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and the nuclear epigenome in
health and disease
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Bidirectional crosstalk between the nuclear and mitochondrial genomes is

essential for proper cell functioning. Mitochondrial DNA copy number

(mtDNA-CN) and heteroplasmy influence mitochondrial function, which can

influence the nuclear genome and contribute to health and disease.

Evidence shows that mtDNA-CN and heteroplasmic variation are associated

with aging, complex disease, and all-cause mortality. Further, the nuclear

epigenome may mediate the effects of mtDNA variation on disease. In this

way, mitochondria act as an environmental biosensor translating vital

information about the state of the cell to the nuclear genome.

Cellular communication between mtDNA variation and the nuclear epigenome

can be achieved by modification of metabolites and intermediates of the citric

acid cycle and oxidative phosphorylation. These essential molecules (e.g. ATP,

acetyl-CoA, ɑ-ketoglutarate and S-adenosylmethionine) act as substrates and

cofactors for enzymes involved in epigenetic modifications.

The role of mitochondria as an environmental biosensor is emerging as a

critical modifier of disease states. Uncovering the mechanisms of these

dynamics in disease processes is expected to lead to earlier and improved

treatment for a variety of diseases. However, the influence of mtDNA-CN and

heteroplasmy variation on mitochondrially-derived epigenome-modifying

metabolites and intermediates is poorly understood. This perspective will

focus on the relationship between mtDNA-CN, heteroplasmy, and

epigenome modifying cofactors and substrates, and the influence of their

dynamics on the nuclear epigenome in health and disease.
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Introduction

The mitochondrion is a membrane bound organelle that

plays a role in several cellular processes, including cellular

metabolism, reactive oxygen species (ROS) production, and

apoptosis (1). A crucial function of the mitochondrion is the

generation of ATP through the tricarboxylic acid (TCA) cycle

and oxidative phosphorylation (OXPHOS). Mitochondria

contain circular genomes (mitochondrial DNA; mtDNA) that

are maternally inherited, haploid, non-intronic, and ~16kb in

length. mtDNA codes for 13 proteins that help compile 4/5

OXPHOS enzymatic complexes, and the tRNAs and rRNAs

required for mitochondrial protein translation. Mitochondrial

gene expression varies across different cells and tissues (2).

Integrity of mtDNA is essential for energy production and

overall mitochondrial function.

Two metrics of mtDNA integrity are mtDNA copy number

(mtDNA-CN) and heteroplasmy. mtDNA-CN refers to the

number of mitochondrial genomes present in a cell. Basal

mtDNA-CN is cell- and tissue-specific, based on the energy

demands of that cell/tissue; for example, cardiac tissue has a

higher basal mtDNA-CN than lung epithelial tissue (3).

mtDNA-CN is associated with health status (4), decreases with

age (5, 6) and is higher in females (7). Heteroplasmy refers to the

presence of genotypically diverse mtDNAmolecules within a cell

and increases with age (5, 6). Heteroplasmic burden is the ratio

of mutated to wild-type mtDNA that determines a mutation’s

likelihood to be phenotypically detrimental. When a threshold of

heteroplasmic burden is exceeded, mitochondrial diseases may

manifest (8). The evolution of mitochondrial genomes can be

tracked by sequencing and grouping mtDNA molecules with

similar genomic characteristics into groups called haplotypes.

mtDNA-CN, heteroplasmy and mtDNA haplotypes have direct

effects on the health and functioning of mitochondria which

affects cell functioning (9). mtDNA variation and mitochondrial

function are associated with a variety of diseases (10), as well as

aging, frailty, and all-cause mortality (7). Generally, mtDNA-CN

decrease and increased heteroplasmy are associated with disease

(11, 12).

The mechanisms of the association between mtDNA variation

and the epigenome have not been fully elucidated. The role

mtDNA plays in epigenome dynamics was first revealed in 2008

in a cell model of ethidium bromide (EtBr)-mediated mtDNA

depletion where differentially methylated nuclear DNA (nDNA)

was observed (13). Since then, several models of mtDNA variation

have been utilized to ascertain the mechanisms through which

mtDNA influences the epigenome (9) (14–19). This link between

mtDNA and the epigenome represents a promising avenue for

further research as it may prove to be a useful predictor of disease.

