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Zebrafish endochondral growth
zones as they relate to human
bone size, shape and disease

Pierre Le Pabic1*, Daniel B. Dranow2, Diego J. Hoyle2

and Thomas F. Schilling2*

1Department of Biology and Marine Biology, University of North Carolina Wilmington, Willmington,
NC, United States, 2Department of Developmental and Cell Biology, University of California, Irvine,
Irvine, CA, United States
Research on the genetic mechanisms underlying human skeletal development and

disease have largely relied on studies in mice. However, recently the zebrafish has

emerged as a popular model for skeletal research. Despite anatomical differences

such as a lack of long bones in their limbs and no hematopoietic bone marrow,

both the cell types in cartilage and bone as well as the genetic pathways that

regulate their development are remarkably conserved between teleost fish and

humans. Here we review recent studies that highlight this conservation, focusing

specifically on the cartilaginous growth zones (GZs) of endochondral bones. GZs

can be unidirectional such as the growth plates (GPs) of long bones in tetrapod

limbs or bidirectional, such as in the synchondroses of themammalian skull base. In

addition to endochondral growth, GZs play key roles in cartilage maturation and

replacement by bone. Recent studies in zebrafish suggest key roles for cartilage

polarity in GZ function, surprisingly early establishment of signaling systems that

regulate cartilage during embryonic development, and important roles for cartilage

proliferation rather than hypertrophy in bone size. Despite anatomical differences,

there are now many zebrafish models for human skeletal disorders including

mutations in genes that cause defects in cartilage associated with endochondral

GZs. These point to conserved developmental mechanisms, some of which

operate both in cranial GZs and limb GPs, as well as others that act earlier or in

parallel to known GP regulators. Experimental advantages of zebrafish for genetic

screens, high resolution live imaging and drug screens, set the stage formany novel

insights into causes and potential therapies for human endochondral bone diseases.
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1 Introduction

Research on the growth plates (GPs) of endochondral bones in mice has greatly

impacted our understanding of skeletal development as well as the causes of human

skeletal disorders. Early studies showed that the epiphyses of limb long bones remain

cartilaginous and proliferative, thereby allowing bone growth (1). Genetic studies showed
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mechanisms regulating cartilage maturation, gradual

replacement by osteoblasts, matrix deposition and continuous

bone remodeling by osteoclasts (2). These discoveries laid the

groundwork for much of modern skeletal research. Given the

limited knowledge of the cellular and molecular mechanisms

regulating the huge variety of sizes and shapes of other bones,

such as those of the skull or vertebrae, much of our current

understanding of skeletal development is based on work on GPs

of long bones in the tetrapod limb.

Over the past several decades, the zebrafish has become a

powerful system for genetic analysis of skeletal development.

Despite having fins that lack the long bones found in tetrapod

limbs and many other obvious anatomical differences in their

skeletons, zebrafish have the same array of skeletal cell types

found in humans. Furthermore, the work that has been done to

date has shown that the molecular mechanisms that control

skeletal development, growth and physiology are largely

conserved despite over 400 million years since their lineages

diverged from a common ancestor (3).

In this review, we present an overview of skeletal research in

zebrafish with a special focus on endochondral growth zones (GZs),

defined as regions of cartilage proliferation and maturation, which

include the well-known GPs of long bones. For reviews covering

other aspects of skeletal research in zebrafish (e.g. osteoblasts/

osteoclasts, intramembranous skull bones, fin rays, scales), we

refer the reader to the following (4–11). First, we provide a brief

introduction to adult zebrafish skeletal anatomy with a specific

focus on similarities with human endochondral bones. Next, we

present the cellular architecture of GZs between zebrafish and

humans and across the three major skeletal regions, cranial, axial

and appendicular. Third, we compare endochondral development

and physiology between zebrafish and mammals and review key

recent studies that have led to insights into conserved cellular

pathways that control bone size and shape in health and disease.
2 Skeletal anatomy in adult zebrafish
and humans

2.1 Anatomical distribution of
endochondral and intramembranous
bones

2.1.1 Modes of ossification
Two modes of ossification produce the vertebrate skeleton:

endochondral and intramembranous. In endochondral

ossification, typified by long bones of the mammalian limb,

mesenchymal condensations differentiate into cartilage that is

eventually replaced by bone (2). In contrast, intramembranous

bones, such as those of the skull vault, differentiate directly from

mesenchyme (12). Some bones form by a combination of

intramembranous and endochondral ossification, such as
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mammalian clavicles (13). The relative contributions of these

