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Diabetes is a very complex disease which is characterized by the appearance of

insulin resistance that is primarily compensated by an increase in pancreatic

beta cell mass, generating hyperinsulinemia. After time, pancreatic beta cells

die by apoptosis appearing in the second phase of the disease, and

characterized by hypoinsulinemia. There are multiple conditions that can

alter pancreatic beta cell homeostasis and viability, being the most relevant

ones; ER stress, cytotoxicity by amylin, mTORC1 hyperactivity, oxidative stress,

mitochondrial dysfunction, inflammation and alterations in autophagy/

mitophagy flux. In addition, the possible effects that different polyphenols

could exert in the modulation of these mechanisms and regulating

pancreatic beta cell viability are analyzed. It is necessary a profound analysis

and understanding of all the possible mechanisms involved in the control and

maintenance of pancreatic beta cell viability to develop more accurate and

target treatments for controlling beta cell homeostasis and preventing or even

reversing type 2 diabetes mellitus.
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Introduction

Type 2 diabetes mellitus (T2DM) is a very complex metabolic disease characterized

by insulin resistance as well as pancreatic b cell dysfunction, and it is considered a

worldwide epidemic (1). The pathogenesis of T2DM is multifactorial and a subject of

continuous intense investigation. b cells are a type of cells existing in the pancreatic islets

of Langerhans that secrete insulin and amylin in response to increasing glycemia. Glucose

stimulates transcription, translation and exocytosis of insulin in b cells to maintain
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systemic glucose homeostasis. In this sense, b cells sense glucose

which leads to an increase in the intracellular ATP/ADP ratio

through its metabolism, thus, closing ATP-dependent potassium

channels, depolarizing cellular membrane, stimulating calcium

influx, and finally promoting insulin secretion.
Effects of gluco-, lipo- and
glucolipotoxicity in insulin secretion

Plasma free fatty acids (FFAs) and glucose exert both

positive and negative effects on pancreatic beta cell survival

and insulin secretory function, depending on their concentration

and duration.

In the presence of chronic hyperglycemia (glucotoxicity), the

uncoupling protein 2 (UCP2) expression in beta cells is

increased, and this event is associated with a reduction in the

ratio of ATP to ADP, thus inhibiting glucose-stimulated insulin

secretion (GSIS), which contributes to the development of

T2DM (2–4). In this regard, it was described that UCP2

upregulation, by the deletion of the deacetylase SIRT1,

contributes to diminish GSIS (5). More recently, other authors

demonstrated that ROS and GSIS were increased in a b-cell–
specific UCP2 knockout (bUCP2KO) model, highlighting that

UCP2 negatively regulates GSIS by reducing mitochondrial ROS

production, and not through a defect in ATP production (6).

In the same way, a chronically exposure of b cells to elevated

concentration of FFAs, referred as lipotoxicity, results in

disturbances in lipid metabolism regulation, impairs GSIS by

an induction in UCP2 expression, increases beta-cell apoptosis

and consequently induces T2DM (7, 8).

Regarding the effects of a combined and long-term exposure

to elevated glucose and FFAs (glucolipotoxicity) on pancreatic

beta-cell function and survival, recently it has been

demonstrated that it leads to decreased GSIS and impaired

insulin gene expression, contributing to b-cell failure and

T2DM (9).
Dysfunctional mechanisms leading
to beta cell dysfunction and
T2DM progression

Different molecular mechanisms trigger beta cell

dysfunction in a glucolipotoxic scenario and includes

cytotoxicity of amylin, mTORC1 hyperactivation, ER and

oxidative stress, mitochondrial dysfunction, autophagy

impairment and islet inflammation. The main scope of this

review is to shed light on the molecular mechanisms produced in

pancreatic beta cells that lead to beta cell dysfunction,

contributing to T2DM.
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ER stress

The endoplasmic reticulum (ER) of beta cells has a high

capacity of protein synthesis and folding. However, in the

context of insulin resistance, beta cells need to synthesize

insulin beyond their capacity for protein folding and secretion,

and thereby activate the unfolded protein response (UPR). UPR

is an adaptive signaling pathway to promote cellular survival

upon accumulation of misfolded proteins in the ER. UPR

signaling sensors are inositol-requiring enzyme 1 (IRE1); PKR-

like ER kinase (PERK) and the activating transcription factor 6

(ATF6). However, if UPR is chronically activated, and protein-

folding demand in the ER exceeds capacity, unfolded proteins

start to accumulate within the ER leading to ER stress and cell

death (10, 11).

