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Background: The role of gut microbiota in diabetes mellitus (DM) and

its complications has been widely accepted. However, the alternation of

gut microbiota in diabetic microvascular complications (DC) remains to

be determined.

Methods: Publications (till August 20th, 2022) on gut microbiota in patients with

DC were retrieved from PubMed, Web of Science, Embase and Cochrane.

Review Manager 5.3 was performed to estimate the standardized mean

difference (SMD) and 95% confidence interval (CI) and calculate alpha

diversity indices and the relative abundance of gut microbiota between

patients in DC v.s. DM and DC v.s. healthy controls (HC).

Results:We included 13 studies assessing 329 patients with DC, 232 DM patients

without DC, and 241 HC. Compared to DM, patients with DC shared a

significantly lower Simpson index (SMD = -0.59, 95% CI [-0.82, -0.36], p <

0.00001), but a higher ACE index (SMD = 0.42, 95% CI[0.11, 0.74], p = 0.009).

Compared to HC, DC patients held a lower ACE index (SMD = -0.61, 95% CI

[-1.20, -0.02], p = 0.04). The relative abundances of phylum Proteobacteria

(SMD = 0.03, 95% CI[0.01, 0.04], p = 0.003, v.s. HC) and genus Klebsiella (SMD =

0.00, 95% CI[0.00, 0.00], p < 0.00001, v.s. HC) were enriched, accompanying

with depleted abundances of phylum Firmicutes (SMD = -0.06, 95% CI[-0.11,

-0.01], p = 0.02, v.s. HC), genera Bifidobacterium (SMD = -0.01, 95% CI[-0.02,-

0.01], p < 0.0001, v.s. DM), Faecalibacterium (SMD = -0.01, 95% CI[-0.02, -0.00],

p = 0.009, v.s. DM; SMD = -0.02, 95% CI[-0.02, -0.01], p < 0.00001, v.s. HC) and

Lactobacillus (SMD = 0.00, 95% CI[-0.00, -0.00], p < 0.00001, v.s. HC) in DC.

Conclusions: Gut microbiota perturbations with the depletion of alpha

diversity and certain short-chain fatty acids (SCFAs)-producing bacteria were

associated with the pathology of DC. Therefore, gut microbiota might serve as

a promising approach for the diagnosis and treatment of DC. Further
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2022.1053900/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1053900/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1053900/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1053900/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.1053900/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.1053900&domain=pdf&date_stamp=2022-12-05
mailto:hongjinni@gdph.org.cn
mailto:mincunyun@gdph.org.cn
mailto:lindt5@mail.sysu.edu.cn
https://doi.org/10.3389/fendo.2022.1053900
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.1053900
https://www.frontiersin.org/journals/endocrinology


Hong et al. 10.3389/fendo.2022.1053900

Frontiers in Endocrinology
investigations are required to study the mechanisms by which gut dysbiosis

acts on the onset and progression of DC.
KEYWORDS

diabetic kidney disease (DKD), diabetic peripheral neuropathy (DPN), diabetic
retinopathy (DR), gut microbiota (GM), diabetic microvascular complication
Introduction
Diabetes mellitus (DM) is an epidemic and accounts for 80%

of premature deaths globally (1, 2). As of 2021, there are

approximately 537 million DM patients in the world, with an

extended increment to 700 million by 2045 (3). DM is hardly a

disease with mere elevation in blood glucose, it brings along a

plethora of microvascular complications including diabetic

retinopathy (DR), diabetic kidney disease (DKD) and diabetic

peripheral neuropathy (DPN) in most cases. These

microvascular complications are responsible for the high

mortality and morbidity rate in DM patients and account for

marked social and economic burdens (4). Although numerous

treatments for DM and resulting complications were available,

cases are still on the rise. DR is the leading cause of blindness

ophthalmic disorder in the population on working age, with a

prevalence of 77.8% in 15 years of DM patients (5–7). DKD

occurs in approximately 40% of DM, and 30%-90% of DMmight

suffer from DPN (8). These trends highlight the urgency for a

better understanding of diabetic microvascular complications

(DC) (9).

