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Background: The role of gut microbiota in diabetes mellitus (DM) and
its complications has been widely accepted. However, the alternation of
gut microbiota in diabetic microvascular complications (DC) remains to
be determined.

Methods: Publications (till August 20", 2022) on gut microbiota in patients with
DC were retrieved from PubMed, Web of Science, Embase and Cochrane.
Review Manager 5.3 was performed to estimate the standardized mean
difference (SMD) and 95% confidence interval (Cl) and calculate alpha
diversity indices and the relative abundance of gut microbiota between
patients in DC v.s. DM and DC v.s. healthy controls (HC).

Results: We included 13 studies assessing 329 patients with DC, 232 DM patients
without DC, and 241 HC. Compared to DM, patients with DC shared a
significantly lower Simpson index (SMD = -0.59, 95% CI [-0.82, -0.36], p <
0.00001), but a higher ACE index (SMD = 0.42, 95% CI[0.11, 0.74], p = 0.009).
Compared to HC, DC patients held a lower ACE index (SMD = -0.61, 95% ClI
[-1.20, -0.02], p = 0.04). The relative abundances of phylum Proteobacteria
(SMD = 0.03, 95% CI[0.01, 0.04], p = 0.003, v.s. HC) and genus Klebsiella (SMD =
0.00, 95% CI[0.00, 0.00], p < 0.00001, v.s. HC) were enriched, accompanying
with depleted abundances of phylum Firmicutes (SMD = -0.06, 95% CI[-0.11,
-0.01], p = 0.02, v.s. HC), genera Bifidobacterium (SMD = -0.01, 95% CI[-0.02,-
0.01], p < 0.0001, v.s. DM), Faecalibacterium (SMD = -0.01, 95% CI[-0.02, -0.00],
p = 0.009, v.s. DM; SMD = -0.02, 95% CI[-0.02, -0.01], p < 0.00001, v.s. HC) and
Lactobacillus (SMD = 0.00, 95% CI[-0.00, -0.00], p < 0.00001, v.s. HC) in DC.

Conclusions: Gut microbiota perturbations with the depletion of alpha
diversity and certain short-chain fatty acids (SCFAs)-producing bacteria were
associated with the pathology of DC. Therefore, gut microbiota might serve as
a promising approach for the diagnosis and treatment of DC. Further
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investigations are required to study the mechanisms by which gut dysbiosis
acts on the onset and progression of DC.

KEYWORDS

diabetic kidney disease (DKD), diabetic peripheral neuropathy (DPN), diabetic
retinopathy (DR), gut microbiota (GM), diabetic microvascular complication

Introduction

Diabetes mellitus (DM) is an epidemic and accounts for 80%
of premature deaths globally (1, 2). As of 2021, there are
approximately 537 million DM patients in the world, with an
extended increment to 700 million by 2045 (3). DM is hardly a
disease with mere elevation in blood glucose, it brings along a
plethora of microvascular complications including diabetic
retinopathy (DR), diabetic kidney disease (DKD) and diabetic
peripheral neuropathy (DPN) in most cases. These
microvascular complications are responsible for the high
mortality and morbidity rate in DM patients and account for
marked social and economic burdens (4). Although numerous
treatments for DM and resulting complications were available,
cases are still on the rise. DR is the leading cause of blindness
ophthalmic disorder in the population on working age, with a
prevalence of 77.8% in 15 years of DM patients (5-7). DKD
occurs in approximately 40% of DM, and 30%-90% of DM might
suffer from DPN (8). These trends highlight the urgency for a
better understanding of diabetic microvascular complications
(DC) (9).

