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Is prolactin receptor signaling a
target in dopamine-resistant
prolactinomas?

Jimena Ferraris*

Department of Biophysics and Biochemistry, Stockholm University, Stockholm, Sweden
The hypothalamic neuroendocrine catecholamine dopamine regulates the

lactotroph function, including prolactin (PRL) secretion, proliferation, and

apoptosis. The treatment of PRL-secreting tumors, formerly known as

prolactinomas, has relied mainly on this physiological characteristic, making

dopamine agonists the first therapeutic alternative. Nevertheless, the group of

patients that do not respond to this treatment has few therapeutical options.

Prolactin is another physiological regulator of lactotroph function, acting as an

autocrine/paracrine factor that controls PRL secretion and cellular turnover,

inducing apoptosis and decreasing proliferation. Furthermore, the signaling

pathways related to these effects, mainly JAK/STAT and PI3K/Akt, and MAPK,

have been extensively studied in prolactinomas and other tumors as therapeutic

targets. In the present work, the relationship between PRL pathophysiology and

prolactinoma development is explored, aiming to comprehend the value of PRL

and PRLR-associated pathways as exploratory fields alternative to dopamine-

related approaches, which are worth physiological characteristics that might be

impaired and can be potentially restored or upregulated to provide more options

to the patients.
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1 Introduction

Pituitary neuroendocrine tumors (PitNETs), formerly pituitary adenomas, are

systematized according to the 2022 WHO classification, accounting for the expression of

transcription factors, hormones, and biomarkers. Lactotroph tumors (commonly referred to

as prolactinomas) are a type of Pit-1-linage PitNET characterized by the presence of PRL,

either in paranuclear dot-like expression (“Sparsely granulated lactotroph tumor”) or a

diffuse cytoplasmatic manner (“Densely granulated lactotroph tumor”). Other PitNET-

expressing PRL includes the Mammosomatotroph tumor, the Mature plurihormonal

PIT1-lineage, the Immature PIT1-lineage tumor, and the Acidophil stem cell tumor and

Mixed somatotroph and lactotroph tumor (1).
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The present review will discuss the relationship between PRL and

the pathogenesis of PRL-related neuroendocrine tumors, focusing

primarily on non-aggressive lactotroph tumors, aiming to identify

targets for upcoming treatment strategies.

Lactotroph PiNETs are benign adenomas and constitute about

50% of pituitary tumors, with a prevalence that ranges from 25 to 63/

100000, depending on the region reported (2), and an annual

incidence of 4 new cases per 100,000 inhabitants (3).

The clinical consequences of lactotroph adenomas are

concomitant hyperprolactinemia and mechanical compression

effects at the brain level exerted by the presence of the tumor.

These aspects have been previously reviewed, and the reader can

refer to Melmed et al. (5)or Karavitaki (3) for further details.

The first-line treatment, dopamine receptor 2 (D2R) agonist

administration, reduces PRL levels and tumor size. The Endocrine

Society recommends administering cabergoline to treat

hyperprolactinemia in patients presenting macroadenomas (4).

However, 20%-30% of patients do not respond to treatment (2, 4–6).

The pathogenesis of PRL-secreting PiNETs has been extensively

investigated. Two germline mutations induce familial prolactinomas:

MEN1 and AIP mutations (5). However, spontaneous pituitary

adenomas are the most preva lent , and these tumors ’

pathophysiology remains elusive. Being dopamine a natural

inhibitor of PRL secretion and lactotrophproliferation; and the

dopamine pathway a successful target, most efforts have been made

to understand the pathophysiology of the dopamine and dopamine-

associated pathways, such as the biology of dopamine receptors,

extracellular-regulated mediators such as TGF-beta or intracellular

signaling pathways such as ERK1/2 (7–9).

Nevertheless, in this interconnected network of neuroendocrine,

endocrine, and local factors crosstalk, PRL is the precise outcome, but

that could also be an initiator or intermediate player. So, this review

will summarise the current knowledge about the relationship between

PRL and pituitary physiology and aim to identify PRL’s role in the

pathophysiology of prolactinomas. Is PRL a pro or anti-

prolactinoma factor?
2 Prolactin and prolactinomas: A
retrospective viewpoint

Hypothalamic neurons of the tuberoinfundibular (TIDA) and

tuberohypophysial dopamine systems express PRL receptors (PRLR),

so they are sensitive to changes in circulating levels of this hormone.