The rapid scientific interest in gut microbiota coincided with

the global increase in DM (9). The advent of next-generation

sequencing technology has greatly enhanced our understanding

of gut microbiota and host health (10, 11). The gut microbiota

was a complex microbial community, represented by 1500

different species (12, 13). DM and its complications have been

linked with dysbiosis of the gut microbiota (14). Differences in

gut microbiota composition have been observed in animal

models as well as patients with DM and complications such as

DKD, DR and DPN. In particular, perturbed Bacteroidetes/

Firmicutes eubiosis was proven to be associated with increased

intestinal permeability, with bacteria byproducts infiltrated

through a leaky gut barrier, triggering inflammatory responses

of diabetes. Species Lactobacillus fermentum, Akkermansia

muciniphila, Bacteroides fragilis and Roseburia intestinalis were

demonstrated to be linked to insulin sensitivity and glucose

metabolism. Phyla Bacteroidetes, Actinobacteria and

Mucoromycota were depleted, while genera Acidaminococcus,

Escherichia and Enterobacter were enriched in patients with DR

compared to HC (15). In DPN, the richness of Firmicutes and
02
Actinobacteria was elevated, while Bacteroidetes was depleted.

At the genus level, Bacteroides and Faecalibacterium were

significantly decreased, whereas Lachnoclostridium and

Ruminococcus were enriched (16). In DKD, there was a

marked increase in genera Acidaminococcus, Selenomonadales,

Bilophila and Shigella, as well as phylum Proteobacteria, and the

richness of species Syntrophaceticus schinkii and Citrobacter

farmeri was positively correlated with the urinary albumin

creatinine ratio (17). Notably, Akkermansia in the gut may

contribute to the effect of metformin, the most commonly

prescribed drug for DM, on glucose metabolism (18, 19).

Although a plethora of studies had characterized the gut

microbiota of DC with promising findings, the relationship

between them was still controversial. A meta-analysis on more

than 2000 studies on microbiota suggested the alternation of

microbiota to differentiate healthy and diseased populations and

serve as bio-markers for the diagnosis or treatment of DM (20).

Therefore, we performed a meta-analysis of gut microbiota from

patients with DC and explored the diversity and bacterial

characteristics of the gut microbiota in DC.
Methods

The scheme of the review was registered in PROSPERO with

registration number CRD42022353144. We followed the

Preferred Reporting Items for the Systematic Reviews and

Meta-analyses (PRISMA) reporting guidelines (21).
Retrieval strategy

We searched PubMed, Web of Science, Embase and

Cochrane databases for observational case-control studies or

cross-sectional studies from inception to August 20th, 2022, with

the search strategy: ((diabetic retinopathy) OR (diabetic

microvascular complications) OR (diabetic peripheral

neuropathy) OR (diabetic neuropathy) OR (diabetic kidney

disease) OR (diabetic nephropathy)) AND (Microbiota OR

Microbiome). This online strategy was augmented by a

bibliographic search to identify other potentially eligible

publications. Records were restricted to studies published in
frontiersin.org
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English and conducted on humans. All duplicated records

were removed.
Selection criteria

Two reviewers (JH and TF) independently screened titles,

abstracts, and full-text articles for inclusion and resolved

differences through consensus. The eligible criteria included

studies reporting DM patients with DC, setting healthy

controls (HC) or DM patients without DC as controls, and

performing gut microbiota analysis and reporting alpha diversity

or abundance measures as outcome results. Records in review

form or without full-text available were excluded.
Data extraction, quality assessment and
risk of bias assessment

Using standardized forms, two reviewers (JH and TF)

extracted information on the general study and participant

characteristics, as well as the outcome results including alpha

diversity indices and relative abundance of microbiota at the

phylum and genus level. Alpha diversity referred to species

richness and evenness within communities or habitats,

including observed number of operational taxonomic units

(OTUs), Chao1, ACE, Simpson and Shannon indices, which

were usually plotted using the R package. Specially, OTUs and

Chao1 reflected the number of species in the community,

regardless of the abundance of each species in the community.