The rapid scientific interest in gut microbiota coincided with
the global increase in DM (9). The advent of next-generation
sequencing technology has greatly enhanced our understanding
of gut microbiota and host health (10, 11). The gut microbiota
was a complex microbial community, represented by 1500
different species (12, 13). DM and its complications have been
linked with dysbiosis of the gut microbiota (14). Differences in
gut microbiota composition have been observed in animal
models as well as patients with DM and complications such as
DKD, DR and DPN. In particular, perturbed Bacteroidetes/
Firmicutes eubiosis was proven to be associated with increased
intestinal permeability, with bacteria byproducts infiltrated
through a leaky gut barrier, triggering inflammatory responses
of diabetes. Species Lactobacillus fermentum, Akkermansia
muciniphila, Bacteroides fragilis and Roseburia intestinalis were
demonstrated to be linked to insulin sensitivity and glucose
metabolism. Phyla Bacteroidetes, Actinobacteria and
Mucoromycota were depleted, while genera Acidaminococcus,
Escherichia and Enterobacter were enriched in patients with DR
compared to HC (15). In DPN, the richness of Firmicutes and
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Actinobacteria was elevated, while Bacteroidetes was depleted.
At the genus level, Bacteroides and Faecalibacterium were
significantly decreased, whereas Lachnoclostridium and
Ruminococcus were enriched (16). In DKD, there was a
marked increase in genera Acidaminococcus, Selenomonadales,
Bilophila and Shigella, as well as phylum Proteobacteria, and the
richness of species Syntrophaceticus schinkii and Citrobacter
farmeri was positively correlated with the urinary albumin
creatinine ratio (17). Notably, Akkermansia in the gut may
contribute to the effect of metformin, the most commonly
prescribed drug for DM, on glucose metabolism (18, 19).

Although a plethora of studies had characterized the gut
microbiota of DC with promising findings, the relationship
between them was still controversial. A meta-analysis on more
than 2000 studies on microbiota suggested the alternation of
microbiota to differentiate healthy and diseased populations and
serve as bio-markers for the diagnosis or treatment of DM (20).
Therefore, we performed a meta-analysis of gut microbiota from
patients with DC and explored the diversity and bacterial
characteristics of the gut microbiota in DC.

Methods

The scheme of the review was registered in PROSPERO with
registration number CRD42022353144. We followed the
Preferred Reporting Items for the Systematic Reviews and
Meta-analyses (PRISMA) reporting guidelines (21).

Retrieval strategy

We searched PubMed, Web of Science, Embase and
Cochrane databases for observational case-control studies or
cross-sectional studies from inception to August 20th, 2022, with
the search strategy: ((diabetic retinopathy) OR (diabetic
microvascular complications) OR (diabetic peripheral
neuropathy) OR (diabetic neuropathy) OR (diabetic kidney
disease) OR (diabetic nephropathy)) AND (Microbiota OR
Microbiome). This online strategy was augmented by a
bibliographic search to identify other potentially eligible
publications. Records were restricted to studies published in
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English and conducted on humans. All duplicated records

were removed.

Selection criteria

Two reviewers (JH and TF) independently screened titles,
abstracts, and full-text articles for inclusion and resolved
differences through consensus. The eligible criteria included
studies reporting DM patients with DC, setting healthy
controls (HC) or DM patients without DC as controls, and
performing gut microbiota analysis and reporting alpha diversity
or abundance measures as outcome results. Records in review
form or without full-text available were excluded.

Data extraction, quality assessment and
risk of bias assessment

Using standardized forms, two reviewers (JH and TF)
extracted information on the general study and participant
characteristics, as well as the outcome results including alpha
diversity indices and relative abundance of microbiota at the
phylum and genus level. Alpha diversity referred to species
richness and evenness within communities or habitats,
including observed number of operational taxonomic units
(OTUs), Chaol, ACE, Simpson and Shannon indices, which
were usually plotted using the R package. Specially, OTUs and
Chaol reflected the number of species in the community,
regardless of the abundance of each species in the community.
ACE considered a wider range of rare species, and adjusted the
coefficient of variation and sample coverage to make data more
reasonable. The Simpson and Shannon indices reflected the
diversity of the bacterial communities, which were affected by
the species richness and evenness in the community. Mean and
standard deviation (SD) were collected from text or tables in
articles, and results presented in graphs were abstracted using
GetData Graph Digitizer v.2.22 (Australia) software. Since a
large part of data on microbiota was presented as a box-plot,
when the mean and SD were not available, the median and
quartile range were extracted and estimated by the calculator of
Review Manager 5.3. A third reviewer (DL) confirmed the
abstracted data.