Circulating PRL reaches the arcuate nucleus and stimulates the

synthesis and activity of the tyrosine hydroxylase in the TIDA

neurons, which increases dopamine release to the portal system,

inhibiting the secretory activity of lactotrophs. This way, PRL

regulates its synthesis and release by controlling hypothalamic

dopamine secretion.

At the pituitary level, PRL can induce a negative feedback control

strategy. Prolactin inhibits its production and secretion (10), and as it

will be discussed later, it inhibits cellular proliferation. Notably, this

effect contrasts PRL in many other target tissues, such as the

mammary gland, lymphoid cells, pancreas, or the prostate, where

the main physiological action of PRL is pro-proliferative. Prolactin

has been implicated in tumorigenesis in some tissues, like the
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mammary gland and prostate (reviewed in (11)), and others, such

as glioblastomas.

So, in the context of prolactinomas, what has sounded intuitively

comprehensive has been that PRL, being elevated in the pathological

context, could be contributing to prolactinoma proliferation and

creating a positive loop: high PRL levels lead to enhanced

lactotroph activity and, thus, contributes to, at least, the

prolactinoma progression.

Early studies proposed PRL as a growth factor in a somatotroph-

derived cell line, GH3 (12). Later, it was demonstrated that PRL

inhibits its transcription, controlling its production through an ultra-

short feedback loop (10). Dopamine receptor 2 KO mice (D2RKO)

develop pituitary hyperplasia and hyperprolactinemia. Consequently,

it was proposed that those tumors were consequences of the increased

levels of PRL in these animals, assigning PRL a proliferative action on

pituitary cells, especially lactotrophs (13).

On the other hand, PRL Receptor KO mice (PRLRKO) present

hyperprolactinemia and develop prolactinomas after 12 months of

age with high penetrance (6). However, the seminal work by Schuff

et al. showed that in vivo, constitutive double D2RKO/PRLRKO mice

also exhibit prolactinomas, even significantly higher than single

knockouts. This observation led to questions about whether there

are independent actions of PRL on lactotroph cells (13).

The same group explored the effects of PRL in cultured lactotroph

cells from wild-type and D2RKO mice, as they hypothesized a

dopamine-independent PRL effect. They observed that PRL

treatment reduces the proliferative index of lactotroph proliferation

from wild-type female animals, whereas PRL has little effect in

cultured lactotrophs derived from hyperprolactinemic D2RKO

animals. Another exciting aspect is that although cabergoline

restores circulating PRL levels in PRLRKO mice, it does not induce

tumor reduction, suggesting that dopamine and PRL effects can be

interplaying but also have separate actions (6).

Many years later, conditional deleting of the PRLR, specifically in

lactotrophs, showed no effect on PRL levels, and the authors did not

observe changes in pituitary size. The deletion was achieved in 20% of

pituitary cells leading to a qualitative reduction in one of the PRLR-

mediated signaling activation, pSTAT5. Interestingly, these mice

presented an elevated dopamine tone, suggesting a strengthening in

the inhibitory input as a compensatory mechanism of the constitutive

deficiency of PRLR inhibitory effect in lactotrophs (14).

So far, all these backgrounds suggested that 1) PRL can exert an

effect on lactotrophs inhibiting proliferation, 2) That effect is

independent of dopamine, and 3) In a hyperprolactinemic context,

this physiological mechanism could be impaired.

Apart from the knockout mouse models described above, other

evidence suggested that PRL could be implicated in regulating

lactotroph cell turnover. In rats, two-week treatment with estradiol

leads to hyperprolactinemia. Although pituitary hyperplasia is

observed in this animal model , the apoptot ic rate of

hyperprolactinemic estradiol-treated rats is higher than control

ovariectomized females (15). Although the role of dopamine and

estrogens themselves could not be excluded at the time, the presence

of PRL and an elevated apoptotic rate was suggestive of a relationship

between PRL and the regulation of pituitary turnover.