We and others propose that mtDNA influences the

epigenome through cellular metabolism and modification of

epigenome-modifying metabolites of the TCA cycle and
Frontiers in Endocrinology 02
OXPHOS. Some major known epigenome-modifying

metabolites from the TCA cycle and OXPHOS are

methionine, S-adenosylmethionine (SAM, promotes

methylation), S-adenosylhomocysteine (SAH, inhibits

methylation), alpha-ketoglutarate (aKG, promotes DNA

demethylation), acetyl CoA (promotes histone acetylation),

and NAD+ (promotes histone deacetylation). An overview of

how these metabolites interact with the epigenome is presented

in Figure 1; a summary of these metabolites and their

interactions is presented in Table 1.

We hypothesize that modification of the TCA cycle and

OXPHOS through mtDNA-CN and heteroplasmy variation

modulates the avai labi l i ty of epigenome-modifying

metabolites, influencing the epigenome and gene expression in

regions associated with complex disease. In this perspective, we

will briefly review the importance of mitochondrial-nuclear

cross-talk in maintaining genomic integrity and cell function,

the effects of mtDNA variation on mitochondrial function, and

the association between mtDNA, aging and disease. We further

review the known connections between mtDNA, epigenomic

changes, and differential gene expression. Finally, we summarize

the proposed role for a subset of epigenome-modifying

substrates and co-factors required for methylation/

demethylation and acetylation/deacetylation in nuclear

epigenomic reactions.
Mito-nuclear cross-talk is essential
for proper cell functioning

Replication and transcription of mtDNA is controlled by

nuclear-encoded genes, therefore nDNA plays a pivotal role in

maintaining mitochondrial function and genomic integrity.

mtDNA polymerase gamma (POLG), the catalytic subunit of

mtDNA polymerase, is the primary polymerase responsible for

mtDNA replication. With a polymerase and exonuclease

domain, POLG synthesizes and edits new mtDNA strands

(17). Mitochondrial transcription factor A (TFAM) also plays

a role in mtDNA replication and transcription (14). nDNA

encodes all but 13 protein subunits required for energy

metabolism and maintenance of mitochondrial function. It is

important that these genomes communicate via anterograde

(nucleus to mitochondria) and retrograde (mitochondria to

nucleus) signaling to maintain genomic integrity and function.

An example of retrograde signaling in genome integrity and

cell function is during the cell cycle. nDNA-encoded cell-cycle

checkpoint proteins such as p21 are upregulated in response to

double stranded breaks in mtDNA (20). During the S-phase of

the cell cycle, mitochondrial activities ensure the translocation of

mitochondrial enzymes that alter nuclear epigenetic marks to

make cell cycle-related genes more accessible during DNA

replication (21). Another example involves mitochondrial
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FIGURE 1

Overview of metabolic pathways that generate selected epigenome-modifying metabolites: methionine, S-adenosylmethionine (SAM), S-
adenosylhomocysteine (SAH), a-ketoglutarate (aKG), acetyl CoA, and NAD+. The enzymatic reactions and epigenomic modifications of these
metabolites are summarized in Table 1. Complex I of OXPHOS oxidizes NADH to NAD+. Acetyl CoA and aKG are metabolites of the TCA cycle.
Methionine, SAM and SAH are critical components of the methionine cycle.
TABLE 1 Summary of selected metabolites, enzymatic interactions, and related epigenomic modification upon increase of the metabolite.