Newcastle-Ottawa Quality Assessment Scale (NOS) was
used to evaluate the literature quality (22), and a score > 5
indicated adequate quality for inclusion in the present review
(23). A funnel plot was constructed to assess publication bias.

Statistical analysis

Data were exported to Review Manager 5.3 (Nordic
Cochrane Centre, Copenhagen, Denmark) software for
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statistical meta-analysis. We pooled the mean difference (MD)
or standardized mean difference (SMD) for continuous
outcomes, and a 95% confidence interval (CI) was utilized to
estimate the prediction. The heterogeneity was evaluated by I*
statistic, and a fixed and random effect model was performed
when I? < 50% and I* > 50%, respectively. Two-sided p values
were statistically significant at less than 0.05.

Results
Literature screening results

A total of 566 potentially eligible articles were retrieved,
including 16 records identified from other sources. By screening
abstracts and titles, 518 articles were excluded for duplication or
irrelevant topics, leaving 48 studies. After that, eight articles were
abandoned for language restriction and 13 were due to no full-
text. Then 27 full -text articles were screened for eligibility. The
most common reason for exclusion was insufficient data (n = 6),
five records were excluded because the control was not
appropriate, one was an animal study, one was a review
article, and one did not report data in applicable form, leaving
13 studies meet all the inclusion criteria (Figure 1).

Characteristics of the included studies

The total 13 studies (15-17, 24-33) captured 329 patients
with DC, 232 DM patients without DC, and 241 HC, with the
territorial scope covering India (2/13), USA (2/13) and China (9/
13). Seven (7/13) of the studies focused on DKD, five (5/13)
focused on DR, and one (1/13) focused on DPN. The
methodology of composition analysis also varied widely, with
16S rRNA gene sequencing being the most common (6/13),
followed by 16S rDNA-based high-throughput sequencing (4/
13) and three (3/13) with metagenomic sequencing. The basic
characteristics of the articles included in the study were shown
in Table 1.

Quality of included studies
The NOS scores showed one (1/13) study with a score of six,
ten (10/13) with a score of seven, and two (2/13) with a score of

eight, indicating a relatively high quality of the studies selected
(Supplementary Table S1).

Alpha diversity between DC and DM

A total of ten trials were obtained to assess alpha diversity,
including 279 DC patients, 222 DM patients and 201 HC. Five
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Flow diagram describes the selection process of the included studies.
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article (n=1)

indices were obtained including estimates of richness (OTUs,
ACE and Chaol), and diversity (Simpson and Shannon).
Regarding richness, four studies provided data on ACE, and
the pooled estimate showed a significant increase in ACE in DC
(SMD = 0.42, 95% CI[0.11, 0.74], p = 0.009) in Figure 2A. Four
and eight studies reported the OTUs and Chaol index in DC v.s.
DM respectively, with non-significant differences between groups
(OTUs SMD = -0.15, 95% CI[-0.97, 0.67], p = 0.72, I* = 89%;
Chaol SMD = 0. 21, 95% CI[-0.38, 0.81], p = 0.48, I* = 88%) in
Figures 2B, C. To explore the potential sources of the existed
heterogeneity in OTUs, subgroup analysis on the nation and city
was done in Supplementary Figures S1A, B. The heterogeneity
decreased to 10% in nation except China, and further analysis
revealed that city bias might be the source of heterogeneity. To
explore the potential sources of the heterogeneity in Chaol,
subgroup analysis on DC including DR, DPN and DKD was
performed. Since the heterogeneity still existed, subgroup analysis
on the nation was done, and results showed the heterogeneity
vanished in the nation except China (Supplementary Figure S1C).
Regarding diversity, five studies provided data on DC, and
the pooled estimate showed a significant decrease of the Simpson
index in DC (SMD = -0.59, 95% CI [-0.82, -0.36], p < 0.00001),
as shown in Figure 2D. Eight studies measured and reported the
Shannon index in DC and DM, but our meta-analysis revealed
no significant difference between them (SMD = 0.08, 95% CI
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[-0.31 0.46], p = 0.69), as depicted in Figure 2E. The type of DC
and nation bias might be the sources of high heterogeneity (I* =
72%), as depicted in Figure 2E and Supplementary Figure S1D.