ACE considered a wider range of rare species, and adjusted the

coefficient of variation and sample coverage to make data more

reasonable. The Simpson and Shannon indices reflected the

diversity of the bacterial communities, which were affected by

the species richness and evenness in the community. Mean and

standard deviation (SD) were collected from text or tables in

articles, and results presented in graphs were abstracted using

GetData Graph Digitizer v.2.22 (Australia) software. Since a

large part of data on microbiota was presented as a box-plot,

when the mean and SD were not available, the median and

quartile range were extracted and estimated by the calculator of

Review Manager 5.3. A third reviewer (DL) confirmed the

abstracted data.

Newcastle-Ottawa Quality Assessment Scale (NOS) was

used to evaluate the literature quality (22), and a score ≥ 5

indicated adequate quality for inclusion in the present review

(23). A funnel plot was constructed to assess publication bias.
Statistical analysis

Data were exported to Review Manager 5.3 (Nordic

Cochrane Centre, Copenhagen, Denmark) software for
Frontiers in Endocrinology 03
statistical meta-analysis. We pooled the mean difference (MD)

or standardized mean difference (SMD) for continuous

outcomes, and a 95% confidence interval (CI) was utilized to

estimate the prediction. The heterogeneity was evaluated by I2

statistic, and a fixed and random effect model was performed

when I2 < 50% and I2 > 50%, respectively. Two-sided p values

were statistically significant at less than 0.05.
Results

Literature screening results

A total of 566 potentially eligible articles were retrieved,

including 16 records identified from other sources. By screening

abstracts and titles, 518 articles were excluded for duplication or

irrelevant topics, leaving 48 studies. After that, eight articles were

abandoned for language restriction and 13 were due to no full-

text. Then 27 full -text articles were screened for eligibility. The

most common reason for exclusion was insufficient data (n = 6),

five records were excluded because the control was not

appropriate, one was an animal study, one was a review

article, and one did not report data in applicable form, leaving

13 studies meet all the inclusion criteria (Figure 1).
Characteristics of the included studies

The total 13 studies (15–17, 24–33) captured 329 patients

with DC, 232 DM patients without DC, and 241 HC, with the

territorial scope covering India (2/13), USA (2/13) and China (9/

13). Seven (7/13) of the studies focused on DKD, five (5/13)

focused on DR, and one (1/13) focused on DPN. The

methodology of composition analysis also varied widely, with

16S rRNA gene sequencing being the most common (6/13),

followed by 16S rDNA-based high-throughput sequencing (4/

13) and three (3/13) with metagenomic sequencing. The basic

characteristics of the articles included in the study were shown

in Table 1.
Quality of included studies

The NOS scores showed one (1/13) study with a score of six,

ten (10/13) with a score of seven, and two (2/13) with a score of

eight, indicating a relatively high quality of the studies selected

(Supplementary Table S1).
Alpha diversity between DC and DM

A total of ten trials were obtained to assess alpha diversity,

including 279 DC patients, 222 DM patients and 201 HC. Five
frontiersin.org
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indices were obtained including estimates of richness (OTUs,

ACE and Chao1), and diversity (Simpson and Shannon).

Regarding richness, four studies provided data on ACE, and

the pooled estimate showed a significant increase in ACE in DC

(SMD = 0.42, 95% CI[0.11, 0.74], p = 0.009) in Figure 2A. Four

and eight studies reported the OTUs and Chao1 index in DC v.s.

DM respectively, with non-significant differences between groups

(OTUs SMD = -0.15, 95% CI[-0.97, 0.67], p = 0.72, I2 = 89%;

Chao1 SMD = 0. 21, 95% CI[-0.38, 0.81], p = 0.48, I2 = 88%) in

Figures 2B, C. To explore the potential sources of the existed

heterogeneity in OTUs, subgroup analysis on the nation and city

was done in Supplementary Figures S1A, B. The heterogeneity

decreased to 10% in nation except China, and further analysis

revealed that city bias might be the source of heterogeneity. To

explore the potential sources of the heterogeneity in Chao1,

subgroup analysis on DC including DR, DPN and DKD was

performed. Since the heterogeneity still existed, subgroup analysis

on the nation was done, and results showed the heterogeneity

vanished in the nation except China (Supplementary Figure S1C).