In b-cells, chronic hyperglycemia and hyperlipidemia,

especially the exposure to saturated long-chain free fatty acids,

known as important causative factors of T2DM, enhanced ER

calcium depletion, induce ER stress and thereby cause b-cell
failure (11–13).

The relationship between ER stress-induced b-cell
dysfunction and death has been extensively studied (14–17)

and it was first evidenced in a rare autosomal recessive form

of juvenile diabetes, the Wolcott-Rallison syndrome (18). In this

syndrome, mutations have been identified in the EIF2AK3 gene

encoding PERK, causing a loss-of-function of this protein and

promoting ER stress-mediated b-cell death (19).

Furthermore, the pathogenesis of Wolfram syndrome, an

autosomal recessive neurodegenerative disorder associated with

juvenile-onset diabetes mellitus, involves chronic ER stress in b-
cells. This syndrome is caused by a loss-of-function of the

wolfram syndrome gene 1 (WFS1), a component of the UPR

that participates in maintaining ER homeostasis in b-cells
(20, 21).
Cytotoxicity of amylin

Amylin, or islet amyloid polypeptide (IAPP), is a 37-amino

acid peptide hormone co-secreted with insulin by pancreatic

islet b-cells in response to nutrients, including glucose, lipids or

amino acids. It is a regulatory peptide that inhibits insulin and

glucagon secretion in the islets, but also acts in the brain

modulating satiety and inhibition of gastric emptying (22).

In human b cells, the precursor and the intermediate forms

of IAPP were increased after prolonged exposure to high glucose

(11). Furthermore, it is also hypothesized that amyloid

aggregates composed of amylin were accumulated in the b cell

of patients with T2DM, causing disruption of cell membrane

(11), inflammasome activation (23), mitochondrial damage and

ER-induced apoptosis (24, 25). More recently, it has been also

demonstrated that overexpression of human amylin (hIAPP) in
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INS-1 b-cells increases the fission of mitochondria, activates

mTORC1 and inhibits mitophagy, contributing to b cell

death (26).
mTORC1 hyperactivation

During the progression to T2DM, there are two phases. The

first one is the insulin resistant prediabetic stage, in which the

main event is the insulin resistance with normoglycemia. At this

phase, b cells increase their mass by two mechanisms, to cope

with an increased insulin demand: hyperplasia (cell number

increase) and hypertrophy (cell size increase), with concomitant

insulin and amylin secretion (27). This increase in b cell mass is

accomplished by an hyperactivation of the mammalian target of

rapamycin complex 1 (mTORC1) signaling, which is a key

effector for the growth and survival of pancreatic b cells (28).

The duration of this phase depends on the patient and, at a final

stage, if mTORC1 remains chronically overactivated, pancreatic

b cells fail, causing a significant reduction in b-cell mass, and

thus, hypoinsulinemia appears triggering hyperglycemia. These

two phases have been described in a mouse model with a chronic

mTORC1 hyperactivation caused by a specific deletion of Tsc2

in b-cells (b-TSC2-/-). These mice showed an early phase with

an increase in b-cell mass and an enhanced GSIS, but finally

leading to b-cell failure and hyperglycemia in older mice (29).

All these data pointed to mTORC1 signaling as a double-edged

sword in the progression to T2DM (30).
Altered autophagy and mitophagy

Macroautophagy, referred to here as autophagy, is a

conserved and a physiological defense mechanism against

acute stress that maintains cellular quality control by removing

protein aggregates and damaged organelles, and acts as an

essential process for maintaining cellular homeostasis in

eukaryotes alternatively to the ubiquitin-proteasome system

(UPS) (31, 32). Currently, there are three main types of

autophagy in mammalian cells: macroautophagy, chaperone-

mediated autophagy and microautophagy. Multiple signaling

pathways regulate this process, but one of most important is the

mTORC1 pathway, which activation induces aging and inhibits

autophagy (33). Importantly, autophagy deregulation is believed

to cause or contribute to aging, as well as a number of age-related

diseases, including T2DM (34, 35).