two modes of ossification vary widely across different taxa, both

in the axial skeleton, which consists of bones associated with the

craniofacial complex and vertebrae, as well as the appendicular

skeleton that supports the limbs and fins (Figure 1). Human and

zebrafish skulls are both composed of a mixture of endochondral

and intramembranous bones (14). While the mammalian calvaria

occupies a large surface area, the chondrocranium and pharyngeal

skeleton are composed of many smaller endochondral bones, just

as in zebrafish (14, 15). In contrast, most of the zebrafish vertebral

and limb skeletons are intramembranous while they are

endochondral in humans. Despite these differences, zebrafish

and humans are generally very similar in their development and

basic structure. However, homologies between individual axial

and appendicular bones of teleost fish and humans can be difficult

to determine due to phylogenetic divergence and adaptation to

different environments.
2.1.2 Bones of the axial and appendicular
skeletons

In the skull, difficulty in identifying homologous bones

between humans and other vertebrates is thought to be partly

a consequence of progressive fusion of skeletal elements during

mammalian evolution (16). The human skull contains 29 bones,

all joined by fibrous joints known as sutures, except for the

mandible, hyoid bone, and middle ear ossicles (17). Two thirds

of these cranial bones are intramembranous, while the hyoid

bone, middle ear ossicles, and several bones of the cranial base

(ethmoid, body and lesser wings of the sphenoid, petrous

portion and otic capsule of the temporal bone, and basal

portion of the occipital bone) are endochondral (Figure 1). In

contrast, the zebrafish skull contains 134 bones, 78 of which are

endochondral (14). As in humans, the intramembranous bones

of the zebrafish braincase suture together, while bones

supporting the jaws, opercle, gills and other parts of the skull,

articulate with each other by mobile joints (Figure 1).

The non-cranial portion of the axial skeleton includes the

vertebral column and rib cage in both humans and zebrafish, in

addition to the unpaired fins (dorsal, anal, caudal) in zebrafish

(Figure 1). Vertebrae and ribs are endochondral in humans but

intramembranous in zebrafish (4, 18–20). In addition, unlike in

humans, the zebrafish ribcage remains open ventrally and lacks a

sternum. The zebrafish axial skeleton also includes appendages

with no homologs in humans: the dorsal, anal, and caudal fins.

Fins consist of an exoskeleton of rays made of intramembranous

bone, and a supporting internal skeleton made of endochondral

hypurals in the caudal fin and radials in the dorsal and anal fins

(Figure 1B). Lastly, the Weberian apparatus, an evolutionary

innovation linking the ear to the swim bladder to enhance

audition (a character found only in the Ostariophysan

superorder), contains both intramembranous and endochondral

bones (21) (Figure 1B).
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Human and zebrafish appendicular skeletons consist of

pectoral (shoulder) and pelvic (hip) girdles with associated

appendages: fore- and hindlimbs in humans, pectoral and pelvic

fins in zebrafish. Human limbs are entirely composed of

endochondral bones, while paired fins in zebrafish consist of fin

rays made of intramembranous bone supported proximally by

endochondral radial bones (22). In humans, most of the pectoral

and pelvic girdles are also endochondral, though portions of the

clavicle (collar bone) and scapula (shoulder blade) form by

intramembranous ossification (Figure 1A). Similarly, the

zebrafish pectoral girdle contains a mixture of intramembranous

(cleithrum, postcleithrum, supracleithrum) and endochondral

(coracoid, mesocoracoid, scapula) bones, while the pelvic girdle

is exclusively endochondral (basipterygium) (14).
2.2 Endochondral growth zone structure

2.2.1 Cellular architecture of endochondral
growth zones

In endochondral GZs, step-by-step chondrocyte maturation

regulates bone elongation (Figure 2) (1). The maturation process
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starts in the resting zone (RZ), which serves the role of stem-cell

niche (Figure 2A). Slow-dividing RZ cells transit into the

proliferative zone (PZ), where they proliferate at a higher rate

and stack to form chondrocyte arrays characteristic of avian and

murine long bone GPs. They subsequently stop dividing and

enlarge as they enter the hypertrophic zone (HZ). Most undergo

apoptosis at the chondro-osseous junction and are subsequently

replaced by bone. In GPs with steady-state growth, pools of cells

in each zone remain constant as: 1) the rate of PZ cell division

offsets the rate of cells leaving the PZ, 2) the rate of cells leaving

offsets the rate of cells entering the PZ, and 3) the rate of cells

entering the HZ offsets the rate of cells lost at the chondro-

osseous junction (25). These aspects of cartilage maturation

appear broadly similar between mammalian and zebrafish

endochondral GZs, though chondrocytes are not aligned into

linear stacks in zebrafish PZs (26, 27).

Cartilage maturation can occur in one or both directions at

GZs, parallel to the long axis of bone growth. In unidirectional (or

epiphyseal) GZs (also known as GPs) typical of long bones, the RZ

lies close to the distal-most region of the bone (epiphysis) and

maturing cells progress medially toward the bone’s central shaft

(diaphysis), producing axial elongation at each end (1). In contrast,
B

A

FIGURE 1

General overview of the intramembranous and endochondral composition of the zebrafish and human skeletons. (A) Human adult skeleton. In
the head, intramembranous bones such as those of the calvaria (the top portion of the neurocranium) dominate the human skull in surface area,
while endochondral bones mostly occupy the cranial base. All of the bones that compose the trunk and appendicular skeletons are
endochondral, except for portions of the clavicle and scapula. (B) Zebrafish adult skeleton. The zebrafish skull, trunk and appendage skeletons
are composed of both intramembranous and endochondral bones. The zebrafish skull is composed of 134 bones, 78 of which are
endochondral. The zebrafish trunk skeleton is composed of intramembranous vertebrae and ribs. The zebrafish appendage skeleton is
composed mostly of endochondral bones, while the fin ray exoskeleton is completely intramembranous.
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bidirectional GZs produce growth in two opposite directions (28).