Since only one study on DPN (16) was included in this study, to
explore the source of heterogeneity caused by it, we performed a
meta-analysis on studies excluding DPN and compared the results
with meta-analysis on studies including DPN. As depicted in
Supplementary Figure S2, a meta-analysis of studies excluding
DPN was conducted. There was a significant increase in the
Simpson index (SMD = -0.67, 95% CI [-0.93, -0.41], p <
0.00001), with no significant differences found in the Shannon
index (SMD = -0.01, 95% CI [-0.39, 0.38], p = 0.97), ACE (SMD =
0.37, 95% CI[-0.02, 0.76], p = 0.06), and Chaol (SMD = 0.11, 95%
CI[-0.51, 0.74], p = 0.72) between DC and DM. Subgroup analysis
on the type of DC and nation was performed in Supplementary
Figure S3, and similar conclusions with studies including DPN were
drawn that the type of DC and nation bias might be the sources of
heterogeneity in the Shannon index and Chaol, respectively. Above
all, the tendency of the results with or without DPN was consistent.

Alpha diversity between DC and HC

Furthermore, alpha diversity between DC and HC was
compared in terms of OTUs, ACE, Chaol, Simpson and
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Shannon. Five studies reported a relative abundance of bacterial
taxa in terms of OTUs, while a non-significant difference was
found between DC and HC (SMD = -0.27, 95% CI[-1.15, 0.61],
p = 0.55), as depicted in Figure 3A. Since there was a high
heterogeneity (I> = 92%), subgroup analysis on the type of DC
and nation was performed. Nevertheless, the heterogeneity still
existed in either subgroup of DC and nation, and the funnel
plots were symmetric overall as shown in Supplementary
Figure S4.

In Figure 3B, from the six trials included in this meta-analysis,
we obtained that the SMD of ACE was -0.70 in DKD (95% CI: -
1.64, 0.25), -0.43 in DPN (95% CI: -1.03, 0.18) and -0.46 in DR
(95% CI: -1.02, 0.11), with no significant difference. Nevertheless,
the overall SMD of DC was significantly decreased (SMD = -0.61,
95% CI[-1.20, -0.02], p = 0.04). Nine studies provided Chaol data in
DC v.s. HC, with a non-significant difference estimated after meta-
analysis (SMD = -0.32, 95% CI[-0.80, 0.16], p = 0.19), as depicted
in Figure 3C.

Regarding community diversity, Figures 3D, E showed that
six and nine trails provided Simpson and Shannon data
respectively. However, the differences in community diversity
between DC and HC estimated by Simpson and Shannon were
not significant, with Simpson SMD = -0.12, 95% CI[-0.35, 0.11],
p = 0.29, and Shannon SMD = 0.16, 95% CI[-0.14, 0.45],
p = 0.30. Nation bias assessments and funnel plots for the
alpha diversity were shown in Supplementary Figure S5.

TABLE 1 Characteristics of the included studies.

10.3389/fendo.2022.1053900

Since only one study on DPN was included in this meta-
analysis, considering the representativeness and potential bias, a
meta-analysis of studies excluding DPN was performed in
Supplementary Figure S6. Compared with the meta-analysis of
studies including DPN, similar results were found in ACE
(SMD = -0.65, 95% CI[-1.36, 0.07], p = 0.08), Chaol (SMD =
-0.37,95% CI[-0.90, 0.16], p = 0.17), the Simpson index (SMD =
-0.07, 95% CI[-0.32, 0.17], p = 0.55), and the Shannon index
(SMD = 0.12, 95% CI[-0.20, 0.44], p = 0.47) between DC and
HC. Nation bias assessments and funnel plots of alpha diversity
were shown in Supplementary Figure S7.