Regarding diversity, five studies provided data on DC, and

the pooled estimate showed a significant decrease of the Simpson

index in DC (SMD = -0.59, 95% CI [-0.82, -0.36], p < 0.00001),

as shown in Figure 2D. Eight studies measured and reported the

Shannon index in DC and DM, but our meta-analysis revealed

no significant difference between them (SMD = 0.08, 95% CI
Frontiers in Endocrinology 04
[-0.31 0.46], p = 0.69), as depicted in Figure 2E. The type of DC

and nation bias might be the sources of high heterogeneity (I2 =

72%), as depicted in Figure 2E and Supplementary Figure S1D.

Since only one study on DPN (16) was included in this study, to

explore the source of heterogeneity caused by it, we performed a

meta-analysis on studies excluding DPN and compared the results

with meta-analysis on studies including DPN. As depicted in

Supplementary Figure S2, a meta-analysis of studies excluding

DPN was conducted. There was a significant increase in the

Simpson index (SMD = -0.67, 95% CI [-0.93, -0.41], p <

0.00001), with no significant differences found in the Shannon

index (SMD = -0.01, 95% CI [-0.39, 0.38], p = 0.97), ACE (SMD =

0.37, 95% CI[-0.02, 0.76], p = 0.06), and Chao1 (SMD = 0.11, 95%

CI[-0.51, 0.74], p = 0.72) between DC and DM. Subgroup analysis

on the type of DC and nation was performed in Supplementary

Figure S3, and similar conclusions with studies including DPNwere

drawn that the type of DC and nation bias might be the sources of

heterogeneity in the Shannon index and Chao1, respectively. Above

all, the tendency of the results with or without DPN was consistent.
Alpha diversity between DC and HC

Furthermore, alpha diversity between DC and HC was

compared in terms of OTUs, ACE, Chao1, Simpson and
FIGURE 1

Flow diagram describes the selection process of the included studies.
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Shannon. Five studies reported a relative abundance of bacterial

taxa in terms of OTUs, while a non-significant difference was

found between DC and HC (SMD = -0.27, 95% CI[-1.15, 0.61],

p = 0.55), as depicted in Figure 3A. Since there was a high

heterogeneity (I2 = 92%), subgroup analysis on the type of DC

and nation was performed. Nevertheless, the heterogeneity still

existed in either subgroup of DC and nation, and the funnel

plots were symmetric overall as shown in Supplementary

Figure S4.

In Figure 3B, from the six trials included in this meta-analysis,

we obtained that the SMD of ACE was -0.70 in DKD (95% CI: -

1.64, 0.25), -0.43 in DPN (95% CI: -1.03, 0.18) and -0.46 in DR

(95% CI: -1.02, 0.11), with no significant difference. Nevertheless,

the overall SMD of DC was significantly decreased (SMD = -0.61,

95%CI[-1.20, -0.02], p = 0.04). Nine studies provided Chao1 data in

DC v.s. HC, with a non-significant difference estimated after meta-

analysis (SMD = -0.32, 95% CI[-0.80, 0.16], p = 0.19), as depicted

in Figure 3C.

Regarding community diversity, Figures 3D, E showed that

six and nine trails provided Simpson and Shannon data

respectively. However, the differences in community diversity

between DC and HC estimated by Simpson and Shannon were

not significant, with Simpson SMD = -0.12, 95% CI[-0.35, 0.11],

p = 0.29, and Shannon SMD = 0.16, 95% CI[-0.14, 0.45],

p = 0.30. Nation bias assessments and funnel plots for the

alpha diversity were shown in Supplementary Figure S5.
Frontiers in Endocrinology 05
Since only one study on DPN was included in this meta-

analysis, considering the representativeness and potential bias, a

meta-analysis of studies excluding DPN was performed in

Supplementary Figure S6. Compared with the meta-analysis of

studies including DPN, similar results were found in ACE

(SMD = -0.65, 95% CI[-1.36, 0.07], p = 0.08), Chao1 (SMD =

-0.37, 95% CI[-0.90, 0.16], p = 0.17), the Simpson index (SMD =

-0.07, 95% CI[-0.32, 0.17], p = 0.55), and the Shannon index

(SMD = 0.12, 95% CI[-0.20, 0.44], p = 0.47) between DC and

HC. Nation bias assessments and funnel plots of alpha diversity

were shown in Supplementary Figure S7.

