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Genome-wide characterization
of mitochondrial DNA
methylation in human brain
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Emma L. Dempster1, Rebecca G. Smith1, Joe Burrage1,
Artemis Iatrou1, Eilis Hannon1, Claire Troakes2, Karen Moore1,
Paul O’Neill 1, Safa Al-Sarraj2, Leonard Schalkwyk3,
Jonathan Mill 1, Michael Weedon1 and Katie Lunnon1*

1Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University
of Exeter, Exeter, United Kingdom, 2Institute of Psychiatry, Psychology and Neuroscience, King’s
College London, London, United Kingdom, 3School of Biological Sciences, University of Essex,
Essex, United Kingdom
Background: There is growing interest in the role of DNA methylation in

regulating the transcription of mitochondrial genes, particularly in brain

disorders characterized by mitochondrial dysfunction. Here, we present a

novel approach to interrogate the mitochondrial DNA methylome at single

base resolution using targeted bisulfite sequencing. We applied this method to

investigate mitochondrial DNA methylation patterns in post-mortem superior

temporal gyrus and cerebellum brain tissue from seven human donors.

Results: We show that mitochondrial DNA methylation patterns are relatively

low but conserved, with peaks in DNA methylation at several sites, such as

within the D-LOOP and the genes MT-ND2, MT-ATP6, MT-ND4, MT-ND5 and

MT-ND6, predominantly in a non-CpG context. The elevated DNAmethylation

we observe in the D-LOOP we validate using pyrosequencing. We identify loci

that show differential DNA methylation patterns associated with age, sex and

brain region. Finally, we replicate previously reported differentially methylated

regions between brain regions from a methylated DNA immunoprecipitation

sequencing study.

Conclusions: We have annotated patterns of DNA methylation at single base

resolution across themitochondrial genome in human brain samples. Looking to

the future this approach could be utilized to investigate the role of mitochondrial

epigenetic mechanisms in disorders that display mitochondrial dysfunction.
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Introduction

Mitochondria are unique organelles in that they have their

own genome, ~16.6kb in size, allowing for them to self-govern

many processes such as replication. The human mitochondrial

genome (mtDNA) consists of 37 genes, 22 encoding for transfer

RNAs (tRNAs), two for ribosomal RNAs (rRNAs) and 13 that

encode for proteins in the electron transport chain (ETC). The

ETC itself consists of 97 genes (mitochondrial and nuclear)

working together to orchestrate an effective response to cellular

demands, in the form of oxidative phosphorylation. Thirteen of

the ETC genes are mitochondrial-encoded; the remaining 84 are

encoded by the nuclear genome and their protein products are

imported into the mitochondrion (1). ETC proteins are directly

involved in the regulation of cellular respiration, generating the

majority of ATP required for the process. However,

mitochondria play a vital role in a variety of key biological

functions, including apoptosis, [as reviewed in (2)], the

regulation of calcium homeostasis (3, 4) and the production of

reactive oxygen species (ROS) (5).