Nevertheless, a question remained elusive: Does PRL act directly

on lactotrophs through PRLR activation?
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3 Prolactin effects on pituitary
lactotrophs: Evidence for direct effects

Apart from the knockout mouse model and the chronic estradiol

treatment described above, other evidence suggests that PRL can be

implicated in regulating lactotroph cell turnover in vivo. One is that

the induction of acute hyperprolactinemia by PRL injection leads to a

decrease in pituitary proliferation and an increase in the apoptotic

rate, particularly in lactotroph cells. The same is observed when

hyperprolactinemia is induced by acute treatment with a D2R

antagonist. This evidence illustrates a possible dopamine-

independent effect of PRL on lactotrophs (16).

The implication of a PRLR-mediated effect of PRL was further

confirmed in male and female transgenic mice constitutively

expressing a PRLR antagonist. Both males and females that lack

PRLR activation either by the presence of a PRLR antagonist or by

lacking PRLR (e.g., PRLR KO mice) present pituitary hyperplasia and

altered proliferation and apoptotic rates (16, 17).

Interestingly, circulating hormones regulate anterior pituitary cell

proliferation and apoptotic rates in female rodents. The proestrus

seems to be an essential regulation point of cellular homeostasis at the

pituitary level. Estradiol, TNF-Alpha, FasL, and dopamine induce

apoptosis, particularly during this estrous cycle stage. The highest

proliferative rate occurs in estrus, whereas the highest apoptotic rate

occurs in proestrus, leading to a balance in the apoptosis/proliferation

rate in the tissue. This apoptosis peak coincides with the PRL peak

and is absent in PRLRKO females, even before tumor formation

(around 6 months old), although hyperprolactinemia has been

evident since early ages (6, 13). Thus, a cumulative lack of PRLR-

dependent apoptosis could explain the later pituitary hyperplasia in

this animal model (16).

The alteration of low but recurrent apoptotic rates was also

observed in females where the PRLR was constitutively

antagonized. These mice also present an altered proliferation rate

and develop pituitary hyperplasia (16).

Studying autocrine factors can be challenging since adding the

agonist to a system already exposed to that factor can mask some

effects, pushing the system to non-physiological conditions. So, it was

not until later, with the use of a PRLR antagonist, that question could

be further clarified (18).

The inhibition of the PRLR activation by locally produced PRL

showed that local PRL acts as a proapoptotic and antiproliferative

factor in both primary cultures and the tumor-derived GH3 cell line

(16, 17).

This body of evidence supports the physiological Role of

autocrine/paracrine PRL in modulating cell turnover homeostasis

and that alterations in this mechanism could lead to enhanced

pituitary tumorigenesis.
4 Mechanism of action of PRL in
Lactotrophs

PRL acts through a receptor belonging to the class I cytokine

receptor group, a group of transmembrane-step proteins that share

conserved sites in the extracellular and intracellular domain and do
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processing of the primary transcript of the PRLR gene gives rise to

different isoforms, which differ in the length of the amino acid chain

of the intracellular portion but share identical extracellular portions

and transmembrane domains (19–21). These isoforms are called long

and short (or several types of short isoforms depending on the

species) because of the length of their intracellular portion (358 and

57 amino acids, respectively) (19). The long isoform contains the box

1 and 2 regions, while the short isoforms lack the latter (22, 23).

The phosphorylation of PRLR depends on the binding of the

intracellular portion of PRLR to intracytoplasmic kinases. PRLR is

constitutively associated with proteins in the Janus kinase family,

specifically, the JAK2 protein. Phosphorylated tyrosine residues

possess the ability to bind transcription factors with SH2 domains,

such as the family of transducer and transcription activator proteins

(STAT, signal transducer and activator of transcription). After being

phosphorylated, STAT proteins translocated to the nucleus and

modulate the expression of specific genes (11, 20). The STAT

family of proteins includes STAT 1, 3, and 5, and the latter is most

often associated with the PRLR signaling pathway (18, 24). While all

class I cytokine receptors can recruit proteins from the STAT family,

the specificity of signaling occurring by binding a specific ligand to a

given receptor is given by the subset of STAT proteins that each

receptor recruits. Thus, it has been postulated that signaling through

JAK2/STAT5 would be the specific pathway of the PRLR (24). Other

proteins with the SH2 domain can be recruited by PRLR, such as the

socs family proteins, SOC1-SOC7, and CIS (20). These PRL-induced

proteins bind to and inhibit JAK2 activity by forming JAK-SOCS or

JAK-SOCS-PRLR complexes. In addition, PRL induces the expression

of the protein inactivator of activated STAT (PIAS). These proteins

exert negative feedback by inhibiting the JAK/STAT signaling

pathway, inhibiting PRL signaling. In addition to the JAK/STAT

pathway, PRLR is very well known to activate other signaling

pathways such as MAPK, Src (21), phosphoinositide-3 Kinase

(PI3K)/Akt (25), or Nek3-vav2-Rac1 (22).