This reflects a mirror-image organization where two sets of PZs and

HZs flank a single RZ on either side (Figure 2B). Bidirectional GZs

are often located within synchondroses or cartilaginous joints. In

humans, they can be found in the skull base and vertebrae but in

zebrafish are more common and found in multiple endochondral

bones of the neurocranium and pharyngeal skeleton (Figure 3) (27).
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2.2.2 Tissue architecture of endochondral
bones

Although both human and zebrafish endochondral bones

have GZs, they show several structural differences, including the

fact that zebrafish lack: 1) secondary ossifications, 2) trabecular

bone, and 3) a hematopoietic bone marrow (Figure 2). Human

GPs often have “secondary” ossification centers distal to the RZ,
B C

D E

A

FIGURE 2

Cellular organization of epiphyseal and synchondroseal growth zones. (A) Human growth plate chondrocytes transition through resting-,
proliferative- and hypertrophic zones (RZ, PZ, and HZ, respectively) before dying or transitioning to an osteoblast fate at the chondro-osseous
junction. Cartilage cells stop dividing and enlarge in the hypertrophic zone. The bone collar forms a sheath around hypertrophic chondrocytes;
the secondary ossification flanks the growth plate distally. Primary bone trabeculae derived from extracellular matrix channels populate the bone
cavity. (B) In unidirectional (epiphyseal) growth zones, the resting zone is distal to the proliferative zone, itself distal to the hypertrophic zone;
this layout produces unidirectional growth. In bidirectional (synchondroseal) growth zones, the resting zone is flanked by two proliferative zones
and two hypertrophic zones in a mirror image organization; this layout produces bidirectional growth. (C) Stereotypical zebrafish unidirectional
growth zone organization: chondrocytes transition through RZ, PZ and HZ, but they do not enlarge in the HZ. At the zebrafish resorption front,
chondrocytes die or transition to either an osteocyte or adipocyte fate. A perichondral bone collar sheathes the zebrafish hypertrophic zone,
but no secondary ossification is associated with zebrafish epiphyseal growth zones. Trabeculae are not observed in smaller teleosts such as
zebrafish. (D) Histological section of zebrafish proximal radial showing unidirectional endochondral growth zone [originally published in (23)]. (E)
Time series of maturation at two zebrafish bidirectional growth zones located within the ventral (left) and dorsal (right) ceratohyal
synchondroses [originally published in (24)]. (scale bars = 50 µm).
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which appear later in endochondral differentiation (Figure 2A)

(2). In contrast, in zebrafish and other teleost GZs, maturing

cartilage remains continuous with articular cartilage at the joints,

similar to earlier stages of mammalian GP development (Figures

2C–E) (27, 29, 30). Secondary ossification centers in mammals

were recently proposed to have evolved to protect hypertrophic

chondrocytes from mechanical damage in load-bearing tetrapod

bones (31). Another striking structural difference from

mammals is the absence of primary bone trabeculae at the

resorption front in zebrafish (32, 33). Primary trabeculae form

parallel bone channels in mammals through the progressive

replacement of extracellular matrix (ECM) tracks produced by

chondrocyte stacks by bone ECM (Figure 2A), while secondary

trabeculae appear later in response to mechanical stress (34, 35).

Thus, the less well-aligned chondrocyte stacks of zebrafish GZs

as well as the lower amount of ECM produced by GZ

chondrocytes (also observed in other teleosts) may help

explain the lack of primary trabeculae (Figures 2C–E) (29, 30,

36). However, trabeculae have been reported in the bones of

larger teleosts, suggesting that their presence might simply

reflect differences in bone size and strength requirements (37).

In addition, zebrafish HZ chondrocytes are converted into

osteoblasts at the resorption front, become part of the

diaphyseal endosteum and differentiate into osteocytes

embedded in the bone shaft (24). This supports the presence

of endochondral ossification in zebrafish in the form of (1): a

thin layer of bone matrix at the resorption front and (2) bone

matrix deposition inside the bone shaft, instead of the bone

spongiosa described in mammals and larger teleosts (24, 32, 37).

Finally, zebrafish endochondral bones do not form a marrow

that can support hematopoiesis. This instead occurs in the

kidney marrow of zebrafish (38).
2.3 Anatomical distribution of
endochondral growth zones

Rodents and humans have homologous skeletal GZs

inherited from a shared common ancestor, as exemplified by

long bone GPs such as the proximal tibial GP. Though zebrafish

GZs are not individually homologous to any mammalian GZ, a

growing body of research has revealed striking similarities in

their GZ development and physiology. This demonstrates the

relevance of zebrafish for understanding basic principles of

skeletal biology and underlying causes of skeletal disease,

including common chondrodysplasias associated with GPs.