Epigenetic processes mediate the reversible regulation of gene

expression, occurring independently of DNA sequence variation

and acting principally through chemical modifications to DNA

and nucleosomal histone proteins. DNA methylation is the most

stable and well-studied epigenetic mark. The advent of cost-

effective epigenome-wide approaches, such as the Illumina

Infinium® 450K or EPIC BeadChip Arrays, have led to the

identification of differentially methylated loci in a range of

complex diseases, including for example Alzheimer’s disease (6),

schizophrenia (7) cancer (8, 9) and type I diabetes (10). However,

one caveat of this approach is the complete absence of coverage of

the mitochondrial genome on these arrays. In 2011 there was a

resurgence of interest in mitochondrial epigenetic studies, after

both 5-methylcytosine (5mC) and 5-hydroxymethylytosine were

reported in mtDNA. Furthermore, both DNAmethyltransferase 1

(DNMT1) and S-adenosylmethionine (SAM) have been identified

in the mitochondria (11, 12). As such, recent studies have

suggested a role for differential mtDNA methylation in

numerous pathologies characterized by mitochondrial

dysfunction, including cancer (13), amyotrophic lateral sclerosis

(14), and Alzheimer’s disease (15–18). However, until recently,

studies have been limited to low-resolution immunohistochemical

techniques (11) or candidate-based approaches such as

methylation-specific pyrosequencing (19). To date, studies

investigating DNA methylation across the mitochondrial

genome have primarily utilized publicly available Methylated

DNA immunoprecipitation sequencing (MeDIP-Seq) datasets

(20, 21). However, these studies are limited to semi-quantitative

calling of regional methylation and cannot quantify levels at

specific cytosine bases. Furthermore, the presence of nuclear-

mitochondrial pseudogenes (NUMTs) in the nuclear genome,

which are regions of the mitochondrial genome that have

translocated and inserted into the nuclear genome, leads to the
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requirement for the removal of homologous regions from the

analysis (20, 21).

We have previously shown that a commercially available

method from Miltenyi Biotech, which magnetically isolates

mitochondria using anti-TOM22 antibodies, gives a significant

enrichment of mtDNA to nuclear DNA (ncDNA) (22). Here we

combine this method with a customized, targeted bisulfite

sequencing approach to allow us to quantify mtDNA

methylation patterns in post-mortem brain samples at single

nucleotide resolution along the entire 16.569kb genome.
Methods

Sample demographics

Brain tissue was obtained from seven donors archived in the

MRC London Neurodegenerative Disease Brain Bank (http://

www.kcl .ac .uk/ iop/depts/cn/research/MRC-London-

Neurodegenerative-Diseases-Brain-Bank/MRC-London-

Neurodegenerative-Diseases-Brain-Bank.aspx). From each

donor, we sourced matched superior temporal gyrus (STG)

and cerebellum (CER) brain tissue. The donors were selected

with specific selection criteria in mind: similar age, distribution

of sex across the group, low post-mortem intervals and no

evidence of neurodegenerative disease. Sample demographics

are shown in Supplementary Table 1.
Mitochondrial isolation

Mitochondria were isolated from frozen, post-mortem brain

tissue using a previously published method (22). This

commercial method (Miltenyi Biotec) uses antibodies raised

against the mitochondrial import receptor subunit TOM22, to

enrich for mitochondria before DNA extraction using the

QIAamp DNA Mini Kit (Qiagen). MtDNA was further

enriched through the use of a custom library designed to

amplify the mitochondrial genome (Agilent Technologies,

California, USA).
Custom capture of the
mitochondrial epigenome

To capture the mitochondrial epigenome, a custom library

of RNA baits (Agilent, California, U.S.A.: Design ID 0687721)

was designed to provide 100% coverage of the genome at 5X

tiling density. Isolated mtDNA extracted from frozen brain

tissue was subjected to the Agilent 1mg Methyl-seq protocol.

MtDNA was concentrated down to a total volume of 30ml DNA
and 20ml (45ng/ml) of salmon sperm DNA (Sigma-Aldrich:

15632-011) was added to each sample as a carrier. Each
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sample was fragmented using the Bioruptor (Diagenode) for an

extended period of 60 minutes. Samples were then processed

according to the Agilent protocol with the following exceptions:

a) Hybridization Buffer and Block Mix were made to

specifications indicated on the protocol however, a 10% RNase

block solution was made using 0.2µl RNase Block and 1.8µl of

nuclease free water per reaction (instead of the 25% RNase block

specified); b) given the size of the genome, only 2µl of the custom

capture library was added to a PCR plate containing 2µl RNase

block solution and 3µl of nuclease free water (instead of 5µl); c)

the number of PCR cycles after bisulfite treatment was increased

from 8 to 14 to adjust for low input levels. After generating

indexed libraries for each sample, samples were then pooled in

equimolar concentrations and sequenced using the Illumina

HiSeq 2500 by Exeter Sequencing Service (Exeter, U.K.).
Raw data processing

After sequencing, 100bp paired-end reads were de-

multiplexed and following quality assessment using FastQC

(23), reads were trimmed for adaptor content using

TrimGalore (24). Using the same package, we also trimmed

the eight base pairs from the 5’ and 3’ ends of both reads.