It has been extensively demonstrated that autophagy

protects pancreatic b cells under chronic hyperglycemia or

after exposure to high fat-diet, increasing b cell survival in the

progression to T2DM. In fact, specific deletion of the autophagy

gene Atg7 specifically in pancreatic b cells of mice leads to

impaired glucose tolerance and GSIS caused by an increase in
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polyubiquitinated proteins and apoptosis (36, 37). Moreover,

blocking autophagy by upregulating mTORC1 signaling using

b-TSC2-/- mice, increased pancreatic b cell death as a

consequence of an impairment of autophagy activation as well

as an induction of ER stress (29). Thus, the concept that

autophagy plays a protective role in b cells is based in its

capacity to alleviate oxidative (38) and ER-stress (29, 39–41),

as well as to clearance hIAPP and polyubiquitin protein

aggregates formed in pancreatic islets, reducing their toxicity

(42, 43), and consequently, preventing pancreatic b cell failure

(29, 44).

Mitophagy is a specialized type of autophagy that eliminates

damaged and dysfunctional mitochondria and serves to

maintain energy balance, mitochondrial quality control and

cellular protection against oxidative stress. The PTEN-induced

kinase 1 (PINK1)-Parkin pathway plays a major role in

mediating mitophagy. PINK1 protein is a sensor of

mitochondrial depolarization because it accumulates

specifically on the outer mitochondrial membrane (OMM) of

damaged mitochondria, and from there, it recruits Parkin to

mitochondria and activates it. Furthermore, Parkin protein is an

E3 ubiquitin ligase that induces ubiquitination of several OMM

proteins, and consequently, activates mitophagy (45). The role of

Parkin in the mitophagy of b cells has been assessed in Parkin-/-

streptozotocin-treated mice, which showed an impairment of

glucose tolerance, and a reduction in ATP content as well as in

GSIS (46). Moreover, mitophagy is activated under stressful

conditions, such as an exposure to proinflammatory cytokines

that induce mitochondrial damage. Thus, mitophagy-deficient b
cells are more vulnerable to inflammatory stress, leading to the

accumulation of dysfunctional and fragmented mitochondria,

increasing b-cell death and exacerbating hyperglycemia (47).

In addition, prohibitin 2 (PHB2) is an inner mitochondrial

membrane (IMM) protein, very important in development and

cell proliferation, but it also has a functional role as a mitophagy

receptor (48, 49) as well as in maintaining mitochondrial

integrity and function. Indeed, in vivo ablation of Phb2

specifically in b-cells (b-Phb2-/-) resulted in an impairment of

mitochondrial function, which leads to a loss of b-cell mass and

GSIS, attributed to an increased apoptosis of b-cells (50).
Interestingly, the pancreatic duodenal homeobox factor 1

(PDX1), similar to other genes that cause monogenic diabetes of

the young and T2DM, is a transcription factor essential for the

development of the pancreas (51–53), and was also implicated in

the control of mitophagy in pancreatic b-cells (54). Indeed, PDX1
deficiency has been associated with impaired mitochondrial

function and mitophagy as well as a reduced GSIS by inhibition

of the nuclear encoded mitochondrial factor A (TFAM) (55). In

this sense, a high expression of microRNA-765 which targets and

reduces the expression of PDX1, was founded in T2DM patients

and it was correlated with an inhibition of both mitochondrial

respiration and b-cell function (56).
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Furthermore, mitochondrial dynamics (fission/fusion) are

essential to maintain a balance between mitochondrial

biogenesis and mitochondrial turnover. Recently, there is an

increasing interest in understanding the role of mitochondrial

dynamics in the development of T2DM. Regarding this, an

imbalance between these processes leads to a reduction in

mitophagy and an accumulat ion of dysfunct ional

mitochondria (57–59). Mitochondrial fusion is mainly

coordinated by three GTPases, the homologous mitofusins 1

and 2 (MFN1, MFN2) localized in the OMM, and the optic

atrophy 1 (OPA1) protein, which resides in the IMM. In

contrast, fission is regulated by the soluble GTPase dynamin-

related protein 1 (Drp1) and the mitochondrial fission 1 protein

(FIS1). Herein, it is interesting to note that both FIS1

overexpression and FIS1 knockdown lead to a decrease in

GSIS (60, 61), suggesting that GSIS in beta cells requires a

precise expression level of this fission protein (62). Accordingly,

a downregulation of Drp1 in the pancreatic b cell line INS-1E as

well as in spread mouse islets significantly reduced the

expression of mitochondrial fusion proteins (MFN1, MFN2

and OPA1), downregulated ATP content and GSIS (63).