Metabolite Enzymatic Interaction Epigenomic modification

Methionine Substrate for MAT, required for SAM production Promotes DNA methylation

SAM Substrate for DNMTs; activates activity Promotes DNA methylation

SAH Substrate for DNMTs; inhibits activity Inhibits DNA methylation

a-ketoglutarate Co-factor for TET and JMJD demethylases Promotes DNA demethylation

Acetyl CoA Substrate for HATs Promotes histone acetylation

NAD+ Co-factor for sirtuins Promotes histone deacetylation
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nuclear retrograde regulator 1 (MNRR1), a bi-organellar protein

that activates respiration by binding to cytochrome c oxidase in

mitochondria and acts as a transcriptional activator in the

nucleus by binding to a conserved oxygen-responsive

promoter element of several stress-related genes (22). Another

example of mito-nuclear cross-talk is in embryogenesis, initiated

by maternal cytoplasmic factors until zygotic genome activation

(ZGA) occurs (23). Mitochondria contribute to metabolite

production required for ZGA and generates signals needed to

transport these metabolites and other enzymes to the nucleus

(24). Mito-nuclear cross-talk is essential for other developmental

activities, such as cell specification and differentiation (25).

It is clear that mtDNA and nDNA work together to maintain

the needs of our cells. This essential relationship can be further

assessed to elucidate the mechanisms that link mtDNA variation

with the epigenome.

Mitochondrial DNA variation and
mitochondrial function

Variation in mtDNA-CN or heteroplasmy affects

mitochondrial function. Generally, decreasing mtDNA-CN and/

or increasing heteroplasmy negatively affects mitochondrial

function; conversely, increasing mtDNA-CN and/or decreasing

heteroplasmy enhances mitochondrial function (26).

mtDNA-CN and heteroplasmy vary in response to a variety of

environmental factors. Some lifestyle factors such as obesity have

been shown to decrease mtDNA-CN (27), while alcohol

consumption and cigarette smoking can lead to mtDNA

deletions (28, 29). Many environmental pollutants such as heavy

metals and polyaromatic hydrocarbons can increase mtDNA-CN

(30, 31). Life-savingpharmaceuticals such as theHIV antiretroviral

drug Zidovudine significantly decrease mtDNA-CN (32), and

stressful life events have been suggested to modify mtDNA (33).

Several cell models of mtDNA variation exist. POLG

mutated in the exonuclease or polymerase domain modifies

heteroplasmy and mtDNA-CN, respectively. Mutated POLG

exhibits a dominant-negative phenotype, wherein the activity

of mutated POLG inhibits activity of wild-type POLG;

polymerase domain mutations can reduce mtDNA-CN up to

50% with every cell division, while exonuclease domain

mutations can produce 5-10-fold mutational loads in mtDNA

(18). Further, dominant-negative POLG (DN-POLG) expression

can be induced, allowing fine-tuned control of mtDNA-CN and

heteroplasmy variation, making this a useful system to assess the

effects of mtDNA variation (17–19). TFAM can be mutated or

knocked out/down to alter mtDNA-CN. CRISPR-mediated

knockout of TFAM results in an 18-fold decrease in mtDNA-

CN (14); RNAi-mediated knockdown of TFAM with siRNA (si-

TFAM) decreases mtDNA-CN by ~40% (16).

Modification of heteroplasmy leads to modified

mitochondrial function. Cells with 73% heteroplasmy exhibit
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defective mitochondrial function and low expression levels of

mtDNA-encoded proteins (22). In a separate cell line, increased

heteroplasmy is associated with mitochondrial transcript

reduction, and causes a dose-dependent reduction in mtDNA-

encoded protein expression (34). In a study analyzing nine

European haplotypes, cells carrying mtDNA haplotype J have

lower levels of intracellular ATP and ROS, indicating decreased

OXPHOS efficiency (35).

Increased mtDNA-CN is associated with an increase in

mitochondrial gene expression and correlates with an increase

in mitochondrial function (36). This rise in mtDNA-CN is

regularly seen in embryogenesis and differentiation (15).

Natural variation of mtDNA-CN is seen across tissues from

different individuals and can influence mitochondrial function;

for example, human skeletal muscle samples with a higher

mtDNA-CN display increased activity of mtDNA-encoded

OXPHOS complex proteins (37). In general, increased

mtDNA-CN increases mitochondrial function.