Trimmed files were then aligned to the human reference genome

GrCh38, through Bismark, using Bowtie 2 (25). Mapped reads

were de-duplicated using the deduplicate_bismark function

before CpG and non-CpG methylation was called by

bismark_methylation_extractor. Only sites with read depth

=>10 were considered for further analysis.The relationship

between read depth and methylation level for sites with a read

depth =>10 is shown in Supplementary Figure 1.
Statistical analyses

All statistical analyses were carried out in R (v3.6.) (26). In

our initial analysis we calculated mean percentage (%) DNA

methylation for each site across the seven samples in each brain

region separately. To investigate whether mtDNA methylation

patterns were associated with specific covariates of interest (e.g.

age, sex and brain region) we used a mixed effects model to

control for the matched nature of our tissue samples. Briefly, this

model used each of the covariates of interest (age, sex and brain

region) as fixed effects and the individual as the random effect.

To determine the significance of each covariate in isolation, a

second (null) model was fitted, which didn’t contain the

covariate of interest. An analysis of variance (ANOVA) was

then performed between the two models to identify significantly

differentially methylated bases for each covariate using lme4, a

package within R (27). Nominal significance was deemed to be

when P < 0.05 and to control for the effects of multiple testing, a

Benjamani-Hochberg (BH) correction was applied to generate
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Q-values using the p.adjust function in R. To test for enrichment

of trends found within our data, an exact binomial test was

carried out using an in-built function within the R environment.

To confirm DMRs between STR and CER tissues that we

previously identified using MeDIP-seq (20), methylated

cytosines were grouped into 100 bp non-overlapping regions

and a paired t-test with Bonferroni correction was used to

identify DMRs.
Pyrosequencing

Bisulfite pyrosequencing was performed to confirm a peak in

DNA methylation at the CpG site we identified in the D-LOOP

(ChrM:545). Bisulfite conversion was performed using the Bisulfite-

Gold kit (Zymo research, USA). A single amplicon (148bp) was

generated using primers designed using the PyroMark Assay

Design software 2.0 (Qiagen). DNA methylation was quantified

using the Pyromark Q48 Autoprep system (Qiagen) following the

manufacturer’s standard instructions and the PyroMark Q48

Autoprep 2.4.2 software. Bisulfite control regions showed a 97.5%

conversion efficiency, with our 0% control showing methylation

levels below the detection threshold.
Results

MtDNA methylation levels are relatively
conserved across the genome

We used a customized, targeted bisulfite sequencing method to

assess mtDNA methylation at single nucleotide resolution in

isolated mtDNA from matched STG and CER brain tissue from

seven donors free of neurodegenerative disease, including three

males and four females. On average, 629,631 paired-end reads

mapped to the mitochondrial reference genome per sample,

providing an average sequencing depth of 6,384x (Supplementary

Table 2). On average, 57.77% of readsmapped to the mitochondrial

genome, suggesting a large enrichment for mtDNA, exceeding

levels we previously reported through the use of antibody-based

enrichment alone (22).

In total, 7,174 methylated cytosines were analyzed for all

samples (being covered by at least 10 sequence reads), of which

5,007 were present on the forward strand, due to a higher

number of cytosines being present on this strand. The global

average level of mtDNA methylation was low across all 7,174

sites (mean = 2.08%, standard deviation [SD] = 0.98%),

corroborating previous assessments of global DNA

methylation in the mitochondrial genome (20). This is in line

with previous findings, suggesting that at many loci, mtDNA

methylation levels are at non-biologically relevant levels across

the genome (28). However, we were interested to see how much

variability could be observed between mtDNA methylation at
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each methylated cytosine across the entire genome. To quantify

this, the coefficient of variation (CV) - defined as the ratio of SD

to the mean - was determined for each methylated site in STG

and CER, respectively. Of the 7,174 methylated cytosines we

assessed in the genome, 830 had a CV greater than one in the

STG and 237 in the CER. Taken together, this shows that <2.75%

of the assessed cytosines across both brain regions show inter-

individual variation, suggesting a relatively conserved pattern of

mtDNA methylation between individuals, although the number

of variable sites is greater in STG samples.
MtDNA methylation occurs with distinct
prevalence at non-CpG sites