Since the JAK2 protein is associated with the intracellular portion

proximal to the membrane, both LPRLR and SPRLR can bind to this

enzyme. However, only the long isoform is phosphorylated by the

activation of JAK2 since the tyrosine residues of the receptor

susceptible to being phosphorylated in the terminal C portion of

the PRLR are not present in the short isoform of the receptor (20).

Therefore, PRL can activate or inhibit other pathways, such as MAPK

and phosphatidylinositol 3 kinase (PI3K), without recruiting STAT

proteins (21, 26, 27). In breast cancer cell-derived cell lines, PRL

activates both Src family kinases and the JAK/STAT, as well as PI3K/

Akt and MAPK signaling pathways. Whereas activation of MAPK

occurs independently of STATs protein recruitment, it depends on

JAK activation with PI3K as an intermediate cascade (26). In the

ovary, PRL activates ERK1/2 and p38 MAPK independently of the

JAK/STAT pathway by specific activation of the short isoform of the

receptor (28). Hepatocytes express the PRLR short isoform in rodents

(29, 30), and PRL inhibits the MAP3K-/c-Myc pathways in these cells

Since the PRL action is mediated by that isoform of the PRLR (31),

whereas other actions are mediated by the PRLR Long/JAK/STAT5

pathways (32, 33).

Adding to the complexity of the PRL/PRLR isoform and signaling

puzzle, the expression of PRLR can be modulated by endocrine
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factors. Apart from sex differences, in hormone-responsive tissues,

the expression of PRLR is variable in either reproductive stages or

along the sexual cycle (16, 24, 28, 29, 34–36).

The rat, mouse and human adenohypophysis express both

isoforms of PRLR (16, 29, 37–39). While the ratio of LPRLR to

SPRLR isoforms is approximately 13:1 in males, it is variable along the

estrous cycle in females, and the PRLR expression is higher in

diestrus, with changes in the ratio that varies from approximately

36:1 in diestrus to 1:1 in proestrus (16, 17, 29).

Since both LPRLR and SPRLR isoforms are expressed in the

pituitary, either isoform could mediate the effect of PRL action in

lactotrophs. In this regard, a study showed that mice lacking the

LPRLR isoform present high serum prolactin levels. This indicates a

partial impairment in the negative feedback mechanism acting in the

hypothalamus and the pituitary, supporting a role for the long

isoform of the PRLR in controlling PRL levels (22).
5 Prolactin, prolactin receptor, and
signaling pathways associated with the
control of cellular turnover

The lactotroph function is controlled by several intracellular

pathways controlling hormone production, secretion, and

cell survival.

Prolactin gene expression is modulated by various signals,

stimulatory such as estradiol and inhibitory such as dopamine, that

Converge in several signaling pathways such as the AMPc/PKA, PKC,

or MAPK pathways (19, 40, 41). The secretion of PRL is another

control point, regulated mainly through calcium-dependent-

mechanisms (42, 43) which can depend on the cell’s electrical

activity, e.g., voltage-dependent calcium entry or signaling

molecules such as IP3, initiated chiefly by Gq/11-coupled membrane

receptors (44).

The specific intracellular signals that control lactotrophs’

proliferation, death, and phenotype under physiological and

pathological conditions also result from systemic, hypothalamic,

and intrahypophyseal signals. Regardless of the signal trigger

(estrogens (45–47), dopamine (8, 48), or TGF-b (9), for example),

some intracellular signaling pathways have been identified as critical

regulators of proliferation and apoptosis in both normal and tumoral

lactotrophs. All these pathways are also susceptible to modulation

by PRL.