Decreased mtDNA-CN is associated with decreased

expression of mtDNA-encoded OXPHOS complex subunits,

inhibition of complex I, III, IV and V activity, and limited

ATP production (13). Disruption of gene expression and

inhibition of complex activity compromises cellular respiratory

capacity (38). Cells with low mtDNA-CN show partial OXPHOS

defects and prioritize glutamine metabolism for chemical energy

production (39). Furthermore, inhibiting complex I activity

increases superoxide production (40). OXPHOS replenishes

NAD+ pools for the TCA cycle; inhibition of OXPHOS

complex activity via mtDNA decrease perturbs TCA cycle

activity, altering the metabolic state of the cell (19).
The mitochondria in aging and
complex disease

Mitochondrial dysfunction is implicated in several human

diseases, including cancer (41), diabetes (42), cardiovascular

disease (CVD) (43), HIV/AIDS (44), multiple sclerosis (45),

Alzheimer’s, Parkinson’s, Huntington’s (34), autism (46), and

schizophrenia (47). Mitochondria are also implicated as drivers

of aging phenotypes (1, 20). There is a clear association that

exists between mitochondrial function and disease, and

mitochondrial function and aging.

Pathway analysis of cells with 50-90% heteroplasmy revealed

an upregulation of aging and senescence pathways (34). Further,

mice expressing exonuclease-deficientDN-Polg showedpremature

aging phenotypes such as kyphosis and hair loss as well as reduced

lifespan (1), andmice treatedwith rotenone (complex I inhibitor) in

early life exhibited a unique aging transcriptional profile (40). This

suggests that increasing heteroplasmy and inducingmitochondrial

dysfunction promotes the expression of gene pathways that give

rise to aging phenotypes.
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Mitochondria are heavily implicated in the pathogenesis of

cancer (48). A hallmarks of cancer cells is the Warburg effect,

wherein the cellmetabolizes glucose primarily throughglycolysis in

the presence of oxygen. Often, nuclear-encoded mitochondrial

genes are mutated in cancer, for example, isocitrate

dehydrogenase (IDH), a key enzyme in the TCA cycle (49–51).

Cells of cardiac tissue have high basal mtDNA-CN, likely due

to high energy demands; studies of mitochondrial contribution to

cardiac-related diseases are plentiful. In a study of dilated

cardiomyopathy (DCM) patients, lactate production was 5.4-

fold higher in DCM patients than controls, and elevated aKG

levels were seen (52). This may reflect a switch in metabolism

towards the TCA cycle to compensate for decreased energy

metabolism through anaerobic glycolysis. In a mouse model of

heart failure, mtDNA-CN decreased by ~40% in failing

myocardium after myocardial infarction (53). In another mouse

model, symptoms of cardiomyopathy due to DN-POLG transgene

expression were confirmed (54), and in another model, DN-POLG

transgene expression led to left ventricle hypertrophy that

progressed into cardiogenic heart failure (55).

Studies linking mitochondrial function to disease

pathophysiology are too extensive for the scope of this perspective.

However, evidence points to a clear association between mtDNA,

mitochondrial function, aging, anddisease. The epigenome and gene

expression are implicated asmajor players in the associationbetween

mtDNA and disease which we will discuss below.
Mitochondrial DNA variation is
associated with epigenomic changes
at specific nuclear loci and
influences gene expression

Mitochondrial variation is associated with DNA and histone

methylation changes. We performed an EWAS using methylation

data from three CVD cohorts and identified CpGs significantly

associated with mtDNA-CN; these CpGs were further validated in

an in vitro model of mtDNA-CN depletion via TFAM knockout

(14). Further, an EWAS and meta-analysis of mtDNA-CN

association with DNA methylation (DNAm) revealed CpGs to

be significantly associated with mtDNA-CN across multiple

ethnicities in five cohorts (56). Results from a cybrid cell model

suggest that variable histone methylation is highly dependent on

mitochondria (57). mtDNA haplotype is a determinant of global

DNAm levels (35). In a study analyzing murine embryonic stem

cell (ESC) differentiation in response to different haplotypes,

divergent haplotypes induced DNAm changes (58). In a mouse

population with the same nDNA but different mtDNA, altering

mtDNA leads to differential methylation (59). Culturing induced

pluripotent stem cells (iPSCs) in 5% oxygen reduces H3K27

trimethylation which is restored when cultured in atmospheric

20% oxygen (60). In glioblastoma tumour cells with low mtDNA-
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CN, differential methylation is seen compared to cells containing

100% of their mtDNA (50). Furthermore, we determined that

mtDNA-CN is causative of changes in nDNA methylation,

evidenced by the fact that the methylated sites did not drive

alterations in mtDNA-CN (14).