Different abundance of microbiota at the
phylum level

Five studies involving 187 participants described the distinct

taxa at the phylum level. Examining taxonomic distribution at

the phylum level did not reveal remarkable differences between

DC and DM in Actinobacteria, Bacteroidetes, Firmicutes,

Proteobacteria, Fusobacteria, and Verrucomicrobia (Figure 4

and Supplementary Figure S8).

We next performed an analysis of microbiota at the phylum

level between DC and HC. Among the most abundant species,

we observed that DC patients were enriched in Proteobacteria

(SMD = 0.03, 95% CI[0.01, 0.04], p = 0.003), and depleted in

Firmicutes (SMD = -0.06, 95% CI[-0.11, -0.01], p = 0.02), in
TABLE 1 Characteristics of the included studies.

Study Author Year Region Disease DC DM HC Analysis methods

N, M/
F

Age
(year)

N, M/
F

Age
(year)

N, M/
F

Age
(year)

1 L. Zhang 2022 Shandong, China DKD 12,6/6 61.67 ± 8.75 12,7/5 57.08 ± 8.59 14,7/7 58.86 ± 7.36 Metagenomic
sequencing

2 R. Chen 2022 Guangdong,
China

DKD 22,11/11 60 – – 22,11/11 57 16S rDNA

3 X. He 2022 Shanxi, China DKD 10,9/1 56.00 ± 14.97 10,8/2 64.90 ± 7.37 – – Metagenomic
sequencing

4 Z. Zhou 2021 Chongqing,
China

DR 21,14/7 59.57 ± 9.09 14,8/6 61.93 ± 6.20 15,7/8 56.13 ± 8.88 16S rDNA

5 P. Ye 2021 Zhejiang, China DR 45,25/20 59.9 ± 11.3 90,50/40 60.9 ± 9.9 – – 16S rRNA

6 T. Das 2021 Hyderabad, India DR 28,21/7 55.07 25,14/11 57.3 30,17/13 52.2 16S rRNA

7 X. Du 2021 Tianjin, China DKD 43,32/11 60.86 ± 5.69 – – 37,25/12 61.78 ± 6.40 16S rDNA

8 Y. Huang 2021 Hunan, China DR 25,15/10 60.28 ± 10.5 25,11/14 62.52 ± 7.58 25,9/16 57.80 ± 10.06 16S rRNA

9 Y. Wang 2020 Nanjing, China DPN 45,25/20 58.55 ± 6.61 21,12/9 59.33 ± 10.21 14,8/6 58.06 ± 6.39 16S rDNA

10 R. Jayasudha 2020 Hyderabad, India DR 24,18/6 54.5 21,13/8 57.5 30,17/13 52.2 Metagenomic
sequencing

11 S. Tao 2019 Sichuan, China DKD 14,9/5 52.93 ± 9.98 14,9/5 53.29 ± 9.00 14,9/5 52.86 ± 9.91 16S rRNA

12 M. Salguero 2019 Amarillo, TX,
USA

DKD 20,9/11 62.8 ± 3.6 – – 20,11/9 58.5 ± 4.1 16S rRNA

13 M. Al-
Obaide

2017 Amarillo, TX,
USA

DKD 20 64.4 ± 2.3 – – 20 54.3 ± 3.2 16S rRNA
DC, Diabetic Microvascular Complication; DM, Diabetes Mellitus; HC, Healthy Control; N, Number; M/F, Male/Female; DKD, Diabetic Kidney Disease; DR, Diabetic Retinopathy; DPN,
Diabetic Peripheral Neuropathy.
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Figures 5A, B. Specially, the abundance of Proteobacteria inDKD

was significantly higher than that in HC (SMD = 0.03, 95% CI

[0.01, 0.04], p = 0.008) and Firmicutes was significantly depleted

in DR when compared to HC (SMD = -0.06, 95% CI

[-0.12, -0.00], p = 0.03).

