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Extracellular vesicles
derived from different
sources play various roles
in diabetic retinopathy

Tingting Chen, Fang Wang, Jiayi Wei and Le Feng*

Department of Ophthalmology, Shanghai Tenth People’s Hospital Affiliated to Tongji University
School of Medicine, Shanghai, China
Extracellular vesicles (EVs) are present in almost all biological fluids and

secreted by almost all cell types. A growing number of studies have revealed

the potential roles of EVs in the diagnosis and treatment of the diabetic

retinopathy (DR). Changes in the quantity and content of EVs may serve as

biomarkers of cause or consequence of pathological status of DR, such as

inflammation, neovascularization and epithelial-mesenchymal transition. In

addition, as natural, safe and efficient drug carrier, EVs have been reported to

play important roles in intercellular communication by acting for essential cell-

specific information to target cells. In this review, we summarize the roles of

EVs, secreted by various types of cells and participated in various biological

processes, in the pathogenesis, diagnosis, and treatment of DR.
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1 Introduction

Diabetic retinopathy (DR) is one of the most common and serious complications of

diabetes, which remains the most prevalent cause of visual impairment in the working-

age adults, eventually resulting in irreversible vision loss. DR can be divided into non-

proliferative DR (NPDR) and proliferative DR (PDR) according to the absence or

presence of retinal neovascularization. Severe visual impairment and blindness may due

to the late pathological events of PDR like vitreous hemorrhage, traction retinal

detachment and neovascular glaucoma (1). It is worth mentioning that diabetic

macular edema (DME) can appear in any stage of DR and has surpassed PDR as the

leading cause of visual impairment in patients (2). At present, the treatment modalities

for DR include laser photocoagulation, intraocular injections of anti-VEGF or steroids

and vitrectomy (3–5). However, these can not completely prevent progression of the

disease and reverse visual impairment. In recent years, the prevalence of DR has been

increasing, but the early diagnosis and treatment of DR are limited. When patients
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perceive changes in vision, the visual impairment is irreversible

(6). Therefore, it is of great significance to improve the

understanding of pathogenesis in DR, and looking for early

diagnosis and treatment methods for preventing DR-related

visual impairment.

Extracellular vesicles (EVs) which include ectosomes and

exosomes, are membrane-derived vesicles that mediate

intercellular communications (7). Ectosomes are formed by

outward blebbing from the plasma membrane, which include

microvesicles, microparticles, and large vesicles ranging from

approximately 50 nm to 1 mm in diameter, while exosomes are

endosomal origin ranging in size from 40 to 160 nm in diameter

(8). EVs are extracellularly released from the majority of human

cell types and have been isolated from most bodily fluids, such as

vitreous fluid, blood, urine, saliva, breast milk, amniotic fluid,

ascites, cerebrospinal fluid, bile and semen etc. (9, 10). The

enrichment of tetraspanins such as CD6, CD81, CD9, CD82,

CD53 and CD37 can be used as EVs markers (11, 12). EVs are

known to contain proteins, lipids, and nucleic acids, which may

change in different states of the extracellular environment or

secreting cells. Of note, miRNA in nucleic acids are exported out

of the cell and can influence gene expression in distant cells (9).

Therefore structural and functional properties enable EVs with

the characteristics of high specificity, high sensitivity and

targeted transport, which are potentially valuable in diagnostic

and therapeutic applications.

In recent years, many researches have shown that EVs also

play important role in the diagnosis and treatment of DR. In this

review, we have summarized EVs, from different sources like

intraocular cell-derived EVs, mesenchymal stem cell (MSC)-

derived EVs and blood-derived EVs, work in different pathways

in DR, so that we can provide new ideas for the study of

pathogenesis in DR, and look for early diagnosis and treatment.
2 EVs that play roles in the
pathogenesis/diagnosis/prognosis
of DR

2.1 Intraocular cell-derived EVs

Endothelial cells (ECs), pericytes, astrocytes in the retina

(RAC) and retinal pigment epithelial (RPE) cells are important

components of inner and outer blood-retinal barrier (BRBs), and

play important roles in maintaining the homeostasis of the

retinal microenvironment (13). RAC is strictly related to

retinal blood vessels and the main producer of VEGF in both

normal and pathological angiogenesis (14). Normal pericytes

provide vessel stability and inhibit the proliferation and

migration of vascular ECs. The loss of pericytes lead not only

to the vasodynamic changes in the early stage of DR, but also to

the neovascularization in PDR (15). As DR progresses, the tight
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pathological leakage occurs in paracellular space (13). When

BRB is destroyed, retinal microglia and complement system can

maintain retinal homeostasis by regulating the immune system

(16). The proliferation and migration of RPE cells and the

secretion of extracellular matrix molecules contribute to the

formation of fibrotic membranes in the advanced stage of DR,

PDR (17). The characteristics of EVs can generally reflect the

phenotype and physiology of the parent cell. EVs of different

retinal cells have different proteins or genetic information, which

can change under pathophysiological conditions, and these

minor changes can eventually lead to the retinopathy (18).