The MAPK pathway is a pathway in which several extracellular

signals converge, and particularly ERK is dysregulated in cell lines

derived from prolactinomas (49, 50). The PI3K-Akt pathway is a

proliferative pathway inhibited by dopamine, which also regulates the

MAPK/ERK pathway, and both pathways work together, regulating

cell proliferation (51). However, a Ras/MAPK mutation alone does

not promote tumorigenesis in lactotroph cells (7). TGF-beta regulates

transcription by recruitment of Smad proteins but also, through its

so-called non-canonical pathway, regulates ERK1/2 and Jun kinases,

PI3K, and Akt proteins (52, 53).

A balance between proliferation and apoptosis keeps the cell

turnover. The evidence of factors controlling lactotrophs apoptosis

has been less studied than the proliferative factors. Dopamine and
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estradiol have been extensively studied among the apoptosis factors

for lactotroph cells. It was described that dopamine induces

adenohypophysis cell apoptosis by activating p38 MAPK or

oxygen-reactive species generated by dopamine metabolism (48,

54), by activation of the MEK/ERK1/2 pathways (55), and estrogens

sensitize to cytokine-induced cell death by regulating transcription

factor NFК-B (56) and protein balance of the Bcl-2 family (57). This

apoptotic protein family is modulated by dopamine (58) and PRL.

The activation of PRLR leads to the phosphorylation of JAK and

nuclear translocation of phosphorylated STAT5. Although PRLR-

activated pathways are usually associated with cell differentiation or

proliferative effects (11, 19–22), these pathways can also induce

apoptotic effects. For example, STAT5 phosphorylation mediates

the apoptosis of osteosarcoma-derived cells and cerebellar neurons

by regulating the Bax/Bcl-2 ratio (59–61). The JAK2/STAT5-

dependent balance towards proapoptotic Bax proteins leads to

apoptosis in lactotroph cells (62).

PRLR downregulates MEK/Erk1/2 and PI3K/Akt pathways,

leading to apoptosis and decreased proliferation (62). Furthermore,

the mutation of a splicing factor, SF3B1, was associated with a bad

prognosis. This mutation stimulates the PI3K/Akt pathway in

prolactinomas, increasing tumor invasiveness (63). Similar

pathways have been identified as therapeutic targets in

prolactinoma by studying differentially expressed mRNA together

with microRNAs (64).

In their recent review, Biagetti et al. identified potential

therapeutic options related to relevant signaling pathways for the

treatment of dopamine-resistant prolactinomas, highlighting the

JAK/STAT3, PI3K-Akt-mTOR, MAPK/AMPK, and JAK2/STAT5

pathways. All of them are related to paracrine/autocrine PRL effects

in the pituitary; for all, there are already described pharmacological

modulators and thus are relevant pharmacological targets for

potential aggressive prolactinomas. Nevertheless, no clinical trial

currently assesses these therapeutic options (65).
6 Prolactin receptor expression and
associated genetic alterations related
to PRL-secreting adenomas

Suppose the PRLR mediates a physiological autocrine/paracrine

control of the lactotroph population by PRL. In that case, mutations

in this receptor are expected to be related to the formation,

progression, or prognosis of PRL-secreting adenomas.

In 2013, a loss-of-function PRLR mutation was described in the

extracellular domain-encoding region. The mutation was present in a

family with autosomal dominant hyperprolactinemia. This mutation

leads to an impairment in the JAK2/STAT5 signaling, and although

no changes in the pituitary size were observed at the time of the study,

this can indicate that the PRLR/JAK2/STAT5 activation can be a

relevant control mechanism of lactotroph function in humans (66).

The first analysis of inactivating germline mutations of PRLR was

not associated with prolactinomas concluding that most

prolactinomas occur independently of germline changes in the

PRLR gene (67). Nevertheless, in 2019, two germline PRLR

intracellular domain variants were later associated with
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prolactinoma manifestation. Interestingly, one of those variants

results in the overactivation of the Akt-related pathways (68).

Although genetic mutations are not the leading cause of

prolactinoma development, since PitNETs are mainly sporadic (4,

69), the studies mentioned above can shed light on the mechanisms

tha t cou l d be a l t e r ed du r i ng th e i n i t i a l pha s e s o f

prolactinoma development.