In mammals ncDNA methylation occurs predominantly in

CpG contexts. However, DNAmethylation has also been reported

in non-CpG contexts (also termed CpH) in some mammalian cell

types, including embryonic stem cells (ESCs), induced pluripotent

stem cells (iPSCs) and human brain tissue (29). Although even

within these cells, levels of CpHmethylation are relatively low, for

example in male, human embryonic stem cells, non-CpG

methylation only comprises 25% of total methylated sites (30).

However, previous studies have indicated a potential prevalence

for methylation at non-CpG sites in mtDNA (31, 32). Of the 7,174

cytosines we captured in the current study, 6,319 (88%) were in a

CpH context. Despite, the frequency of non-CpG methylation

being higher than that previously reported in ncDNA, our data

shows that the average level of non-CpGmethylation in this study

(~2.18%), is similar to average levels of non-CpG methylation

within glial populations and about 2-3 fold lower than average

neuronal methylation (33). However, whilst methylation levels

were indeed low across the mitochondrial genome, on average,

methylation was higher in a non-CpG context, with 60.85% (STG)

and 59.24% (CER) of non-CpG sites displaying levels of

methylation greater than 1%. In contrast, only 47.22% and

44.93% of methylation sites within a CpG context were at a

level exceeding 1% in STG and CER, respectively (Figure 1A).

Indeed, the overall average methylation level in a non-CpG

context in STG (2.16%) and CER (2.20%) was much greater

than that in a CpG context in either STG (1.39%) or CER (1.39%).

Furthermore, of the 855 CpG sites captured, 19.4% and 2.92% of

cytosines had a CV>1 in STG and CER, respectively, whilst of the

6,319 captured non-CpG sites, 10.5% (STG) and 3.35% (CER) had

a CV>1. This suggests that levels of mtDNA methylation are far

more variable between STG samples than CER samples.
mtDNA methylation peaks are observed
in the D-LOOP and MT-ND5

Whilst the average methylation level at each site was found

to be low, a number of regions were identified with relatively
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high levels of mtDNA methylation (Figure 1B; Table 1;

Supplementary Table 3). There were clear peaks of

methylation within the genes MT-ND2, MT-ATP6, MT-ND4,

MT-ND5 and MT-ND6. The most highly methylated loci in the

STG resided towards the end of the MT-ND5 gene. We have

previously shown, in our published MeDIP study, increasing

levels of mtDNA methylation towards the end of this gene

(13,800-14,100bp) (20). This is of particular interest as within

the current study we observe relatively low levels of mtDNA

methylation between 12,337bp-13,700bp, which encompasses

the bulk of this gene, with only 26.6% (STG) and 25.7% (CER)

of all sites in that region exhibiting levels of methylation greater

than 2%. In contrast, between 13,801-14,144bp, 77.6% and

82.6% of all sites exceeded this 2% methylation level in the

STG and CER, respectively, suggesting that a conserved pattern

of mtDNA methylation is present in this genomic region across

brain regions, which can be observed with different sequencing

technologies. The ten most highly methylated loci in the CER

were all located in the MT-ND2 gene. However, this region was

not analyzed in our previous MeDIP study due to homology

with known NUMTs. As expected, the majority of the most

highly methylated loci were in a CpH context: only four of the

100 most methylated sites were at a CpG (Supplementary

Table 3). The most highly methylated CpG we identified in

the STG was at 545bp (mean = 16.23%, SD = 6.91%), which also

showed high levels of mtDNA methylation in the CER (mean =

15.72%, SD = 2.45%). This site lies within the mitochondrial

displacement loop (D-LOOP), the major regulatory region of the

mitochondrial genome and we previously identified a relatively

high peak in the mitochondrial D-LOOP, including the 500-

600bp window in our MeDIP study (20).