Mitochondrial variation is also associated with histone

acetylation changes. Mitochondrial variation can lead to

mitochondrial dysfunction, triggering mitochondrial superoxide

production. Superoxide mediates the modification of several

histone acetylation marks, including H3K9 and H3K14 (51). In

cybrid cell models, mitochondria significantly contribute to H4K16

acetylation variation (57), and mitochondrial metabolism exerts

some control over nuclear histone acetylation modifications (61).

mtDNA-CN reduction leads to decreased HDAC activity, which

increases histone H3K27 acetylation in gene promoters, likely

triggering chromatin activation (15). mtDNA reduction also

invokes a decrease in acetylation marks for H2B, H3 and H4

histones, though acetylation of these histones can be rescued upon

TCA cycle restoration (19). Culturing iPSCs in 5% oxygen rather

than atmospheric 20% oxygen reduces H3K27 acetylation which is

restored when cultured in 20% oxygen (60). Taken together, the

literature supports an association between mitochondrial variation

and histone acetylation dynamics.

Mitochondrial variation and its influence on the epigenome

is also associated with differential gene expression. DNAm

profile analysis of ESCs from four mice strains with different

mtDNA haplotypes reveal 8351 differentially methylated CpGs

assigned to 4243 genomic loci, 3552 of which are known genes

(58). Upon mtDNA-CN depletion, progressive increases of

DNAm in promoters and gene bodies are seen; additionally,

differential methylation occurs primarily in the promoter region

of differentially expressed genes (DEGs) (62). In a mutant IDH

cell line, differential methylation is seen in ~14 000 promoters

(49). The human mtDNA J haplotype exhibits higher mRNA

levels of the methyl adenosyl transferase (MAT) gene MAT1A,

which replenishes SAM levels and could explain the haplotypes’

increased global DNAm (35). In a mouse model of mtDNA-CN

depletion, 95 genes were differentially expressed (55), while a

second mouse model of mtDNA-CN depletion reveals 121

DEGs (63).

These significant associations that exist between mtDNA

variation and the state of the epigenome at specific genomic loci

strongly indicate a direct relationship between mitochondrial

function and the epigenome and transcriptome.

Mitochondrial dysfunction alters
metabolism and regulates
epigenome modifying metabolites

The mechanisms of the relationship between mitochondrial

function and the epigenome and transcriptome are yet to be

elucidated. We propose that this relationship exists through
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mitochondrial metabolites that are known to be substrates and

co-factors for epigenome-modifying processes. We have elected

to review the metabolites outlined in Table 1: methionine (MAT

substrate), SAM (donor for methylation), SAH (metabolite of

SAM), aKG (co-factor for TET demethylases), acetyl CoA

(substrate for acetylation) and NAD+ (cofactor for sirtuin

deacetylases), as these metabolites are crucial to mitochondrial

metabolism and are well-studied in their roles contributing to

DNA and histone methylation and histone acetylation.

Studies of a well-known pharmaceutical, metformin, provide

evidence that epigenomic changes could be mediated by

mitochondrial function. Metformin significantly decreases

SAH levels, thus increasing SAM levels, promoting DNAm

(64). Metformin does not modify DNAm in cells depleted of

their mitochondria, suggesting that metformin contributes to

epigenomic changes via mitochondria (65).