Furthermore, data in Figures 5C, D and Supplementary

Figure S9 demonstrated there were no significant differences in

the relative abundance of Fusobacteria, Bacteroidetes,

Actinobacteria and Verrucomicrobia between DC and HC.
Frontiers in Endocrinology 06
Different abundance of microbiota at the
genus level

From the 11 trials included in this meta-analysis, we obtained

that there was a significantly deplete in richness of Bifidobacterium

and Faecalibacterium in DC when compared to DM (SMD = -0.01,

95% CI[-0.02,-0.01], p < 0.0001; SMD = -0.01, 95% CI[-0.02, -0.00],

p = 0.009, respectively), as depicted in Figures 6A, B. However, the

abundances of Alistipes, Prevotella, Ruminococcus, Lachnospira,
B

C

D

E

A

FIGURE 2

Forest plots of alpha diversity in DC v.s. DM. (A) ACE; (B) OTUs; (C) Chao1; (D) Simpson; (E) Shannon.
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Roseburia, Clostridium, Blautia, Escherichia, Eubacterium,

Parabacteroides, Mitsuokella and Lactobacillus varied, and we did

not find any relatively consistent results after meta-analysis

(Supplementary Figures S10 and 11).

After that, the taxa between DC and HC were compared in

Figure 7. Faecalibacterium and Lactobacillus were proven to be

decreased in DC (SMD = -0.02, 95% CI[-0.02, -0.01], p <
Frontiers in Endocrinology 07
0.00001; SMD = -0.00, 95% CI[-0.00, -0.00], p < 0.00001;

respectively), as well as an increase of Klebsiella (SMD = 0.00,

95% CI[0.00, 0.00], p < 0.00001). Besides, no consistent results

were found in the relative abundances of Streptococcus,

Roseburia, Clostridium, Blautia, Escherichia, Eubacterium,

Bifidobacterium and Lachnospira (Supplementary Figures S12

and S13). In this study, we summarized the alternation tendency
B

C

D

E

A

FIGURE 3

Forest plots of alpha diversity in DC v.s. HC. (A) OTUs; (B) ACE; (C) Chao1; (D) Simpson; (E) Shannon.
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of gut microbiota in DC compared to DM and HC respectively

in Figure 8.
Discussion

To our knowledge, this meta-analysis was the first to assess

alpha diversity and microbiota perturbations in DC compared

with DM and HC. This study yielded three major insights into
Frontiers in Endocrinology 08
the gut microbial changes in DC. Firstly, patients with DC

exhibited a significantly higher richness but lower diversity in

gut microbiota when compared to DM. And when compared to

HC, DC held a lower richness in gut microbiota. Secondly, the

abundance of phylum Proteobacteria was enriched and

Firmicutes was depleted in DC when compared to HC. Last,

the abundances of genera Bifidobacterium and Faecalibacterium

were depleted in DC when compared to DM. And when

compared to HC, DC exhibited lower abundances of
B

C

D

A

FIGURE 4

Forest plots of microbiota at the phylum level in DC v.s. DM. (A) Actinobacteria; (B) Bacteroidetes; (C) Firmicutes; (D) Proteobacteria.
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Faecalibacterium and Lactobacillus but a higher abundance of

Klebsiella. All these changes may be associated with the

pathology of DC, and serve as promising targets for the

management of DC.

One common indicator of dysbiosis is a modified overall

microbial alpha diversity, which denotes the relative abundance

of microbial species in space and time within a specific
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community. Alpha diversity indices include OTUs, ACE,

Chao1, Simpson and Shannon. ACE and Chao1 focus on

species richness. Simpson and Shannon strengthen diversity.

Generally, lower alpha diversity was observed in obesity and

diabetes, and was considered detrimental to the host (34). Alpha

diversity in richness and diversity declined in DR and DKD

when compared to HC (28, 29). In contrast, no difference was
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FIGURE 5

Forest plots of microbiota at the phylum level in DC v.s. HC. (A) Proteobacteria; (B) Firmicutes; (C) Fusobacteria; (D) Bacteroidetes.
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FIGURE 6

Forest plots of microbiota at the genus level in DC v.s. DM. (A) Bifidobacterium; (B) Faecalibacterium.
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FIGURE 7

Forest plots of microbiota at the genus level in DC v.s. HC. (A) Faecalibacterium; (B) Lactobacillus; (C) Klebsiella.
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found in gut microbiota between DM patients with or without

cognitive impairment (35). DPN resulted in a more severe

disruption of microbiota community richness than DM (16).