Different abundance of microbiota at the
phylum level

Five studies involving 187 participants described the distinct
taxa at the phylum level. Examining taxonomic distribution at
the phylum level did not reveal remarkable differences between
DC and DM in Actinobacteria, Bacteroidetes, Firmicutes,
Proteobacteria, Fusobacteria, and Verrucomicrobia (Figure 4
and Supplementary Figure S8).

We next performed an analysis of microbiota at the phylum
level between DC and HC. Among the most abundant species,
we observed that DC patients were enriched in Proteobacteria
(SMD = 0.03, 95% CI[0.01, 0.04], p = 0.003), and depleted in
Firmicutes (SMD = -0.06, 95% CI[-0.11, -0.01], p = 0.02), in

Study Author Year Region Disease DC DM HC Analysis methods
N, M/ Age N, M/ Age N, M/ Age
F (year) F (year) F (year)
1 L. Zhang 2022 Shandong, China DKD 12,6/6 61.67 +8.75 12,7/5 57.08 + 8.59 14,717 58.86 + 7.36  Metagenomic
sequencing
2 R. Chen 2022 Guangdong, DKD 22,11/11 60 - - 22,11/11 57 16S rDNA
China
3 X. He 2022 Shanxi, China DKD 10,9/1 56.00 = 14.97 10,8/2 64.90 + 7.37 - - Metagenomic
sequencing
4 Z. Zhou 2021 Chongging, DR 21,14/7  59.57 £ 9.09 14,8/6  61.93 £ 6.20 15,7/8 56.13 + 8.88  16S rDNA
China
5 P. Ye 2021 Zhejiang, China DR 45,25/20 59.9 + 11.3  90,50/40 60.9 +9.9 - - 16S rRNA
6 T. Das 2021 Hyderabad, India DR 28,21/7 55.07 25,14/11 57.3 30,17/13 52.2 16S rRNA
7 X. Du 2021 Tianjin, China DKD 43,32/11  60.86 + 5.69 - - 37,25/12  61.78 + 6.40  16S rDNA
8 Y. Huang 2021 Hunan, China DR 25,15/10  60.28 + 10.5  25,11/14  62.52 + 7.58 259/16  57.80 + 10.06 16S rRNA
9 Y. Wang 2020 Nanjing, China DPN 45,25/20  58.55 + 6.61 21,12/9  59.33 +10.21 14,8/6  58.06 + 6.39  16S rDNA
10 R. Jayasudha 2020 Hyderabad, India DR 24,18/6 54.5 21,13/8 57.5 30,17/13 52.2 Metagenomic
sequencing
11 S. Tao 2019  Sichuan, China DKD 14,9/5 5293 £9.98 14,9/5  53.29 £ 9.00 14,9/5 52.86 £9.91 16S rRNA
12 M. Salguero 2019  Amarillo, TX, DKD 20,9/11 62.8 + 3.6 - - 20,11/9 585+ 4.1 16S rRNA
USA
13 M. Al- 2017  Amarillo, TX, DKD 20 644 +2.3 - - 20 543 +£3.2 16S rRNA
Obaide USA

DC, Diabetic Microvascular Complication; DM, Diabetes Mellitus; HC, Healthy Control; N, Number; M/F, Male/Female; DKD, Diabetic Kidney Disease; DR, Diabetic Retinopathy; DPN,
Diabetic Peripheral Neuropathy.
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Figures 5A, B. Specially, the abundance of Proteobacteria inDKD
was significantly higher than that in HC (SMD = 0.03, 95% CI
[0.01, 0.04], p = 0.008) and Firmicutes was significantly depleted
in DR when compared to HC (SMD -0.06, 95% CI
[-0.12, -0.00], p = 0.03).