Additionally, an increase in the mRNA and protein expression

of MFN2 and several mitophagy-related proteins (NIX, PINK1,

and PARKIN) has been reported in prediabetic subjects, whereas

patients with T2DM showed a decreased expression of these

proteins (64), demonstrating the important role of mitophagy

and mitochondrial dynamic in the pathogenesis of T2DM.
ROS and oxidative stress

The role of reactive oxygen species (ROS) in b cell function

depends on the timing and strength of the signal. Moreover, b
cells are more vulnerable to oxidative stress because of their

minor capacity of scavenging oxidants when compared to other

types of cells (65). Herein, a transient and moderate production

of mitochondrial reactive oxygen species (mROS) is an

important signaling to promote b cell function and GSIS,

mimicking the glucose effect (6, 66). However, a chronic and

persistent elevation of ROS, as a result from inflammation or

excessive glucose and fatty acid concentrations, impairs b-cell
function by repressing the ROS signal and/or inducing

mitochondrial damage that also results in an increase in ROS

production (67, 68). This increase in mitochondrial superoxide

production activates UCPs via peroxidation of mitochondrial

phospholipids. In agreement with this, morphology studies

showed that b-cells from patients with T2D and from non-

diabetic donors had similar numbers of mitochondria, but the

mitochondrial density volume was significantly higher in

diabetic islets, which has been associated with an increase in

ROS production. In line with this, an upregulation of UCP2
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protein levels was observed in type 2 diabetic islets when

compared to non-diabetic ones (3).

Furthermore, ROS are able to oxidize cardiolipin (CL) and

other mitochondrial inner membrane phospholipids, initiating

the permeabilization of the outer mitochondrial membrane and

subsequent release of cytochrome c into the cytosol, triggering

apoptosis and b-cell mass reduction (69, 70).

Also, the group VIA Ca2+-independent phospholipase A2

(iPLA2b) proteins is attracting increasing interest as a central

participant in CL remodeling and protects b cell mitochondria

from oxidative damage (71). In fact, mutations in tafazzin

(TAZ), a mitochondrial phospholipid-lysophospholipid

transacylase that participates in CL remodeling, are implicated

in Barth syndrome, in which patients lacking functional TAZ

present with cardiomyopathy and skeletal dysfunction due to a

total CL deficiency. Very recently, it has been demonstrated a

reduced ex vivo insulin secretion under non-stimulatory low-

glucose concentrations in islets isolated from TAZ KD mice,

highlighting the importance of TAZ in regulating normal b-cell
function (72).
Mitochondrial dysfunction

Mitochondrial DNA (mtDNA) mutations and chronic

metabolic changes, such as glucotoxicity, are the main

mechanisms that contribute to b cell mitochondrial

dysfunction that results in an enhanced b cell apoptosis in

T2DM (73).

Among mtDNA mutations, a reduced expression in the

mitochondrial transcription factor B1 (TFB1M) of pancreatic

islets founded in a b-cell specific KO of TFB1M (b-Tfb1m-/-) or

caused by a variant of the TFB1M gene (rs950994), displayed

mitochondrial dysfunction, reduced ATP production and,

consequently, impaired GSIS (74, 75). Furthermore, there were

an increase in the percentage of mitochondria with vesicular and

swollen morphology, as long as an impairment of autophagy and

mitophagy flux in b cells from b-Tfb1m-/- mice when compared

to control islets (76). Together, these results highlighted the

important role of TFB1M in mitochondrial and cellular function

in pancreatic b cells. According to this, mitochondrial

fragmentation occurs in b cells exposed to high-fat diet

(HFD) (77).

In view of metabolic changes, hyperglycemia, a hallmark of

T2DM, promotes the transfer of reducing equivalents to the

respiratory chain in mitochondria of pancreatic b cells, resulting

in the hyperpolarization of the mitochondrial membrane

potential (DYM) and generation of ATP. Compared to control

islets, diabetic islets display a decreased expression of several

proteins involved in oxidative metabolism, including several

components of the mitochondrial respiratory chain (78).
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Moreover, diabetic islets showed reduced hyperpolarization of