These similarities include the molecular and cellular

mechanisms underlying endochondral differentiation. The

genetic advantages of the zebrafish, along with its small size

and optical accessibility, has led to a growing popularity for their

use in testing new disease candidates discovered in humans and

elucidating their mechanisms of action.
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2.3.1 Bidirectional endochondral growth zone
locations

Postembryonic growth of the human cranial base requires

three bidirectional GZs: the spheno-ethmoidal, intersphenoid

and spheno-occipital synchondroses (Figure 3A). Their

importance in shaping the adult face is exemplified by the

prominent forehead and flattened bridge of the nose associated

with achondroplasia, the most common form of human

dwarfism (39, 40). Reduced cell proliferation in the RZ of

these GZs in achondroplasia results in reduced cranial base

growth in patients, in addition to shortening of their arms and

legs due to GP defects (Figure 3B) (41). The other anatomical

location where bidirectional growth zones are found in humans

are the vertebrae. Neurocentral synchondroses contribute to the

growth of the vertebral body as well as the spinal canal

(Figure 3B), and they fuse between ages 5 to 17 depending on

their anterior-posterior location (42).

Zebrafish bidirectional growth zones are primarily located in

the neurocranial and pharyngeal skeletons. As in mammals, the

zebrafish neurocranium consists of both intramembranous and

endochondral bones and numerous neurocranial synchondroses

arise after the initial stages of chondrocranial ossification, yet

their GZ activity has only recently been investigated (27).

Growth of the zebrafish pharyngeal skeleton is supported by

both uni- and bidirectional growth zones (Figure 3C). The

pharyngeal skeleton derives from the pharyngeal arches (PA),

which form by bilateral segmentation of the embryonic pharynx

in vertebrates and their close relatives (16, 43, 44). Here we

describe the PA-derived bidirectional GZs of the first (PA1,

mandibular) and second (PA2, hyoid) arches, which develop

first and produce the most skeletal growth, as these are most

relevant to model human GZs in health and disease. For a more

complete list of zebrafish pharyngeal GZs, see (27). In the dorsal

PA1 skeleton, the palatoquadrate (PQ) synchondrosis mediates

growth of the quadrate (QA) ventrally and metapterygoid (MP)

dorsally (Figure 3C). In the dorsal PA2 skeleton, the

hyosymplectic (HS) synchondrosis mediates growth of the

symplectic (SY) ventrally and hyomandibular (HM) dorsally.

In the ventral PA2 skeleton, the ventral ceratohyal (CH)

synchondrosis mediates growth of the hypohyal (HH) bones

ventrally and the CH dorsally, while the dorsal CH

synchondrosis mediates growth of the CH (anterior CH)

ventrally and epihyal (EH; posterior CH) dorsally (Figure 3C).

In the PA3-6 (branchial arches 1-4) skeleton, basibranchial (BB)

elongation is mediated by 2 bidirectional GZs (Figure 3C) (27).

The zebrafish PQ and CH synchondroses have been used to

study developmental mechanisms that regulate GZ development

(24, 26, 45, 46). These studies have shown that, like mammalian

GPs, these GZs contain similar zones of cartilage maturation

(RZ, PZ, HZ), though with some interesting differences in the

timing of proliferation and hypertrophy. In addition, they share

similar patterns of gene expression known to control GZ

formation and size, as discussed below.
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FIGURE 3

Anatomical locations of endochondral growth zones in human vs zebrafish. (A) Three synchondroses mediate growth of the human skull base
(depicted in sagittal view): the spheno-ethmoidal-, intersphenoid- and spheno-occipital synchondroses. (B) Endochondral growth of human
vertebrae and ribs (depicted in transverse view) takes place at neurocentral synchondroses and costochondral joints, respectively. (C) Over thirty
endochondral growth zones mediate zebrafish pharyngeal skeleton growth. Three highly visible synchondroses mediate growth of first and
second pharyngeal arch (PA1-2) skeletons. The PQ synchondrosis mediates growth of the QA and MP. The HS synchondrosis mediates growth
of the SY and HM. The dorsal CH synchondrosis mediates growth of the CH and EH. In PA1 and 2, epiphyseal growth zones are found at the
posterior MP, anterior SY, dorsal HM and anterior BH. In the gill supporting skeleton, epiphyseal growth zones are found at the ends of each CB
and EB bone. (D) Axial growth of human stylopod (humerus, femur) and zeugopod (radius, ulna, tibia, fibula) bones is mediated by epiphyseal
growth zones (=growth plates) located at each bone extremity. A single proximal epiphyseal growth zone mediates axial elongation of each
autopod long bone (hand and foot phalanges). (E) In the zebrafish pectoral fin, epiphyseal growth zones are found at the distal end of each
proximal radial. (F) In the zebrafish caudal fin, epiphyseal growth zones located at the distal end of each hypural bone (H1-5), the prehypural and
two last haemal spines mediate axial elongation. AR, articular; BB, basibranchials; BH, basihyal; CB, ceratobranchial; CH, ceratohyal; DHH, dorsal
hypohyal; EB, epibranchial; EH, epihyal; HM, hyomandibular; HS, hyosymplectic; IH, interhyal; MC, Meckel’s cartilage; MP, metapterygoid; PH,
parhypural; PHB, pharyngobranchials; PL, pleurostyle; PT, palatine; QA, quadrate; RA, retroarticular; SY, symplectic; VHH, ventral hypohyal. Red
indicates bidirectional- and blue indicates unidirectional growth zones.
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2.3.2 Unidirectional endochondral growth
zone locations