Furthermore, data in Figures 5C, D and Supplementary

Figure S9 demonstrated there were no significant differences in
the relative abundance of Fusobacteria, Bacteroidetes,
Actinobacteria and Verrucomicrobia between DC and HC.
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Different abundance of microbiota at the
genus level

From the 11 trials included in this meta-analysis, we obtained
that there was a significantly deplete in richness of Bifidobacterium
and Faecalibacterium in DC when compared to DM (SMD = -0.01,
95% CI[-0.02,-0.01], p < 0.0001; SMD = -0.01, 95% CI[-0.02, -0.00],
p = 0.009, respectively), as depicted in Figures 6A, B. However, the
abundances of Alistipes, Prevotella, Ruminococcus, Lachnospira,
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Forest plots of alpha diversity in DC v.s. HC. (A) OTUs; (B) ACE; (C) Chaol; (D) Simpson; (E) Shannon.

Roseburia, Clostridium, Blautia, Escherichia, Eubacterium,
Parabacteroides, Mitsuokella and Lactobacillus varied, and we did
not find any relatively consistent results after meta-analysis
(Supplementary Figures S10 and 11).

After that, the taxa between DC and HC were compared in
Figure 7. Faecalibacterium and Lactobacillus were proven to be

decreased in DC (SMD
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-0.02, 95% CI[-0.02, -0.01], p <

07

0.00001; SMD = -0.00, 95% CI[-0.00, -0.00], p < 0.00001;
respectively), as well as an increase of Klebsiella (SMD = 0.00,
95% CI[0.00, 0.00], p < 0.00001). Besides, no consistent results
were found in the relative abundances of Streptococcus,
Roseburia, Clostridium, Blautia, Escherichia, Eubacterium,
Bifidobacterium and Lachnospira (Supplementary Figures S12
and S13). In this study, we summarized the alternation tendency
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of gut microbiota in DC compared to DM and HC respectively

in Figure 8.

Discussion

To our knowledge, this meta-analysis was the first to assess
alpha diversity and microbiota perturbations in DC compared
with DM and HC. This study yielded three major insights into
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the gut microbial changes in DC. Firstly, patients with DC
exhibited a significantly higher richness but lower diversity in
gut microbiota when compared to DM. And when compared to
HC, DC held a lower richness in gut microbiota. Secondly, the
abundance of phylum Proteobacteria was enriched and
Firmicutes was depleted in DC when compared to HC. Last,
the abundances of genera Bifidobacterium and Faecalibacterium
were depleted in DC when compared to DM. And when
compared to HC, DC exhibited lower abundances of
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FIGURE 5

Forest plots of microbiota at the phylum level in DC v.s. HC. (A) Proteobacteria; (B) Firmicutes; (C) Fusobacteria; (D) Bacteroidetes.

Faecalibacterium and Lactobacillus but a higher abundance of
Klebsiella. All these changes may be associated with the
pathology of DC, and serve as promising targets for the
management of DC.

One common indicator of dysbiosis is a modified overall
microbial alpha diversity, which denotes the relative abundance
of microbial species in space and time within a specific
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community. Alpha diversity indices include OTUs, ACE,
Chaol, Simpson and Shannon. ACE and Chaol focus on
species richness. Simpson and Shannon strengthen diversity.
Generally, lower alpha diversity was observed in obesity and
diabetes, and was considered detrimental to the host (34). Alpha
diversity in richness and diversity declined in DR and DKD
when compared to HC (28, 29). In contrast, no difference was
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Test for overall effect: Z=9.17 (P = 0.00001)

Forest plots of microbiota at the genus level in DC v.s. HC. (A) Faecalibacterium; (B) Lactobacillus; (C) Klebsiella.
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found in gut microbiota between DM patients with or without
cognitive impairment (35). DPN resulted in a more severe
disruption of microbiota community richness than DM (16).
These findings indicated that the profile of gut microbiota was
altered in patients with DC, but further exploration was needed
due to the extremely inconsistent findings.