These findings indicated that the profile of gut microbiota was

altered in patients with DC, but further exploration was needed

due to the extremely inconsistent findings.

Phylum Proteobacteria was gram-negative bacteria and

proved to be significantly different in gut microbiota between

DM patients with or without gastrointestinal autonomic

neuropathy (36). Proteobacteria was proven to be negatively

related to human health and found with a higher abundance in

the obese population than the non-obese population (34, 37).

The mechanism might be related to the regulation of bile acids, a

metabolic controller (38). In line with these results,

Proteobacteria was found significantly enriched in DC when

compared to HC in this study, concluding that with the risk of

DC increased, the abundance of Proteobacteria increased. These

findings may further reveal that the alternation of gut microbiota

at the phylum level is closely related to DC.

The phyla Firmicutes and Bacteroidetes accounted for more

than 90% of the total community of human gut microbiota.

Alterations affecting Firmicutes and Bacteroidetes were first

described in obese subjects who exhibited increased

abundances of Firmicutes at the expense of Bacteroidetes (39).

Firmicutes was positively linked with inflammation and the

modulation of metabolism, and was supposed to be more

efficient at calorie absorption and weight gain (40–42).
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Bacteroidota was significantly reduced in DR patients, and

Firmicutes to Bacteroidetes ratio was proven elevated in

gestational diabetes patients (15). However, in opposition to

these results, no change or even decreased Firmicutes to

Bacteroidetes ratio in obese subjects was reported (43–45). In

our study, Firmicutes were significantly depleted in DC

compared to HC. The reason might be linked to less bacterial

diversity in obese patients than the non-obese subjects (46).

Therefore, further research involving this parameter should be

high on the list.

In line with the results presented in this study concerning the

significant decrease of genera Bifidobacterium, Lactobacillus and

Faecalibacterium in DC (p < 0.05), similar results were observed

in DR in Zhou’s study (31). Bifidobacteria and Lactobacilluswere

gram-positive microorganisms, which participated in the

restoration of the intestinal mucosal barrier (47, 48). Both of

them were inversely associated with inflammation,

hyperglycemia, and insulin resistance (49–51). Bifidobacteria

was demonstrated to produce bacteriocin that blocks

adherence to the mucosa and preserves gut barrier function

(52). DM patients presented a significantly lower richness of

Bifidobacterium compared to healthy subjects (53, 54).

Probiot ics , a s wel l a s yogurt or mi lk conta in ing

Bifidobacterium and Lactobacillus, decreased fasting blood

glucose and glycosylated hemoglobin type A1c (HbA1c) in

DM patients (55, 56). Drawing a conclusion that Bifidobacteria

and Lactobacillus decreased as the risk of DC increased. The
BA

FIGURE 8

Microbiota at the phylum and genus level. (A) DC v.s. DM; (B) DC v.s. HC.
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mechanism might be linked to the depletion of potential

intestinal pathogens, enhancement of intestinal antioxidant

ability and digestive enzyme activity (57). Faecalibacterium

was gram-negative, butyrate-producing bacteria, which was

demonstrated to be negatively related to HbA1c (26).

Faecalibacterium was proven to increase the intestinal

synthesis of glucagon-like peptide-1, peptide YY, acetate and

butyrate help to maintain glucose homeostasis (58). In this

study, Faecalibacterium was depleted in DC, corroborating

previous reports that linked Faecalibacterium to positive

metabolic outcomes (29, 33, 59–61). These findings revealed

that the alternation of gut microbiota at the genus level was

closely related to DC, and the increase of Bifidobacterium,

Lactobacillus and Faecalibacterium might be responsible for

the pathology of DC. Klebsiella is a natural inhabitant of the

gastrointestinal tract microbiome of healthy humans and

animals, but it often causes extraintestinal infections, including

urinary tract infections, pneumoniae and septicemia (62).