In humans, unidirectional GZs are primarily found in the

limbs and ribs (Figures 3B, D). Growth of ribs is mediated by

GZs located within costochondral joints, which are

synchondroses linking ribs to the costal cartilages of vertebrae

(Figure 3B) (47, 48). In the limbs, epiphyseal GPs mediate

elongation of the stylopod (humerus, femur) and zeugopod

(radius/ulna, tibia/fibula) at the end of each long bone. In

contrast, each bone of the autopod grows at a single GP

(phalanges/metacarpals/metatarsals; Figure 3D).

Zebrafish unidirectional GZs are primarily found in the

pharyngeal skeleton and fin endoskeleton (Figures 3C, E, F).

In the PA3-6 (branchial arches 1-4) skeleton, the ceratobranchial

(CB) and epibranchial (EB) bones of each arch possess a

unidirectional GZ at each extremity (Figure 3C) (27). In the 2

sets of paired fins (pectoral and pelvic) the endoskeleton is

reduced compared to that of human limbs, and its proximo-

distal pattern is simplified. The endoskeleton of pectoral fins

consists of 4 proximal radials and 6 to 8 distal radials

(Figure 3E), while the pelvic fins contain 3 radials (22). The

caudal fin endoskeleton consists of the pleurostyle of the caudal-

most vertebrae, five hypurals, the parhypural, and the haemal

spines of preural vertebrae 2 and 3 (Figure 3F) (49). Just as in

mammalian limbs, all fin GZs are unidirectional. These are

positioned at the distal ends of (1) proximal radials in the

pectoral, dorsal and anal fins (2), radials in the pelvic fins, and

(3) hypurals, parhypural and haemal spines in the caudal fin

(Figures 3E, F) (50). Interestingly, mutations in conserved

regulators of appendage development can lead to

supernumerary bones in zebrafish consistent with radials and

long bones having evolved from homologous structures in the

common ancestor (23).
3 Development and cellular
architecture of endochondral
growth zones in teleost fish and
humans

3.1 Developmental similarities and
differences in endochondral growth
zones between species

The stereotypical steps of mammalian endochondral long

bone formation consist of: 1) mesenchymal condensation, 2)

differentiation into cartilage, 3) formation of a perichondral

bone collar at the diaphysis and concomitant hypertrophy of

chondrocytes coupled with cartilage matrix mineralization, 4)

blood vessel invasion, hypertrophic chondrocyte death and

resorption of mineralized matrix by chondroclasts, all at the
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diaphysis 5) replacement of cartilage by endochondral bone and

marrow, 6) appearance of distinct RZ, PZ, and HZ zones at each

epiphysis, and lastly 7) epiphyseal formation of secondary

ossification centers (2, 12). These features of GZs are largely

conserved between teleost fish and tetrapods, at both the cellular

and molecular levels, despite the later invasion of blood vessels

in teleosts, lack of hematopoietic bone marrow or secondary

ossifications. Notably, endochondral bone formation in smaller

teleosts, such as zebrafish takes the form of (1) a thin layer of

bone matrix at the resorption front and (2) bone matrix

deposition on the inner surface of the bone shaft (24, 29, 30,

32, 36, 51).
3.1.1 From condensation to cartilage template
In tetrapods, the shape of the mesenchymal condensation

determines the shape of the cartilage model (52). In contrast,

cartilage elements differentiate within larger condensations in

both the head and fins of teleosts (22, 53–55). Zebrafish

embryonic and larval cartilage shapes generally prefigure the

shape of adult skeletal elements (Figures 4A, B). One exception is

the endoskeleton that supports the pectoral fins, in which a

transient endoskeletal disc of cartilage supports the functional

larval fin, but localized cartilage decomposition within the disc

defines four proximal radials that prefigure the adult fin

endoskeleton (Figures 3E, 4C) (56).

The shapes of pharyngeal cartilage elements in teleost

embryos are regulated by complex morphogenetic cell

behaviors such as localized cell-cell intercalations that take

place hours before cartilage matrix deposition (56–59). Linear

stacking of chondrocytes driven by such intercalations underlies

the directionality of the GP or GZ as well as cartilage and bone

elongation. Cartilage elements of mutants with cell-cell

intercalation defects are shorter and wider than in wild-type

individuals (26, 60). A growing body of research supports

conserved control of cell-cell intercalation during cartilage

morphogenesis in the RZs of vertebrate GPs (including

mammals) by planar cell polarity (PCP) pathways (26, 58,

60–66).