Phylum Proteobacteria was gram-negative bacteria and
proved to be significantly different in gut microbiota between
DM patients with or without gastrointestinal autonomic
neuropathy (36). Proteobacteria was proven to be negatively
related to human health and found with a higher abundance in
the obese population than the non-obese population (34, 37).
The mechanism might be related to the regulation of bile acids, a
metabolic controller (38). In line with these results,
Proteobacteria was found significantly enriched in DC when
compared to HC in this study, concluding that with the risk of
DC increased, the abundance of Proteobacteria increased. These
findings may further reveal that the alternation of gut microbiota
at the phylum level is closely related to DC.

The phyla Firmicutes and Bacteroidetes accounted for more
than 90% of the total community of human gut microbiota.
Alterations affecting Firmicutes and Bacteroidetes were first
described in obese subjects who exhibited increased
abundances of Firmicutes at the expense of Bacteroidetes (39).
Firmicutes was positively linked with inflammation and the
modulation of metabolism, and was supposed to be more
efficient at calorie absorption and weight gain (40-42).

Phylum Genus

10.3389/fendo.2022.1053900

Bacteroidota was significantly reduced in DR patients, and
Firmicutes to Bacteroidetes ratio was proven elevated in
gestational diabetes patients (15). However, in opposition to
these results, no change or even decreased Firmicutes to
Bacteroidetes ratio in obese subjects was reported (43-45). In
our study, Firmicutes were significantly depleted in DC
compared to HC. The reason might be linked to less bacterial
diversity in obese patients than the non-obese subjects (46).
Therefore, further research involving this parameter should be
high on the list.

In line with the results presented in this study concerning the
significant decrease of genera Bifidobacterium, Lactobacillus and
Faecalibacterium in DC (p < 0.05), similar results were observed
in DR in Zhou’s study (31). Bifidobacteria and Lactobacillus were
gram-positive microorganisms, which participated in the
restoration of the intestinal mucosal barrier (47, 48). Both of
them were inversely associated with inflammation,
hyperglycemia, and insulin resistance (49-51). Bifidobacteria
was demonstrated to produce bacteriocin that blocks
adherence to the mucosa and preserves gut barrier function
(52). DM patients presented a significantly lower richness of
Bifidobacterium compared to healthy subjects (53, 54).
Probiotics, as well as yogurt or milk containing
Bifidobacterium and Lactobacillus, decreased fasting blood
glucose and glycosylated hemoglobin type Alc (HbAlc) in
DM patients (55, 56). Drawing a conclusion that Bifidobacteria
and Lactobacillus decreased as the risk of DC increased. The

Phylum Genus

| Actinobacteria |—| Bifidobacterium |

I Actinobacteria }—i Bifidobacterium |

Bacteroidetes

Prevotella

Bacteroidetes

| Proteobacteria |—| Klebsiella |

| Protecbacteria |——  Kiebsiella |

Streptococcus

Streptococcus

| Verrucomicrobia | Lachnospira |

| Verrucomicrobia | Lachnospira |

Escherichia

| Fusobacteria |

| Fusobacteria | Escherichia |

Roseburia

FIGURE 8

Microbiota at the phylum and genus level. (A) DC v.s. DM; (B) DC v.s. HC.
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mechanism might be linked to the depletion of potential
intestinal pathogens, enhancement of intestinal antioxidant
ability and digestive enzyme activity (57). Faecalibacterium
was gram-negative, butyrate-producing bacteria, which was
demonstrated to be negatively related to HbAlc (26).
Faecalibacterium was proven to increase the intestinal
synthesis of glucagon-like peptide-1, peptide YY, acetate and
butyrate help to maintain glucose homeostasis (58). In this
study, Faecalibacterium was depleted in DC, corroborating
previous reports that linked Faecalibacterium to positive
metabolic outcomes (29, 33, 59-61). These findings revealed
that the alternation of gut microbiota at the genus level was
closely related to DC, and the increase of Bifidobacterium,
Lactobacillus and Faecalibacterium might be responsible for
the pathology of DC. Klebsiella is a natural inhabitant of the
gastrointestinal tract microbiome of healthy humans and
animals, but it often causes extraintestinal infections, including
urinary tract infections, pneumoniae and septicemia (62).
Recently, Klebsiella was demonstrated to be increased in DKD
(63), which was proven to be increased in DC when compared to
HC in this study.