2.1.1 Retinal pigment epithelial cell-derived EVs
RPE-derived EVs are involved in the regulation of oxidative

stress, inflammation, apoptosis and neovascularization during

DR progression. In addition, endothelial-to-mesenchymal

transition (EndoMT) lead to pathological fibrosis in PDR, and

RPE-derived EVs play potential roles to inhibit EndoMT

Atienzar-Aroca, S et al. (19) found that EVs derived from

healthy RPE cell inhibit blood vessel formation under

physiological conditions, while those released from stressed

ARPE‐19 cells promote angiogenesis. This angiogenic effect

might be because of the extra cargo of proteins and mRNA

contained in the EVs and HUVEC cells influenced by them

showed higher levels of VEGF receptors. The further research

proposed that the abnormal vessel growth correlate with

augmented VEGFR2‐expressing EVs, which released from

stressed ARPE‐19 cells and directly associated with autophagy,

causing ECs to migrate and angiogenesis (20). Maisto, R et al.

(21) showed that VEGF-containing EVs, which released by

ARPE-19 and promoted neovascularization in HUVECs, can

be reversed by the melanocortin 5 receptor agonist (MCR5)

activation. Ke, Y et al. (22) demonstrated that RPE-derived EVs

under oxidative stress increased apoptosis, induced oxidative

damage and inflammatory response through Apaf1/caspase-9

axis. Meanwhile, Gu, S et al. (23) proposed that EVs from ARPE-

19 cells may transmit miR-202-5p through TGF/Smad pathway,

which is an important mediator for intercellular crosstalk to

suppress EndoMT and may be a potential treatment for PDR

pathological fibrosis.
2.1.2 Pericyte-derived EVs
Pericyte loss is considered a hallmark of early DR, and the

changes in pericyte-derived EVs in diabetic conditions may also

be of potential value as early biomarkers of DR. Moreover,

pericyte-derived Vs still play roles in the crosstalk between

pericytes and ECs, which is essential for vessel stabilization

and remodeling.

Study by Mazzeo, A et al. (24) showed that miR-126

expression is down-regulated pericyte-derived EVs in diabetic-

like conditions, which involved in vessel destabilization in DR.
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Unfortunately, they did not find PDGF and Ang-2 signalling

pathways associated with this mechanism. In addition, Liu, C

et al. (25) found that diabetes-related stress up-regulated the

expression of mmu_circ_0000254 in pericytes and named it

cPWWP2A. cPWWP2A directly regulates pericytes biology but

indirectly regulates ECs biology via EVs carrying cPWWP2A,

which inhibited miR-579 activity, increased expression of

angiopoietin 1/occludin/SIRT1, and ultimately alleviates

diabetes-induced retinal vascular dysfunction.

2.1.3 Retinal astrocytes-derived EVs
RAC-derived EVs are involved in the regulation of

endothelial function. Study by Hajrasouliha, A. R et al. (26)

showed that RAC-derived EVs inhibited retinal vessel leakage

and choroidal neovascularization by targetting both

macrophages and ECs. They reduced the number of

infi l trat ing macrophages , direct ly antagonized the

inflammatory and angiogenic factors, and inhibited the

migration and vascular tubule forming of ECs. Zhu, L et al.

(27) found that RAC-derived EVs under normal and oxidative

stress conditions had different effects on the endothelial

function, which can be reversed by the exosome inhibitor

GW4869 or the autophagy inhibitor 3-methyladenine. This

study indicated that oxidative stress can induced RAC

autophagy and promote RACs to regulate ECs function by

releasing EVs.

2.1.4 Retinal photoreceptors-derived EVs
Retinal photoreceptors (PRs) on the outer membrane of the

retina are the most numerous and active cell in retina (28). It is

certain that retinopathy is related to the thickness of the ratina

and PRs (29). Maisto, R et al. (30) found that high glucose

increased VEGF levels and decreased anti-angiogenic miR-20a-

3p, miR-20a-5p, miR-106a-5p, and miR-20b expression either in

PRs or in PR-derived EVs, RvD1 reverted the effects of glucose

damage in photoreceptors and the pro-angiogenic potential of

EVs, and ROS-induced NF-kB signaling was considered in

relation to this mechanism. Therefore, inhibiting the changes

of the outer membrane of the retina by regulating EVs may be a

new treatment for the neovascularization of DR.
2.2 Extracocular cell-derived EVs

2.2.1 Blood-derived EVs
2.2.1.1 Serum/plasma-derived EVs

Biomarkers are very important indicators of abnormal

biological conditions, and thus can be used as a powerful tool

for early diagnosis of DR. Although biomarkers from ocular

tissue are more reliable as pathological indicators, obtaining the

sample of retina, vitreous fluid and aqueous humor is a high risk
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relatively non-invasive, convenient and economical (31).

Previous studies have confirmed that the biomarker function

of blood-derived EVs could better identify DR at an early stage,

and the changes in the quantity and content of EVs could also be

used for assessing the severity of DR development.

By comparing the EVs and specific factors in serum or

plasma of DR group, the diabetic group and the healthy control

group, a large number of studies have found that the levels of

cytokines and angiogenic factors in EVs of diabetic patients with

retinopathy are significantly increased, which is correlated with

the progression of diabetes (32). In addition, Mazzeo, A et al.