the DYM, lower ATP levels at high glucose, impaired Ca2+

signaling and lowered GSIS (78–80). In this sense, it has been

determined very recently that a reduction in the activity of the

cytochrome C oxidase (complex IV) in islets could be a primary

inborn defect that underlies b cell dysfunction (81).
Islet inflammation

Inflammatory stress plays a crucial role in the pathogenesis

of T2DM. In fact, a mild inflammation inside islets can be

detected in T2DM patients. In this regard, the administration of

anti-inflammatory drugs generates a mild glucose decrease,

suggesting that inflammation is involved in T2DM, although it

is still unknown whether the effect of these anti-inflammatory

medications has a direct impact in pancreatic islets or it is

through the effect in other relevant metabolic tissues. In fact, this

inflammation could be derived from nutrient overload,

proinflammatory cytokines, amylin accumulation or ER stress

(82). One of the organelles that is found altered after

inflammation is mitochondria, with a dysfunctional

production of ATP and inducing the proapoptotic machinery.

An important mechanism to combat the accumulation of altered

mitochondria after an inflammatory process is mitophagy,

which is the specific mitochondrial clearance by using the

autophagic machinery. In this regard, any change in

mitophagy sensitizes pancreatic beta cells to inflammation.

Then, mitophagy is a survival mechanism in these cells in

response to inflammation (47). Oxidative stress is able to affect

mitochondria and generates a higher amount of ROS because of

the impairment in the antioxidant defenses, leading to

mitochondrial dysfunction and pancreatic beta cell failure (83).
Effects of toxic metabolites in b cell
function and viability

Apart from all the mechanisms previously explained having

a deleterious effect on pancreatic beta cells’ viability, there are

several toxic metabolites coming from the environment such as

pollutants or certain treatments that lead to a decrease in beta

cell survival. Among the most relevant metabolites are the

following: bisphenol A (BPA), heavy metal exposure,

glucocorticoids and dioxins. BPA is a common contaminant

found in the environment and it has been related with both

T1DM and T2DM because of its involvement in the reduction

and impairment of pancreatic b cells (84, 85). BPA is known as

an endocrine disruptor, affecting the hormonal system and, as it

was mentioned before, modifying cellular metabolism. Very

importantly, BPA not only affects pancreatic b-cells but can
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modify glucagon secretion produced by a cells because of a

switch in b to a cell ratio transition. Then, BPA is considered to

affect the endocrine pancreas (86, 87). BPA has a lipophilic

nature and most of the receptors are intracellular including

binding to specific hormonal receptors such as sex hormone

receptors for estrogen (ER) and androgen (AR) as well as thyroid

hormone receptor (TR) and glucocorticoid receptor (GR).

However, BPA can bind to other receptors located in the

membrane such as the membrane estrogen receptor (mER)

and G protein-coupled receptor (GPR30) (88). Very

importantly, pancreatic b cell function is mediated by ERa
and ERb in response to BPA altering the expression and

function of different ion channel (89).

Another important group of toxic metabolites is the

exposition to heavy metals including cadmium, zinc, inorganic

arsenite, manganese affecting to glucose homeostasis increasing

the risk to suffer diabetes (90). For instance, the effect of

cadmium is through an accumulation of lipids and an increase

in both inflammation and in insulin secretion (91) and inducing

the activation of c-Jun N-terminal kinases (JNK) and apoptosis

(92). Arsenite is another toxic metabolite that is even more toxic

than cadmium or manganese, because of its capacity to regulate

miR-146A, controlled by nuclear factor-kB (NF-kB). In

addition, arsenite downregulates the calcium-dependent

protein kinase (CAMK2a), which regulates insulin secretion

(93). Glucocorticoids are a group of steroids which are

secreted by the adrenal cortex in our body and it is involved

in the degradation and mobilization of stored energy involved in

tissue repair, metabolic processes and many other functions.

Glucocorticoids facilitate the appearance of insulin resistance

and diabetes (94, 95). Furthermore, dioxins are other group of

pollutants generates pancreatic b cell dysfunction (96). There are

several mechanisms involved in pancreatic b cell toxicity

produced by dioxins that have been reviewed very recently (97).
Prevention of beta cell dysfunction
by polyphenols

Although there are multiple types of natural products,

polyphenols represent more than 8000 compounds found in

plants, presenting high evidence of its protective role in different

metabolic and neurodegenerative diseases (98, 99). Polyphenols

are a group of natural products that exert their antidiabetic

effects via a variety of mechanisms which have been extensively

studied and include an improvement in mitochondrial function

by scavenging ROS which reduces oxidative damage. These

treatments have in common an increase in mitochondrial

function and biogenesis by the modulation of several

pathways, including AMPK, SIRT1 and NRF-1 targets. One of

the mechanisms involved in the protection of these compounds
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the enhancement of autophagic activity, alleviating the ER stress

and mitochondrial dysfunction provoked by the accumulation of

misfolded proteins in these cells (100). Polyphenols represent a

promising chemical group for the prevention and treatment of

several metabolic diseases such as T2DM. But, these compounds

have additional properties such as regenerative capacity. This is

important since, apart from avoiding its disappearance, it is

possible to mediate an increase in the number of cells, having

supplemental beneficial consequences (101).