In order to confirm our finding of a peak in DNA

methylation in the mitochondrial D-LOOP we used

pyrosequencing to measure mtDNA methylation at the CpG

site at position 545bp in the same samples. Using this approach,

we did observe detectable DNA methylation at this locus in both

the STG (mean = 9.68%, SD = 1.78) and CER (mean = 9.38%,

SD = 1.47) (Figure 2). Although the levels measured using

pyrosequencing were lower than the targeted mitochondrial

sequencing approach, these were significantly higher (P =

8.52 x 10-10) than the mean methylation level for all

mitochondrial CpG sites measured in our targeted sequencing

data (STG: mean = 1.39%, SD = 1.59; CER: mean = 1.39%, SD =

1.73), and were above the reported minimum threshold for

detecting methylation using pyrosequencing (4.3%) (34).
MtDNA methylation exhibits sex specific
patterns across the genome

Given that ncDNA methylation patterns are strongly

associated with sex at specific sites in the genome (35), we

were interested to see whether the mtDNA methylome exhibited
frontiersin.org
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sex-specific patterns. Our initial analysis used a mixed effects

model, controlling for the matched nature of our tissue samples

allowing us to assess the effects of sex and other co-variates of

interest (i.e. age, brain region). We identified 1,311 nominally

significant (P < 0.05) differentially methylated positions (DMPs)

associated with sex (Supplementary Table 4), of which 1,249

were hypomethylated in females. Using an exact binomial test,

we found that this represented a significant enrichment for

hypomethylation in females (P < 2.2 x 10-16). Of the 1,311

sites we identified, 19 loci remained after multiple testing

correction using the Benjamani-Hochberg (BH) method (Q <

0.1) (Supplementary Figure 2). Of interest, 15 of these 19 sites

were found in a non-CpG context. All of the CpH sites with Q <

0.1 were hypomethylated in females, whilst one of the BH-

significant CpG sites was hypermethylated in females.
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MtDNA methylation tends to
increase with age at significant
DMPs across the genome

Alterations in mitochondrial function have been associated

with age, as reviewed by Amigo et al. (36). We were interested to

investigate whether age may alter mtDNA methylation patterns.

Our mixed effects model identified 1,312 sites nominally

significantly associated DMPs with age (Supplementary

Table 5, Supplementary Figure 3), of which 1,246 were

positively correlated with age, which represented an

enrichment for hypermethylation in age-associated DMPs (P <

2.2 x 10-16). Of the 1,312 age-associated loci, 259 remained after

multiple test corrections (Q < 0.1), of which 257 were positively

correlated with increasing age.
A

B

FIGURE 1

The mitochondrial genome is characterized by specific regions of methylation, predominantly in a CpH context. (A) Shown is the mean number
of sites with >1% methylation in the STG (blue) and CER (red) in either a CpG or CpH context. Error bars represent the standard error of the
mean (SEM). (B) Graph showing mean % methylation at each cytosine in the mitochondrial genome in STG (top panel) and CER (bottom panel)
samples, created using UCSC browser (http://genome.ucsc.edu).
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MtDNA methylation varies significantly
between anatomical regions of the brain

In previous work, we have identified tissue-specific

differentially methylated regions (DMRs) in mtDNA across

different brain regions using MeDIP-Seq (20). As such, we

were interested in investigating whether differences in mtDNA

could be identified at single cytosine resolution between

anatomically distinct brain regions. In our mixed effects

model, we identified 759 nominally significant (P < 0.05)

differences in mtDNA methylation across the genome that

were associated with different brain regions (Supplementary
Frontiers in Endocrinology 06
Table 6). We identified 13 loci that remained significant after

multiple testing corrections (Q < 0.1), of which seven were

hypermethylated in the STG. Further, of the 759 sites, 435 were

found to be hypermethylated in STG relative to CER; a binomial

test showed that this represented a significant enrichment of

hypermethylation in the STG (P = 6.35 x 10-5). To determine

whether regional methylation patterns observed in our previous

work were reproduced here, 100bp windows were generated

across the mitochondrial genome by averaging methylation of all

sites across each window in our current data. The average profile

for each brain region across the mitochondrial genome was then

plotted (Supplementary Figure 4). Given the small sample size of
TABLE 1 The 10 most highly methylated sites in mtDNA.