Recently, Klebsiella was demonstrated to be increased in DKD

(63), which was proven to be increased in DC when compared to

HC in this study.

Microbiota symbiosis helped regulate metabolism and

reduce the risk of DM. Gut microbiota dysbiosis was proven

to lead imbalance of intestinal microbial bi-products, and cause

insulin resistance, with mechanism unclear. Recently, the

mechanism of how microbiota affec t DM and i ts

complications has raised academic interests. Firstly, microbiota

dysbiosis led to the production of short-chain fatty acids

(SCFAs) including butyrate, propionate, and acetate, which

then impaired the intestinal barrier integrity, activated the

inflammation signaling cascades and thus promoted the multi-

organs damage (64) . Secondly, microbiota-derived

trimethylamine nitrogen oxide (TMAO) increased the

accumulation of cholesterol, led to insulin resistance (65), and

increased the risk of DM (66, 67). Third, changes in gut

microbiota composition were proven to affect gut permeability

and inflammation in DM (68, 69). Microbiota-derived

lipopolysaccharide (LPS) triggered downstream inflammatory

pathways and pro-inflammatory cytokine expression cascades,

leading to inflammatory reactions and aggravating insulin

resistance (70, 71). Last but not the least, microbiota-derived

aromatic amino acids including indoxyl sulfate and p-cresyl

sulfate, also known as uremic toxins, might induce

mitochondrial dysfunction, podocytes injuries, thicken the

glomerular basement membrane, and ultimately lead to renal

micro-inflammation, and perivascular fibrosis in DKD (72, 73).

In this meta-analysis, genus Bifidobacterium belonged to the

phylum Actinobacteria, genera Faecalibacterium and

Lactobacillus belonged to the phylum Firmicutes, genus

Klebsiella belonged to the phylum Proteobacteria. Phyla

Actinobacteria, Firmicutes and Proteobacteria were both
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SCFAs-producing and LPS-producing bacteria. Therefore, we

hypothesized that SCFAs-induced intestinal barrier integrity

impairment and LPS-induced inflammation might be

important parts of mechanism of DC. Nevertheless, direct

targets of gut microbiota and the potential mechanisms

needed to be further elucidated.

In spite of these interesting findings, our study was not

without limitations. First, the language of included literature was

limited to English, which may increase the possibility of

language bias or publication bias. Secondly, since the gut

microbiota was closely related to race and living environment,

and the included studies originated mostly from Asia (11/13), in

which nine studies were conducted in China and two in India.

To explore the potential source of heterogeneity caused by it, the

subgroup analysis on the nation has been performed in some

comparison. The generalization of these results can only

represent the characteristics of Asian populations to some

extent. Third, in the 13 studies included, there were seven (7/

13) studies focused on DKD, five (5/13) focused on DR, and only

one (1/13) focused on DPN. To explore the potential source of

heterogeneity caused by different microvascular complications

of DM, the subgroup analysis on the type of microvascular

complications has been performed. Considering the

representativeness and potential bias of DPN, a meta-analysis

of studies excluding DPN was performed to compare. Although

DR and DKD were more representative microvascular

complications in some ways, it would be better if a larger

number of studies on DPN could be included in this meta-

analysis. Fourth, the heterogeneity was high, although subgroup

analysis on the type of DC, nation and city was performed, it was

far from enough to explain the source of heterogeneity. More

studies should be included and more factors related to

microbiota such as ethnicity, eating habits, living environment,

obesity condition, and even drugs on the changes of gut

microbiota. Last, a different method of gene sequencing was

also a potential bias on the results.
Conclusions

In conclusion, we demonstrated that the alternation of alpha

diversity, the abundances of phyla Proteobacteria and Firmicutes as

well as the abundances of genera Bifidobacterium, Faecalibacterium

Lactobacillus and Klebsiella may be associated with DC. The

changes of microbial features may be noninvasive biomarkers for

monitoring the management of DC. However, our findings still

need to be verified by further large-scale, multi-center and high-

quality studies. Nevertheless, conflicting results have also been

reported, and therefore further studies would be necessary to fully

understand the relation between gut microbiota and DC.
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