As it was mentioned before, mTORC1 hyperactivation is a

key event in the progression to T2DM. There is abundant

evidence that important mechanisms involved in the

protective effects of these polyphenols against the decline of b-
cells have also been linked to autophagy enhancement, related to

mTORC1 inhibition, with or without implication of AMPK

activation. Then, mTORC1 downregulation through AMPK-

dependent and AMPK-independent mechanisms are essential in

the survival of pancreatic b cells. Different natural products have

been involved in its modulation and hence, regulating the

protective effect of autophagy including resveratrol, curcumin,

ECCG, punicalagin, oleuropein and many others. Although

many compounds have been studied, one of the best

characterized molecules is resveratrol by the use of a great

variety of approaches and very recently reviewed in (98).

Regarding in vitro studies, resveratrol inhibits mTORC1

signaling pathway by the modulation of the acetylation status

of TSC2 (102). Very recently this mechanism has been

corroborated in vivo, avoiding lipid accumulation in the liver
Frontiers in Endocrinology 06
combating obesity and complications of diabetes (103).

Autophagy promotes b-cell survival by enabling adaptive

responses to alleviate ER stress, mitochondrial dysfunction and

oxidative stress. In fact, there are many papers suggesting that

mitophagy enhancement is a potential mechanism to preserve b-
cell function and delay the progression of T2DM (104). Another

important molecule involved in pancreatic b cell failure in

T2DM is human amylin (hIAPP). hIAPP is a protein co-

secreted with insulin by pancreatic b cells and possesses a

higher propensity to misfold and aggregate inside these cells.

This propensity is especially higher when there is an increase in

insulin synthesis demand, which occurs during the progression

to T2DM, a long period of time with a characteristic insulin

resistance and an mTORC1 hyperactivity (28). Under these

conditions, autophagy activation has protective effects and

inhibits pancreatic b cell death, being a natural defense (42,

43). Flavonoids have also been involved in the protection of the

deleterious effects of hIAPP aggregates in these cells (105–109).

Apart from the actions of flavonoids already explained,

flavonoids have been also involved in an increase in

antioxidant enzymes, as a protective mechanism (110, 111).

Very importantly, flavonoids are also important regulators of

the aging process theyself, affecting not only diabetes but

different age-associated diseases (112).

Altogether, there are several molecular mechanisms involved

in b cell dysfunction and apoptosis, being some of the most

important those depicted in Figure 1. This figure also shows the

beneficial effects of some polyphenols in pancreatic b cells,
FIGURE 1

Main mechanisms involved in pancreatic b cell dysfunction and apoptosis during the progression to T2DM and/or aging. The polyphenols
mentioned in this figure have been demonstrated to activate AMPK and SIRT1 proteins in b cells, which reduces mTORC1 hyperactivation and b
cell failure, and as a consequence, preventing the onset and progression of T2DM. Green arrows indicate activation and red lines indicate
inhibition of the activity of the target protein. AMPK, adenosine monophosphate (AMP)-activated protein kinase; ECCG, Epigallocatechin gallate;
ER, endoplasmic reticulum; human amylin, hIAPP; mTORC1, mammalian/mechanistic target of rapamycin complex 1; SIRT1, sirtuin-1; T2DM,
type 2 diabetes mellitus.
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increasing cell survival and preventing the onset and progression

of T2DM.
Conclusion

In this review, the main contributors to pancreatic beta cell

failure as well as the key protective mechanisms of different

polyphenols that interfere with the different mediators of

pancreatic beta cell dysfunction in the progression to T2DM

have been summarized. Although many distinct signaling

pathways have been described, it is essential a better and more

profound understanding of the pathophysiology of the disease in

order to obtain better treatments to maintain and protect

pancreatic beta cells for longer periods of time, prolonging its

lifespan and avoiding the appearance of diabetes.
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