Since both loss-of-function and gain-of-function genetic

alterations can lead to alteration in the lactotroph function, it is

possible that a balance between PRLR cascades plays a role in the

maintenance of lactotrophs homeostasis and that the lack of

equilibrium in the intricated pathway network, as discussed

previously, can lead to clinical manifestations. Given the complexity

of the PRL and lactotroph turnover regulation, more efforts should be

put into understanding the interconnections between receptors,

isoforms, and signaling pathways to elucidate the physiological

relevance of PRLR in the control of lactotroph function in vivo.
7 Discussion

Prolactin-secreting PiNETs that do not respond to standard

treatments with dopamine agonists imply a large number of

patients annually around the globe. It has been proposed that

prolactinomas have a monoclonal origin (4), and although several

oncogenes are overexpressed in these tumors, the pathophysiological

processes that lead to the formation of prolactinomas have not yet

been established (4, 7, 19). From the analysis of familial pituitary

tumors, a series of oncogenes involved in tumor development have

been proposed, but most prolactinomas (more than 95%) occur

spontaneously, and these oncogenes do not explain their

appearance (7, 70). Although progression to invasive and metastatic

tumors is rare, lactotroph macroadenomas are one of the

predominating types (71–73), and the mechanism leading to

malignant transformation is currently unknown (74).

Since the adenohypophysis is a gland with high plasticity (75),

a l terat ions in the mechanisms that normal ly regulate

adenohypophysis cell renewal could be involved in developing

pituitary tumors (38).

The evidence presented here suggests a significant role of PRL in

the pathogenesis of prolactinomas. Such implications can be

considered in two main scenarios. In one scenario, alteration of

PRLR-related actions locally at the pituitary level, either initiating

or contributing to tumor development. The second is the effect of PRL

at the hypothalamic level, controlling neuroendocrine functions, such

as dopamine or potentially other hypothalamic factors, that further

control the pituitary’s cell physiology.

At the hypothalamic level, prolactin feedback onto TIDA neurons

contribute to maintaining lactotroph homeostasis by negative

feedback that restores dopamine inhibitory input to the pituitary

(76). In the adenohypophysis, PRL possesses proapoptotic and anti-

proliferative effects, which are critical for maintaining tissue

homeostasis of the gland in rodent models, in an interplay with

mainly hypothalamic factors (13, 14, 16, 17, 77). Deficiencies in PRLR

signaling due to PRLR activity alterations or wrong intracellular
Frontiers in Endocrinology 05
pathway connectivity, crosstalk, or co-regulation exerted by other

factors, such as hypothalamic or paracrine mechanisms, can lead to

pituitary hyperplasia and eventual tumor development.

The intracellular signals that regulate the specific phenotype of

lactotrophs, as well as the control of their proliferation and the

death of these cells, are very little known in humans (7, 78).

Approaching how prolactinomas develop from studying

intracellular signaling pathways that regulate the proliferation

and apoptosis of lactotrophs and the study of a physiological

regulator of these pathways, PRL, is necessary to understand the

pathophysiology of the development of tumors in this gland.

Identifying therapeutic targets that contribute to the design of

new treatments will be possible if new hypotheses are tested and

efforts are currently required to understand the mechanisms in

human pituitaries.

Prolactin, dopamine and other factors control lactotroph

homeostasis (7, 19, 48, 52, 65). For patients where dopamine

agonists are inefficient, it is worth consideringwhether the

pathogenesis of those tumors is the same as in those responsive to

dopamine. The field usually includes prolactinomas in a unique group

in which, first, a dopamine agonist is administered, and in case of

treatment failure, surgery and a very limited pharmacological toolbox

are considered, although the probability of success is decreased (2,

79). Merely adding other players in the lactotroph physiological

regulation may help to understand if tumors categorized as

“refractory to treatment with dopamine agonists” involve a different

pathophysiological mechanism.

If such factors can be identified, the exploration, for example, of

PRLR or PRLR-associated pathways, not only in terms of mutations

but also in gene expression regulation or modulatory molecules using

high throughput technologies in patients, could help in designing a

specific personalized therapy (63, 65, 67, 68),

The approach to the knowledge of how prolactinomas develop

from studying physiological factors that control the intracellular

signaling pathways that regulate the proliferation and apoptosis of

lactotrophs is critical, and PRL is a promising candidate.
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