Though initially studied in the context of epithelia, it has

become clear that noncanonical Wnt/Wnt-PCP and Fat-Dchs/

Fat-PCP signaling play important roles in regulating cell and

tissue polarity in diverse cell and tissue types, including

mesenchyme and cartilage. Several human syndromes that

affect skeletal morphology are caused by mutations in Wnt-

PCP and Fat-PCP signaling genes (67–77). Studies in zebrafish

have successfully modeled craniofacial defects associated with

loss-of-function of gpc4, frizzled, wnt5b, fat3a and dchs2 in

cartilage morphogenesis, and demonstrated requirements for

these factors in mediating the polarized cell-cell intercalation of

chondrocytes in the craniofacial skeleton (26, 58, 63, 64, 66).
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3.1.2 Maturation of endochondral bones
The first signs of GZ development in the craniofacial

skeleton in zebrafish are the simultaneous appearance of a

perichondral bone collar and flattening of presumptive PZ

chondrocytes during early metamorphosis (Standard Length =

6-7 mm) (26, 27). Unlike mammalian GZs, hypertrophic

chondrocytes in zebrafish only enlarge slightly and transiently

during zebrafish GZ development. Blood vessel invasion of the

cartilage template coincides with the onset of HZ cell apoptosis,

but unlike in mammals, it starts well after the onset of bone

collar formation and GZ-mediated bone elongation (24, 27). It

was long thought that osteocytes replacing HZ chondrocytes in

GPs were introduced in the bone diaphysis by invading

vasculature (2), but histological studies in chick and more

recent lineage analyses using transgenic mice have shown a

contribution to trabecular bone by HZ chondrocytes themselves
Frontiers in Endocrinology 08
(78–81). Similarly, recent clonal analysis using zebrafish

transgenics has shown that HZ chondrocytes may undergo

several fates at the resorption front: apoptosis, or transition

into osteoblast or adipocyte fates (24). Unlike mammals, but

similar to amphibians, reptiles and most bird species, secondary

ossification centers do not develop in GZs of endochondral

bones in zebrafish or other teleosts (1, 27, 29, 30).

3.1.3 Patterning of endochondral growth zones
Our understanding of GZ patterning mechanisms is largely

based on studies of mouse limb GPs. Two signaling pathways

activated by Indian Hedgehog (Ihh) and Parathyroid Hormone-

like Hormone (Pthlh), respectively, interact at a distance to

pattern long bone GPs (Figure 5A). Ihh is first expressed

throughout the diaphysis of long bone cartilage templates

before becoming restricted to chondrocytes in the pre-
B

C

A

FIGURE 4

Early anatomy of zebrafish endochondral growth zones. (A) Endochondral growth zones start to appear in the zebrafish skeleton around 12days
post-fertilization (dpf). One or more ossification centers appear on each bone. Unossified cartilage regions at bone ends become unidirectional
growth zones, while those flanked by ossifying cartilage become bidirectional growth zones. In the 12dpf pharyngeal skeleton, the QA and MP
bones ossify over the PQ cartilage, the HM and SY bones ossify over the HS cartilage, the HH, CH and EH bones ossify over the CH cartilage,
BB1 and 2 ossify over the BB cartilage. Single ossifications appear on other pharyngeal bones. (B) In the caudal fin endoskeleton, single
ossifications appear on each cartilage element, resulting in a single distal endochondral growth zone per element. (C) In the pectoral fin
endoskeleton, the endoskeletal disc is progressively carved into four proximal- and seven distal radials. Ossification of each proximal radial
leaves a single endochondral growth zone at the distal end. Distal radials do not ossify. BB, basibranchial; BH, basihyal; CB, ceratobranchial; CC,
compound centrum; DR, distal radial; ED, endoskeletal disc; H, hypural; HB, hypobranchial; IH, interhyal; MC, Meckel’s cartilage; NO, notochord;
PH, parhypural; PHB, pharyngobranchials; PR, proximal radial; SCO, scapulocoracoid, VHH, ventral hypohyal.
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hypertrophic zone (PHZ) (82, 86). Ihh activates Pthlh expression

at a distance in periarticular chondrocytes, and Pthlh in turn

represses Ihh expression. Mosaic analyses of Ihh, Pthlh, and

Pth1r mutants have shown that this negative feedback loop

effectively patterns the distance between RZ and HZ (83, 84). Ihh

expression levels are also regulated by BMP and FGF signaling:

Smad1/5 promotes Ihh expression, while Smad2/3 and Fgfr3

repress its expression (87–90). In addition to their role in scaling

the GP, Ihh promotes bone collar formation by inducing the

differentiation of osteoblasts in the perichondrium (91, 92),

while Pthlh promotes the proliferation of PZ chondrocytes

and delays cell-cycle exit and the onset of chondrocyte

enlargement, both in mice and zebrafish (82, 92). In contrast,

little is known about the molecular pathways regulating HZ

chondrocyte enlargement. Three phases of enlargement have

been identified in mice, which include an initial three-fold

volume increase through hypertrophy, that is, cell enlargement

with a corresponding increase in organelle dry mass, followed by

a four- fo ld increase through vacuole swel l ing by

disproportionate intake of fluid, and a final two-fold increase

through hypertrophy again. Interestingly, the duration of the last

phase (hypertrophy) varies the most between rapidly and slowly

expanding growth plates, and regulation of this phase requires

Insulin-like growth factor 1 (Igf1) (93).