A

Genomic position Context Strand Gene
Methylation

% STG
Methylation

% CER

14142 CpH + MT-ND5 16.85 (6.39) 15.38 (9.21)

545 CpG – D-LOOP 16.23 (6.91) 15.72 (2.45)

14136 CpH + MT-ND5 15.91 (6.55) 14.27 (8.13)

14130 CpH + MT-ND5 15.78 (6.30) 14.38 (7.09)

14131 CpH + MT-ND5 15.40 (6.37) 13.97 (7.70)

14129 CpH + MT-ND5 15.31 (6.40) 14.29 (7.52)

14137 CpH + MT-ND5 15.19 (6.47) 14.35 (8.64)

14144 CpH + MT-ND5 15.05 (6.46) 15.61 (9.11)

14169 CpH + MT-ND6 14.94 (6.27) 17.08 (9.30)

14125 CpH + MT-ND5 14.90 (6.11) 13.72 (7.13)

B

Genomic position Context Strand Gene
Methylation

% CER
Methylation

% STG

4882 CpH + MT-ND2 19.61 (5.63) 13.48 (4.41)

4881 CpH + MT-ND2 19.01 (4.97) 12.78 (4.13)

4862 CpH + MT-ND2 18.97 (3.12) 12.27 (6.10)

4880 CpH + MT-ND2 18.75 (4.72) 12.75 (4.16)

4875 CpH + MT-ND2 18.65 (4.36) 13.42 (3.95)

4886 CpH + MT-ND2 18.60 (5.94) 13.17 (3.80)

4888 CpH + MT-ND2 18.44 (4.91) 13.42 (4.18)

4869 CpH + MT-ND2 18.34 (3.27) 12.77 (6.65)

4879 CpH + MT-ND2 18.28 (4.45) 13.01 (6.96)

4892 CpH + MT-ND2 18.14 (5.46) 13.68 (4.45)

Shown are genomic position (bp), strand, gene and average % mtDNA methylation level (± standard deviation) for the 10 most highly methylated loci in the STG (A) and CER (B).
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both cohorts, varying distribution of epidemiological factors and

the lack of data retained in the first study, it is unsurprising that

few significant hits can be replicated. However, of the significant

DMRs previously identified (20), four were also significant (t-

test Q < 0.05) and showed the same direction of effect, including

hypomethylation in the STG at one DMR (4001-4100bp: MT-

ND1: Q = 1.8 x 10-7), and hypermethylation in the STG at three

DMRs (12701-12800bp: MT-ND5, Q = 0.0032; 14501-14600bp:

MT-ND6, Q = 0.0025; 15401-15500bp: MT-CYB; Q = 0.0020)

(Supplementary Figure 5).
Discussion

Here, we present the first genome-wide map of mtDNA

methylation at single nucleotide resolution in human brain

tissue. This data resource can be accessed and explored via our

website (www.epigenomicslab.com/mitochondria-dna-

methylation-map/). Previous studies have investigated changes

across the mitochondrial epigenome using publicly available data

(21, 28). However, these studies have been limited by low

sequencing depth, the use of non-isolated mtDNA, and in the

case of MeDIP-Seq, relatively low resolution. Hong et al., used

publicly available BS-Seq data to show that mtDNA methylation

does not exist at biologically relevant levels (<1%). However, an

ability to determine this conclusively, given the multi-copy nature

of the mitochondrial genome, as well as the relatively low

sequencing depth derived from non-enriched BS-Seq, may have

led to an underrepresentation of true mtDNA methylation levels.
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In our study, although average levels of mtDNAmethylation

across the 7,174 sites interrogated were low, there was

considerable variability in methylation across the genome.

