the

test with AVP, which revealed an inhibitory effect of CL on the

magnitude of the rise in ACTH secretion and its absence in

control animals with normal light-dark schedule (see Figures 1-

3). CRH, apparently, does not play an important role in the

mechanism of inhibition of HPA axis stress reactivity by CL,

since the test with CRH not only did not reveal a decrease in the

magnitude of the rise in ACTH levels in the behaviorally

combined group of young animals (see Table 2), but even

stimulated a significant elevated ACTH levels in animals with

DAB (see Figures 1 and 2). It should be noted that earlier, under

conditions of normal light-dark schedule we also noted a higher

ACTH response to the test with CRH in young animals with

DAB than in animals with SB (6). In addition, a higher rise in

ACTH levels in response to CRH administration was

characteristic of animals with DAВ compared with animals

with SB in the basal period in our experiment (see Figures 1

and 2).

The absence of significant changes in the dynamics of the

rise of the CORT level in response to the injection of CRH on the

background of CL compared with the basal period in most of the

studied time intervals, as well as in the area of the CORT

response (see Figures 1D and 2B) along with a significantly

higher rise ACTH secretion in DAB animals in CL conditions

(see Figure 1C) appears to be due to the inhibitory effect of CL

on sensitivity of the adrenal cortex to ACTH. Indeed, a number

of authors have shown that SCN, which receives light/dark

information from the environment, has a direct effect on the
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regulation of glucociorticoid circadian rhythms mediated by

neural projections into the hypothalamic PVN. PVN, in turn,

switches the light signal to the HPA axis, providing a basis for

diurnal fluctuations of glucocorticoids with their peak

concentrations early in the morning and their nadir levels at

night for humans and nonhuman primates (15, 25, 29, 30, 65). In

addition, SCN appears to modulate the sensitivity of the adrenal

cortex to ACTH in a time-of-day manner, possibly mediated by

an extrahypophysial autonomic pathway using peripheral

circadian clocks localized in the adrenal cortex (25, 32, 35).

Available literature data on the effect of CL on CRH are rare.

But they indicate a mismatch in the rhythms of the

concentration of CRH in the hypothalamus or CRH mRNA

expression in the PVN, ACTH and corticosterone in the blood

plasma (66, 67). Apparently, the classical scheme of regulation of

the HPA axis function, in particular under stress exposure, is

disturbed in conditions of CL, and the regulation of

glucocorticoid secretion using the extrahypophyseal

autonomous pathway becomes important, accompanied by a

disorder of the sensitivity of adrenal corticocytes to ACTH, as

well as the sensitivity of pituitary corticotrophs to AVP, which

can lead to the altered response of the adrenals to

stress exposure.

In old animals an inhibitory effect of CL on the magnitude of

the CORT level rise in response to ASE was noted mainly in the

absence of corresponding changes in the rise of plasma ACTH

(see Figures 5, 6). Apparently, in old animals, the inhibitory

effect of CL on stress reactivity of the adrenal cortex is due to a

decrease in the sensitivity of the adrenal cortex to ACTH, which

is modulated by indirect extrahypophyseal autonomic pathway

from the SCN to the adrenal cortex in a time-of-day manner (25,

30–35). This conclusion is also supported by the results of tests

with CRH and AVP, which did not reveal statistically significant
A B

FIGURE 8

The areas under the concentration curves of ACTH and CORT in response to administration of CRH (A, B) and AVP (A, B) in old control female
rhesus monkeys in basal period and on the background of standard lighting (SL) (mean ± S.E.M.).
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inhibitory effects of CL on the secretion of ACTH and CORT in

old animals (Figures 5 and 6). In addition, in old animals under

CL conditions, a more pronounced circadian decrease in the

concentration of CORT at 15.00 was revealed than in the basal

period, that is, the time of the onset of stress exposure

(see Figure 9).