The Ihh-Pthlh feedback loop appears to be conserved in

mammalian cranial base synchondroses, although Pthlh is

expressed throughout the RZ and PZ (94, 95). A few studies in

zebrafish have shown the conservation of GZ patterning

mechanisms between teleost fish and mammals (45, 96), and

an earlier onset of Pthlha expression than previously described,

namely at the onset of chondrogenesis and before the onset of

ihha expression (Figure 5B) (46). Novel findings in zebrafish

have also shown the potential of this model for expanding our

understanding of GZ patterning, as they suggest that the Ihh-

Pthlh feedback loop maintains but does not establish the GZ

pattern, at least in some pharyngeal endochondral bones (46).

Instead, the zebrafish Pthlh ortholog, pthlha, and mechanical

force frommuscle contraction initiate the HZ and the location of

subsequent ihha expression, thereby establishing the negative

feedback-loop that maintains GZs (Figure 5B) (46).
3.2 Cellular basis of similarities and
differences in endochondral growth
zones between species

3.2.1 Bone elongation and differential growth
The rate of bone elongation changes throughout the life of

a GZ, and differs between GZs of an individual, as well as

homologous GZs of different species. Such growth rate

variation is referred to as differential growth (1). In rats,
Frontiers in Endocrinology 09
three cellular mechanisms mediate endochondral bone

elongation: cell proliferation, cell enlargement, and ECM

production. Cell proliferation takes place in the PZ and

enlargement in the HZ, while ECM production takes place in

both zones. These three cellular mechanisms contribute

unequal ly to bone elongat ion in mammalian GPs:

proliferation 7-10%, ECM production 32-49%, and cell

enlargement 44-59% (25). The relatively minor contribution

of proliferation to growth serves to compensate for the loss of

chondrocytes at the chondro-osseous junction. Between

mammalian species, as shown for bat metacarpal and jerboa

metatarsal GZs, the largest driver of growth rate is the degree of

cell enlargement of HZ chondrocytes (93, 97). In contrast,

proliferation is the major contributor to endochondral bone

elongation in zebrafish, as no significant cell enlargement or

increase in ECM content are observed in active GZs (27). In

other teleost fishes, the cellular basis of endochondral growth

has been explored in several African cichlids: ECM production

is the main driver of growth in H. elegans, while differences in

cell proliferation and/or enlargement mediate differential

growth in Lake Malawi cichlids (98, 99).
3.2.2 Life history differences
Mammals and teleost fishes also differ dramatically in the

timing of growth over their lifespans. Human limb GPs are

already active at birth and mediate axial elongation until the end

of puberty, when estrogens trigger GP closure and growth arrest

through complete replacement of epiphyseal cartilage by bone

(100). In rats, GPs also become inactive at sexual maturity but

they are not replaced by bone (1). Not all GPs become inactive at

the same age: in humans, the three GZs of the cranial base ossify

at different times: the intersphenoid GZ ossifies immediately

before birth, the spheno-ethmoidal GZ ossifies at 6 years, and the

spheno-occipital GZ remains active until the end of puberty

(101–103). In contrast, most teleost fish grow throughout life,

although the rate of growth slows with age, as described by the

individual growth model of von Bertalanffy (104). Accordingly,

zebrafish growth is indeterminate (105, 106), yet its pharyngeal

GZs become inactive in adults and do not ossify, similar to rats.

Further adult growth is mediated by intramembranous

ossification (27).
3.3 Modeling human endochondral
growth zone disorders in zebrafish

Despite the many similarities in development and

physiology of their GZs, there have been relatively few studies

modeling human GZ disorders in zebrafish. Recent reviews
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FIGURE 5

Zebrafish models of endochondral growth zone development and disease (A) Model for the patterning of growth zones (GZs) based on genetic
studies of mouse long bones (82–84). Indian hedgehog (Ihh) is first expressed in the nascent diaphysis of the cartilage model. Its expression
domain expands towards the epiphyses and activates Parathyroid hormone-like hormone (Pthlh) expression in periarticular cartilage. Pthlh
represses Ihh at a distance, which sets the distance between the hypertrophic zone (HZ) and resting zone (RZ). (B) Model for the patterning of
CH GZs in zebrafish based on (46). pthlha is expressed at the epiphyses of the differentiating CH. The HZ is then patterned by pthlha and muscle
contractions before the onset of ihha expression. According to this model, ihha plays a role in the maintenance of GZs, not their patterning. (C)
Zebrafish fam20b mutants recapitulates the skeletal phenotype of Raine syndrome, a particular form of osteosclerotic bone dysplasia (45). Short
overossified long bones are observed in Raine syndrome newborns. Premature ossification of the CH diaphysis is observed in zebrafish fam20b
mutants. (D) Zebrafish chimaeras recapitulate the formation of cartilage nodules observed in the human condition hereditary multiple exostosis,
which results from a mutation in the EXT2 gene. ext2-/- chondrocytes are excluded from WT cartilage stacks in zebrafish chimaeras, leading to
the hypothesis that osteochondromas observed in EXT2+/- patients result from loss-of-heterozygosity (85). Ihh and ihha expression domains in
yellow, Pthlh and pthlha expression domains in pink, ectonucleoside triphosphate diphosphohydrolase 5a (entpd5a) expression domain in light
blue, cartilage in blue, and bone in red. CH, ceratohyal; GPs, growth plates; WT, wild type; dpf, days post-fertilization.
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largely focus on the many models for other types of bone