Interestingly, a CpG site of the D-LOOP, 545bp, was found to

have relatively high levels of mtDNA methylation across all

samples and was validated using pyrosequencing. This adds

further evidence to a study that identified high levels of mtDNA

methylation across the mitochondrial D-LOOP (31), potentially

highlighting a region of the mitochondrial genome which could

have an important impact on the organelle’s function.

Importantly, whilst a recent study suggested that relatively

high levels of mtDNA methylation can be found in the D-

LOOP, due to the triple helix nature of the region leading to

incomplete bisulfite conversion (37) and over-estimation of

methylation. To address this caveat in our study we have used

an extended sonication period to further linearize mtDNA to

reduce the effects of the secondary structure around this region.

Furthermore, our study also finds consistent high levels of

mtDNA methylation in other regions, for example MT-ND2,

MT-ATP6, MT-ND4, MT-ND5 and MT-ND6, which are not

affected by this secondary structure.

Establishing the extent to which confounders such as age, sex

and brain region play a role in ncDNA methylation studies has

led to a more robust and reliable approach to epigenetic studies.

However, previous studies into mtDNA methylation have not

studied the genome-wide effect of these factors. Our preliminary

analysis identified many nominally significant DMPs for all of

the covariates, with 13 brain region, 259 age and 19 sex

associated DMPs remaining significant after BH corrections

for multiple testing. The small sample size of our study, as

well as the lack of functional work carried out on these DMPs

makes it difficult to ascertain the physiological relevance of the

differences. However, the identification of a DMP in the D-

LOOP, a region known to regulate mitochondrial transcription

and replication, could possibly effectuate changes in overall

mitochondrial output. Additionally, the finding that there is an

enrichment for hypomethylated DMPs in females and that there

is an enrichment for hypermethylated DMPs associated with

increasing age highlights the need for carefully controlled, future

epidemiological studies.

Age-related changes have also been identified in other

mtDNA methylation studies (38, 39). Hypomethylation in

ncDNA has been frequently attributed to increasing age (40)

and age-associated hypermethylation has therefore been suggested

to play a role in age–related disorders (41). As such, it is of interest

to investigate why mtDNA methylation tends to increase across

the genome with age. If it is to be assumed that mtDNA

methylation exists at a relatively low level across the

mitochondrial genome, then increases in mtDNA methylation

could be a sign of dysregulation within the mitochondria. It is

therefore possible that this general increase across the genome

could be attributed to the increase in mitochondrial dysfunction

seen during aging (42, 43), potentially by altering regulation of
FIGURE 2

Validation of mtDNA methylation in the D-Loop using
pyrosequencing. Box plots showing % methylation levels at site
ChrM:545 in the seven donors used in the study, when profiled
using targeted bisulfite sequencing (Seq) and pyrosequencing
(Pyro) in the STG (blue) and CER (red). Boxplots represent the
median (central line) and interquartile range (perimeter), with
plus sign denoting the mean, whiskers showing the minimum
and maximum value, and individual datapoints shown as black
circles (STG) or triangles (CER). The dashed black horizontal line
represents the reported minimum threshold for detecting
methylation using pyrosequencing (4.3%).
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mtDNA expression. Despite this, few functional studies have

investigated the effect of changes in mtDNA methylation,

although mtDNA hypermethylation was shown to be associated

with apoptosis in diabetic retinopathy (44). However, to date, no

study has looked at the effect of multiple, site-specific mtDNA

methylation changes occurring simultaneously.

The ubiquitous nature of mitochondrial distribution

throughout the body, except for in red blood cells, highlights

the importance of maintaining correct mitochondrial function.

Despite levels of mtDNA methylation being relatively low in

comparison to ncDNA methylation, a recent study identified

that those individuals with increased mtDNA methylation levels

at a site within MT-RNR1 were associated with increased

mortality risk when followed up nine years later (38). Studies

have shown that mtDNA methylation changes at specific sites in

the D-LOOP negatively correlate with changes in gene

expression. One study demonstrated that increases in D-LOOP

methylation were associated with reduced MT-CYB, MT-ND6,

andMT-COXII transcript levels (44), whilst another showed that

reduced D-LOOP methylation was associated with increased

MT-ND2 expression in colorectal cancer tumour tissue (45).