However, it should be noted that in some old animals under

chronic CL there was a mild decrease in the magnitude of the

rise in ACTH concentration in response to ASE and AVP

administration along with a decrease in the magnitude of the

rise in the CORT level (see Results for old monkeys). In this

regard, it can be assumed that although in old animals CL

inhibits mainly a sensitivity of the adrenal cortex to ACTH via

the extrahypophyseal autonomic tract, in some individuals, a

decrease in the secretion of CORT in response to ASE observed

due to inhibition of ACTH secretion, that is, similar to that in

young animals.

It should be noted that, although in the groups of young and

old female rhesus monkeys, in response to the injection of CRH,

there was no decrease in ACTH (and even an increase in young

animals with DAB), and no decrease in the response area of

CORT and its levels in most of the studied intervals was

observed, there was a statistically significant decrease in the

concentration of CORT 15 min after the administration of CRH

in all animals (see Figures 1 and 5). Most likely, exogenous CRH
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on the background of CL can briefly decrease the sensitivity of

the adrenal glands to ACTH in young animals and the adrenals

to ACTH or the splanchnic nerve in most old animals.

Since a number of studies assign MEL an important role in

the regulation of circadian secretion of CORT (36, 37), and

numerous data indicate that a light at night leads to a rapid and

pronounced decrease in the secretion of MEL (12, 13, 21–23, 68,

69), we tried to evaluate the age-related and individual features

of pineal MEL secretion under CL in our experiment. Therefore,

when planning the experiment, we assumed that CL may be

accompanied by a decrease in MEL secretion, and this

phenomenon could be the main one in the supposed

impairment of HPA axis stress reactivity. However, contrary

to the expected decrease in the secretion of MEL under chronic

CL, we have never revealed a significant decrease in the

concentration of MEL at night in either young or old animals,

regardless of the behavioral characteristics (see Figures 4 and 9).

Therefore, we believe that the inhibitory effect of CL on HPA

axis stress reactivity in our experiments is not due to a decrease

in MEL.

Our finding that there were no significant changes in pineal

MEL secretion under CL is consistent with a number of

publications that also did not reveal a decrease in MEL

secretion as a result of artificial light at night in humans and

diurnal animal species (12, 13, 20, 70–72). In addition, a
A

C

B

D

FIGURE 9

The plasma concentration of CORT and MEL at different times of the day and the amplitude of their circadian rhythms in behaviorally combined
groups of old experimental (n=10; A, C) and control (n=6; B, D) female rhesus monkeys in the basal conditions and under the CL or SL
conditions (mean ± S.E.M.). ●● р< 0.01 vs. the values in basal period.
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significant role was reported for the duration, brightness,

features of the spectral characteristics of night lighting and the

places of contact of illumination with the human and animal

body (ocular or extraocular illumination) on the characteristics

of pineal secretion of MEL (12, 20, 70). In particular, it was

found that a decrease in the secretion of MEL under night

lighting is characteristic only when the retina is exposed to blue,

but not red light (13, 16, 70, 73, 74). The absence of an expected

decrease in MEL secretion under night light, that we found,

could be due to changes in the spectrum of polychromatic white

light emitted by the discussed LED lamps (see Methods)

compared to sunlight. Indeed, according to the characteristics

of the LED lamps we use, provided by the distributor, the

spectrum emitted by these lamps was characterized by 16

times less activity for short-wave blue light and only 5 times

less activity for long-wave red light compared to the spectrum of

natural sunlight. In addition, our use of a prolonged (several

weeks) CL can neutralize the melatonin-inhibiting effect of green

light, as long-term green light illumination has been shown to

rapidly desensitize melatonin suppression (75).

It should be noted that, despite the absence of changes in the

concentration of MEL in young and old female rhesus monkeys

at different times of the day (09.00, 15.00, 22.00) under CL, we

found a significant decrease in the concentration of CORT on

the background of CL in all animals in 15.00, as well as its

increase in young animals at 22.00. In addition, in young animals

there was a statistically significant decrease in the amplitude of

the circadian rhythm of CORT (the difference between its

concentration at 09.00h and 22.00h) (Figures 4 and 9). These

data, as well as the above data on a decrease in the stress

reactivity of the HPA axis under CL, indicate the damaging

effect of CL on the function of the HPA axis.