diseases such as osteogenesis imperfecta, osteoporosis,

osteopetrosis and osteoarthritis, that alter ossification and

osteoblasts (4–10). Notable exceptions include mutations in

genes encoding proteoglycan core proteins or enzymes

involved in their biosynthesis or assembly, as models for such

cartilage diseases as Keipert syndrome (Glypican 4, GPC4;

discussed in section 1a), osteosclerotic bone dysplasia

(FAM20C), and hereditary multiple exostoses (Exostosin

2, EXT2).

Zebrafish provided some of the first insights into

requirements for proteoglycans in craniofacial development

(45, 96). A variety of Human conditions result from mutations

in the proteoglycan biosynthesis pathway that builds

chondroit in-sul fate- (CSPGs) and heparin-sul fate-

proteoglycans (HSPGs) from UDP-glucose. Zebrafish mutants

in seven of the nine enzymes of the O-linked-glycosylation

pathway required for HSPG production have been described,

several of which recapitulate endochondral skeletal defects of

human patients (107).

A surprising discovery associated with the cartilage

phenotypes of zebrafish mutants in UDP-xylose synthase

(uxs1), xylotransferase 1 (xylt1) and glycosaminoglycan xylosyl

kinase (fam20b) is the premature maturation of hypertrophic

chondrocytes and bone collar ossification (Figure 5C). This

suggested a role for proteoglycans in regulating the timing of

cartilage and bone differentiation, perhaps through the

modulation of ligand-based cell-cell signaling (45, 96). Further,

premature ossification in fam20b mutants provided a new

etiology for Raine syndrome, a human disease resulting from

mutations in FAM20C. Also known as osteosclerotic bone

dysplasia, Raine syndrome patients have craniofacial defects

such as low nasal bridge and midfacial hypoplasia indicative of

defects in growth at synchondroses, as well as short and

overossified long bones in newborns (Figure 5C). The

zebrafish fam20b mutant phenotype suggests that Raine

syndrome craniofacial and limb skeletal defects result from

premature maturation of the skeleton (45).

Further down the HSPG biosynthetic pathway, exostosin

(ext) -1 and-2 code for glycosyltransferases involved in the

polymerization of heparan sulfate chains. Mutations in EXT1

or EXT2 result in hereditary multiple exostoses (HME) in

humans, a disease that causes the formation of benign bone

tumors (osteochondromas) that are associated with GPs

(Figure 5D). Most HME patients are heterozygous for

mutations in either EXT1 or EXT2 (108–110). A study of

zebrafish ext2 mutants (dackel) supports a model where

osteochondromas arise from local loss of heterozygosity

(LOH): zebrafi sh ext2 - / - embryos do not deve lop
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osteochondromas but their skeleton is generally misshapen,

demonstrating a requirement for ext2 in cart i lage

morphogenesis/stacking (85). Instead, ext2-/- cells form

osteochondroma-like nodules when transplanted in wild type

(WT) individuals: homozygous mutant cells are excluded from

WT stacks, providing support to the LOHmodel for the etiology

of HME (Figure 5D) (85).
4 Conclusions and future directions

In this review, we have highlighted the many similarities

and differences between zebrafish and human skeletal

anatomy, their endochondral GZs and recent studies of

developmental and physiological mechanisms that control

endochondral bone growth. Despite the apparent anatomical

differences between human and teleost fish skeletons, the

overwhelming conservation of different cell types and

molecular mechanisms underlying skeletal development

makes the zebrafish a powerful model for further studies of

the causes and potential therapies for human skeletal diseases.

This power lies in (1): the unique and well-known properties

that have already made zebrafish a popular model system,

which include ease of care, their small size, large number of

offspring, suitability for large forward genetic screens and

embryo transparency to name a few and (2) an ever-

expanding toolkit to reach a diversity of research goals.

CRISPR-Cas9-mediated mutagenesis is relatively easy in

zebrafish and protocols have been developed for the rapid

production of loss-of-function phenotypes in CRISPR-injected

individuals (111, 112). Numerous transgenic lines labeling

various skeletal cell lineages and their precursors have been

used to image cartilage and bone morphogenesis in vivo, and

also conduct lineage tracing in endochondral bones (24, 58,

113, 114). Transgenic zebrafish can also be utilized for cell-type

and stage-specific ablation using the nitroreductase system

(115), as well as in mosaic transgenic conditions to test the

cell-autonomous and non-cell autonomous properties of

particular genes and their mutant alleles (46, 116, 117).

Lastly, recent improvements in single-cell RNAseq and

ATACseq methodologies have allowed gene expression

profiling of entire cell lineages and even whole organs or

organisms at single cell resolution, made possible by the

small size of zebrafish embryos and larvae (118–122). Future

deployment of these single-cell techniques for the study of all

skeletal cell types will undoubtedly lead to new insights into

endochondral and GZ development in health and disease.
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