One recent study has demonstrated decreased mtDNA

methylation in the D-LOOP in blood DNA in Alzheimer’s

disease patients compared to non-demented controls (18).

Previous studies have demonstrated that mtDNA methylation

is typically very low, with levels of approximately 0.5 – 1.0% (33).

However, we have identified several cytosines with DNA

methylation levels greater than 5% across the mitochondrial

genome. However, we were unable to identify a clear correlation

between increased frequency of methylation at these sites and

any of the covariates tested in our analyses. As such, clues to

their biological importance remain to be elucidated.

Despite our efforts, there are several key limitations of this

study. Most importantly, whilst age-related hypermethylation

changes were observed in this cohort, given the small sample

size, most ages were only represented once and overall, the age

range of samples used in the study was relatively small. It is

therefore possible that the effects of age on DNA methylation

merely represent inter-individual differences and further studies

including a broader range of ages, with larger numbers of both

males and females should be carried out in the future. It is worth

noting that the effect sizes we observed with respect to age and

sex, were relatively small, and further studies in larger cohorts

will elucidate whether these are representative of a larger

population and whether these are likely to be biologically

meaningful. A recent study has highlighted that mtDNA is

extensively methylated during embryogenesis to prevent

oxidative-stress-induced mtDNA damage (46) and therefore it

would be of interest to measure mtDNA methylation across the

human lifespan. Another limitation of our study is that given the

small sample size we have been unable to explore how mtDNA

genetic differences may influence mtDNA methylation.

Interestingly, a recent study by Laaksonen and colleagues has
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identified mtDNA quantitative trait loci (QTLs) whereby

mtDNA genetic variation controls DNA methylation at

specific sites in the nuclear genome (47). However, to the best

of our knowledge, no study has yet explored how mtDNA

genetic variation impacts on mtDNA methylation, which

warrants investigation in the future.

Our study has used bisulfite-treated DNA, and there is a

small possibility that the very low methylation levels could be

due to inefficient bisulfite conversion, although we have

attempted to mitigate this by using an extended sonication

period and by comparing some of our results to MeDIP-seq

data. Another technology that overcomes this limitation is long-

read sequencing technologies, such as the Oxford Nanopore

Technologies (ONT) platform, which can detect DNA

methylation on native DNA based on changes in electric

current as a DNA molecule moves through the nanopore. A

recent study by Bicci and colleagues used this technique to

quantify mtDNA methylation at single nucleotide resolution in

different cell lines and human tissues (48). The authors reported

that methylation at CpG sites was below the background

threshold. However, the calling algorithm they utilized did not

assess CpH sites and they did not analyze human brain tissue.

Given that we report that mtDNA methylation is higher and

more prevalent at non-CpG sites in human brain, it would be of

interest in the future to use this technology, in conjunction with

algorithms that call CpH methylation, for example Megaladon

(49), Tombo (50) and DeepSignal (51), to study mtDNA

methylation in human brain. In addition, as ncDNA

methylation at CpH sites is enriched in the brain compared to

other tissues (29), it would be of interest in the future to profile

mtDNA methylation using these technologies in other tissues, to

determine whether mitochondrial CpH methylation is enriched

in the brain, or is present across all human tissues.
Conclusions

We present the first, genome-wide analysis of mtDNA

methylation in human brain tissue at single base resolution,

providing a map of mtDNA methylation across human brain as

well as identifying interesting differences in mtDNA methylation

between different brain regions, sexes and with age. This not only

highlights a potential biological importance for mtDNAmethylation

but also highlights the need to control for these factors in future

studies. Our study provides the building blocks for further research

into the role of mtDNA methylation in the brain, particularly in

diseases characterized by mitochondrial dysfunction.
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