The one-carbon cycle, also referred to as the folate cycle,

includes reactions which occur both in the cytoplasm but also

primarily in the mitochondria. This cycle reflects the transfer of

one carbon from either serine or glycine generating methionine

and/or key contributors to RNA and DNA. Via methionine, the

one-carbon cycle contributes to the production of SAM. Thus, the

one-carbon cycle can indirectly affect methylation through

alteration of SAM, a methyl donor used in DNAm. These

dynamics are evidenced by mtDNA-CN depletion triggering

expression of key synthesis genes and enzymes of the one-

carbon cycle and encouraging homocysteine remethylation (66,

67). Furthermore, mtDNA-CN depleted cells alter metabolism to

produce serine from glucose (38). When glucose is metabolized to

serine, intermediates of the TCA cycle and OXPHOS are

modulated to compensate, for example decreasing pools of aKG,

contributing to hypermethylation via decreased TET demethylase

activity (63). The serine metabolism pathway fuels the methionine

salvage pathway to help regenerate cellular levels of SAM (68),

whose increase also contributes to hypermethylation (63). MATs

generate SAM from methionine; differential DNAm between

haplotypes can be achieved through the modulation of MAT

expression, which in turn modulates SAM availability for

methylation reactions (35). Glucose metabolism can be altered

by administration of 2-deoxyglucose; upon administration, global

histone acetylation is altered, pointing towards glucose availability

and mitochondrial function contributing to epigenomic

changes (69).

The majority (70%) of acetyl CoA is derived from

mitochondrially metabolized glucose; in cells with 100%

heteroplasmy and increased mitochondrial dysfunction,

glucose is metabolized to lactate, limiting production of acetyl

CoA and inhibiting histone acetylation (61). mtDNA-CN

depletion also results in diminished acetyl CoA pools, reduced

HAT activity, and loss of histone acetylation peaks (62). The rest

of cellular acetyl CoA is derived from other chemical sources,

such as N-acetylaspartate (NAA). NAA is an amino acid

derivative formed by the anabolism of aspartic acid and acetyl
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CoA. NAA is metabolized to aspartic acid and acetyl CoA via

aspartoacylase (ASPA) activity and is a reaction that can replete

both acetyl CoA and aspartic acid pools. When ASPA expression

is knocked down, the abundance of acetyl CoA pools decreases

(70), which likely stalls the TCA cycle, resulting in decreased

histone acetylation.

IDH is an NAD+-dependent enzyme responsible for

converting isocitrate into aKG and is a key enzyme of the TCA

cycle. Altering or inhibiting IDH activity contributes to

mitochondrial dysfunction, as is the case in many cancers where

IDH mutations are present (49, 50, 71). Mutated IDH further

metabolizes aKG to 2-hydroxyglutarate (2HG), which competes

with aKG to inhibit the function of aKG-dependent enzymes,

including TET demethylases, resulting in a significant increase in

DNAm (49). 2HG dehydrogenases are evolutionarily conserved

enzymes that metabolize 2HG back into aKG, likely mitigating the

effects of mutant IDH (72). Mitochondrial superoxide, a primary

by-product of oxidative stress, further contributes to

mitochondrial dysfunction via inhibition of IDH activity

resulting in accumulation of citrate and acetyl CoA and

depleted aKG pools (51). This accumulation of acetyl CoA

contributes to histone acetylation and transcriptional activation

(60). Furthermore, this inhibition of isocitrate metabolism to aKG

increases NAD+ pools since reduction of NAD+ to NADH

happens concurrently to the oxidation of isocitrate.

We propose that mitochondria connect complex disease

etiology to the environment and in this way act as a sensor of

cell state. Non-Mendelian transmission and variable penetrance

of complex diseases may in part be explained by the connection

between mtDNA variation, mitochondrial function, cellular

metabolism, and the nuclear epigenome (73). Although

narrow, evidence in support of the role of environmental

insults on mtDNA dynamics is increasing and suggests that

endogenous and exogenous genotoxins mutate mtDNA yielding

shifts in epigenome-modifying metabolites. For example,

m.8993T>G results in mutated ATP synthase subunit 6

(A6MT) forcing cells to shift metabolic state to replenish aKG

pools (39), while m.3243A>G reduces aKG and acetyl CoA pools

(61). Thus, different mtDNA mutations arising from

environmental impacts can contribute to unique epigenomic

states, each with its own influence on the expression of

underlying genes. In this way, mitochondria may act as an

environmental biosensor, transmitting vital information about

the state of a cell to the nucleus to modify gene expression.
Conclusion

Mitochondria, as the energy generator of the cell, significantly

contributes to overall cellular metabolism. The integrity of its

genome and communication with nDNA is essential for proper

mitochondrial function. mtDNA holds the information needed to

translate 13 OXPHOS complex protein enzymatic subunits; as
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such, modulation of the quality (heteroplasmy) and quantity