Microbiota symbiosis helped regulate metabolism and
reduce the risk of DM. Gut microbiota dysbiosis was proven
to lead imbalance of intestinal microbial bi-products, and cause
insulin resistance, with mechanism unclear. Recently, the
mechanism of how microbiota affect DM and its
complications has raised academic interests. Firstly, microbiota
dysbiosis led to the production of short-chain fatty acids
(SCFAs) including butyrate, propionate, and acetate, which
then impaired the intestinal barrier integrity, activated the
inflammation signaling cascades and thus promoted the multi-
organs damage (64). Secondly, microbiota-derived
trimethylamine nitrogen oxide (TMAO) increased the
accumulation of cholesterol, led to insulin resistance (65), and
increased the risk of DM (66, 67). Third, changes in gut
microbiota composition were proven to affect gut permeability
and inflammation in DM (68, 69). Microbiota-derived
lipopolysaccharide (LPS) triggered downstream inflammatory
pathways and pro-inflammatory cytokine expression cascades,
leading to inflammatory reactions and aggravating insulin
resistance (70, 71). Last but not the least, microbiota-derived
aromatic amino acids including indoxyl sulfate and p-cresyl
sulfate, also known as uremic toxins, might induce
mitochondrial dysfunction, podocytes injuries, thicken the
glomerular basement membrane, and ultimately lead to renal
micro-inflammation, and perivascular fibrosis in DKD (72, 73).

In this meta-analysis, genus Bifidobacterium belonged to the
phylum Actinobacteria, genera Faecalibacterium and
Lactobacillus belonged to the phylum Firmicutes, genus
Klebsiella belonged to the phylum Proteobacteria. Phyla
Actinobacteria, Firmicutes and Proteobacteria were both
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SCFAs-producing and LPS-producing bacteria. Therefore, we
hypothesized that SCFAs-induced intestinal barrier integrity
impairment and LPS-induced inflammation might be
important parts of mechanism of DC. Nevertheless, direct
targets of gut microbiota and the potential mechanisms
needed to be further elucidated.

In spite of these interesting findings, our study was not
without limitations. First, the language of included literature was
limited to English, which may increase the possibility of
language bias or publication bias. Secondly, since the gut
microbiota was closely related to race and living environment,
and the included studies originated mostly from Asia (11/13), in
which nine studies were conducted in China and two in India.
To explore the potential source of heterogeneity caused by it, the
subgroup analysis on the nation has been performed in some
comparison. The generalization of these results can only
represent the characteristics of Asian populations to some
extent. Third, in the 13 studies included, there were seven (7/
13) studies focused on DKD, five (5/13) focused on DR, and only
one (1/13) focused on DPN. To explore the potential source of
heterogeneity caused by different microvascular complications
of DM, the subgroup analysis on the type of microvascular
complications has been performed. Considering the
representativeness and potential bias of DPN, a meta-analysis
of studies excluding DPN was performed to compare. Although
DR and DKD were more representative microvascular
complications in some ways, it would be better if a larger
number of studies on DPN could be included in this meta-
analysis. Fourth, the heterogeneity was high, although subgroup
analysis on the type of DC, nation and city was performed, it was
far from enough to explain the source of heterogeneity. More
studies should be included and more factors related to
microbiota such as ethnicity, eating habits, living environment,
obesity condition, and even drugs on the changes of gut
microbiota. Last, a different method of gene sequencing was
also a potential bias on the results.

Conclusions

In conclusion, we demonstrated that the alternation of alpha
diversity, the abundances of phyla Proteobacteria and Firmicutes as
well as the abundances of genera Bifidobacterium, Faecalibacterium
Lactobacillus and Klebsiella may be associated with DC. The
changes of microbial features may be noninvasive biomarkers for
monitoring the management of DC. However, our findings still
need to be verified by further large-scale, multi-center and high-
quality studies. Nevertheless, conflicting results have also been
reported, and therefore further studies would be necessary to fully
understand the relation between gut microbiota and DC.
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