The identified age-related differences in the function of the

HPA axis under CL may be dependent on the age-related

changes in the axis “retina – SCN - tissue clock genes”, which

were noted by various authors (20, 76–78). In particular, age-

related changes have been described for the biochemistry and

morphology of SCN (20, 79), the expression of a number of

biologically active peptides of SCN (vasoactive intestinal

polypeptide; AVP) (80, 81) and an age-related decrease in the

amplitude of circadian rhythms of electrical activity in SCN (82).

According to some authors, both constriction cause progressive

age-related losses in circadian photoreception in terms of phase

shifts and melatonin suppression (76, 83).

The revealed phenomenon of the inhibitory effect of CL on

the stress reactivity of HPA axis may be of significant practical

importance. On the one hand, the findings suggest that chronic

CL with LED lamps designed for residential, office and

commercial environments may impairs the response of the

HPA axis to stress exposure. This finding, apparently, can be

used to correct increased vulnerability to stress in individuals

with preexisting anxiety and depression stress behaviors. Thus, it

is known that increased stress reactivity of the HPA axis often
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detected in persons with an anxiety and depression-prone

behavior, as well as patients with some types of clinically

diagnosed depression (6, 60, 62, 63). Perhaps, short-term

lighting courses in the evening or at night would be effective

to correct increased vulnerability the HPA axis to acute stress.

Currently, light therapy at night already is carried out for the

treatment of psychiatric diseases, in particular depression (15,

84, 85), sleep disorders (15, 86), neurodegenerative diseases (87,

88). Perhaps it is based, at least in part, on the inhibitory effect of

light on the stress reactivity of the HPA axis that we have

identified. On the other hand, the CL induced decrease in stress

reactivity of the adrenals in behaviorally normal animals

suggests a potential risk of reducing the adaptive capacity of

the organism under continuous CL conditions. Thus, a decrease

in adaptive abilities was noted among residents of the Far North

and members of expeditions in Antarctica, as well as among

people who work the night shift for a long time (89–94).
Conclusion

Thus, experiments on the study of the features of the HPA

axis response to acute stress under conditions of chronic round-

the-clock illumination (CL) on the model of young adult and old

female rhesus monkeys revealed a pronounced decrease in the

magnitude of the rise in the CORT level in response to acute

stress exposure (ASE), the mechanisms of which were age-

dependent. Young animals were characterized by an inhibitory

effect of CL on the adrenal cortex function due to inhibition of

the pituitary ACTH secretion. In turn, the inhibitory effect of CL

on ACTH secretion seems to be due to the inhibition of the

ACTH-stimulating effects of vasopressin. At the same time, in

the majority of old animals, an inhibitory effect of CL directly on

the function of the adrenal cortex without the participation

of the adenohypophysis were revealed. The inhibitory effect of

CL on the function of the adrenal cortex was detected in all

animals, regardless of behavior, although a number of individual

differences were also noted, apparently not of a fundamental

nature for the revealed phenomenon. The observed CL

inhibition of adrenal cortical reactivity to ASE may be useful

to correct increased vulnerability to ASE observed in individuals

with preexisting anxiety and depression-like stress behaviors. On

the other hand, the CL induced decrease in adrenal stress

reactivity of behaviorally normal animals suggests a potential

risk of reducing the adaptive capacity of the organism under

conditions of continuous light exposure.

The conclusion made about the inhibitory effect of CL on the

stress reactivity of the adrenal cortex in old animals has some

limitations, since in the experiment with ASE there was no

control group, and the comparison of the stress reactivity of the

HPA axis in CL conditions was carried out relative to the stress

reactivity of the HPA axis in these same animals in the

basal period.
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