(mtDNA-CN) of the genome is essential for mitochondrial

function. Modulation of mtDNA alters the translation of

OXPHOS protein subunits, perturbing mitochondrial function.

Evidence suggests that mitochondrial function impacts the

epigenome and transcriptome. Since the first reports of an

association between mitochondria and the epigenome in 2008,

many efforts have been put forward to elucidate this association.

Using cellular and in vivo models of mtDNA-CN depletion and

heteroplasmic burden, significant evidence exists for this

association. We reviewed evidence that mtDNA variation and

mitochondrial function contribute to epigenomic changes by

modulating mitochondrial metabolites that act as substrates and

cofactors for epigenomic processes. Given this significant evidence

connecting mtDNA and mitochondrial function with cellular

metabolism and the epigenome, rationale for follow-up studies

exists, particularly for other epigenomic modifications (e.g.,

phosphorylation and propionylation) that are not studied as

extensively as methylation and acetylation. Research into these

associations could reveal new pathogenic pathways and allow for

the research of treatments related to the pathophysiology of many

diseases, particularly age-related complex disease.
Data availability statement

The original contributions presented in the study are

included in the article/supplementary material. Further

inquiries can be directed to the corresponding author.
Frontiers in Endocrinology 07
Author contributions

ML conducted the literature search, created the figure, and

wrote the bulk of the manuscript. WW and CC provided

extensive edits and necessary literature. LZ edited for clarity

and provided the content of the table. All authors contributed to

the article and approved the submitted version.

Funding

We thank the Department of Pathology and Laboratory

Medicine at Western University and the Children’s Health

Research Institute (CHRI), for support that led to this publication.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, et al.
Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian
aging. Science (2005) 309(5733):481–4. doi: 10.1126/science.1112125

2. Ali AT, Boehme L, Carbajosa G, Seitan VC, Small KS, Hodgkinson A.
Nuclear genetic regulation of the human mitochondrial transcriptome. Elife.
(2019) 8:1–23. doi: 10.7554/eLife.41927

3. D’Erchia AM, Atlante A, Gadaleta G, Pavesi G, Chiara M, de Virgilio C, et al.
Tissue-specific mtDNA abundance from exome data and its correlation with
mitochondrial transcription, mass and respiratory activity. Mitochondrion.
(2015) 20:13–21. doi: 10.1016/j.mito.2014.10.005

4. Takahashi PY, Jenkins GD, Welkie BP, McDonnell SK, Evans JM, Cerhan JR,
et al. Association of mitochondrial DNA copy number with self-rated health status.
Appl Clin Genet (2018) 11:121–7. doi: 10.1016/j.molcel.2006.05.040

5. Herbst A, Lee CC, Vandiver AR, Aiken JM, McKenzie D, Hoang A, et al.
Mitochondrial DNA deletion mutations increase exponentially with age in human
skeletal muscle. Aging Clin Exp Res (2021) 33(7):1811–20. doi: 10.1007/s40520-
020-01698-7

6. Zhang R, Wang Y, Ye K, Picard M, Gu Z. Independent impacts of aging on
mitochondrial DNA quantity and quality in humans. BMC Genomics (2017) 18
(1):890. doi: 10.1186/s12864-017-4287-0

7. Ashar FN, Moes A, Moore AZ, Grove ML, Chaves PHM, Coresh J, et al.
Association of mitochondrial DNA levels with frailty and all-cause mortality. J Mol
Med (2015) 93(2):177–86. doi: 10.1007/s00109-014-1233-3
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