(33) showed that the differences of miR-150-5p, miR-21-3p and

miR-30b-5p in circulating EVs between diabetic patients and

healthy subjects were significant, and decreased miR-150-5p and

increased miR-21-3p, miR-30b-5p and HIF-1a may all together

lead to vessel destabilization and angiogenesis. Zhang, Y et al.

(34) found that the content of miR-26b-5p in serum-derived

EVs of DR patients was up-regulated. Moreover, Xiao, J et al.

(35) compared the proteomic profiles of plasma-derived small

EVs from DR patients and normal subjects using iTRAQ-based

quantitative proteomics. They found 90 proteins were

significantly changed in DR, and confirmed that tumor

necrosis factor-a-induced protein 8 (TNFAIP8) was

upregulated in plasma-derived small EVs in the DR. All of

these aforementioned molecules have been reported to be

involved in endothelial dysfunction and angiogenesis, and may

be consider as potential biomarkers for DR.

Other studies have found that plasma-derived EVs can be

used as indicators of the stage of DR progression. Yu, B et al. (36)

showed that miR-431-5p in plasma-derived EVs expression

doubled in the PDR patients compared with the nonPDR

patients and healthy controls, which indicate miR-431-5p

could be used as a marker of disease entering the PDR stage.

Tokarz, A et al. (37) suggested that the severity of DR was also

statistically correlated with CCR5-positive plasma-derived

large EVs.

Furthermore, several studies have shown that diabetic

plasma-derived EVs were responsible for activation of the

complement cascade. Huang, C et al. (38) found that the

increased number of plasma-derived EVs in diabetic patients

activated the complement system and upregulated of pro-

inflammatory cytokines and chemokines, resulting in vascular

injury. Through further research, they demonstrated that

complement activation by IgG-laden EVs leads to membrane

attack complex (MAC) deposition, promoting endothelium

damage and DR progression (39).

2.2.1.2 Platelet-rich plasma-derived EVs

EVs derived from platelet-rich plasma (PRP) transferred

active agents that mediate intercellular crosstalk through
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phagocytosis, macropinocytosis, internalization, and

endocytosis, affecting hemostasis and inflammatory responses

(40). In addition, Zhang, W et al. (41) found that PRP-derived

EVs mediated hyperglycemia-induced retinal endothelial injury

through the TLR4/CXCL10 axis. Zhang, W et al. (42)

demonstrated that DM-PRP-derived EVs activated YAP and

enhanced müller cell proliferation and fibrosis through the

PI3K/Akt pathway, thereby aggravating the PDR process and

threatening the vision of patients.

2.2.2 Pancreatic b-cells-derived EVs
Recent studies have shown that miRNAs released by

pancreatic b-cells-derived EVs under diabetic conditions have

effects on self and recipient cells through cell-to-cell

communication (43). Kamalden, T.A et al. (44) showed that

miR-15a was produced in pancreatic b-cells and transported in

EVs to distant microvascular beds. As diabetes progresses, more

EVs containing miR-15a entered into the blood stream, which

leads to the development of diabetic microvascular

complications including DR. They further showed that miR-

15a-enriched EVs released from b-cells could be taken up by

müller cells, causing oxidant stress and apoptosis via PI3-kinase

signaling pathway.
2.2.3 Lymphocyte-derived EVs
Yang, C et al. (45) found that miR-181a was selectively

enriched in lymphocyte-derived EVs, and its overexpression

could reduce EC viability and inhibit angiogenesis. They

further confirmed in vitro and in vivo that miR-181a may play

a role in reducing retinal neovascularization by interfering with

the MAPK1/VEGF signaling pathway, which might provide a

new therapeutic strategy for neovascularization (Figure 1).
Frontiers in Endocrinology 04
3 EVs that play roles in treatment
of DR

3.1 Mesenchymal stem cells-derived EVs

Mesenchymal stem cells (MSCs), which have the

regeneration and differentiation ability and stability, can

provide new therapeutic options for retinal diseases (46, 47).

Moreover, it is gradually being confirmed that the paracrine

trophic effect of MSCs can also be used in the treatment (48).

EVs released from MSCs can not only provide the same effect as

MSCs, but also avoid the side effects of cell transplantation

therapy. Recent researches have demonstrated that MSC-derived

EVs from different sources could repair DR-induced

pathological changes of endothelial, müller and RPE cells, and

played beneficial roles in the treatment of DR.

3.1.1 Adipose tissue MSC-derived EVs
Gu, C et al. (49) applied EVs collected from adipose tissue

derived MSC (AD-MSC) to human retinal microvascular

endothelial cells, müller cells and RPE cells. They found that

AD-MSC-derived EVs could relieve inflammation and

angiogenesis by shuttling miR-192, which targeted and

negatively regulated ITGA1, thereby reducing diabetic retinal

damage. Safwat, A et al. (50) found the decreased expression

level of micRNA-222 in retinal tissue of diabetes caused by STZ

were associated with severe retinal injury and hemorrhage in

different layers of retina and they observed the retinal repair

effect of AD-MSC-derived EVs in streptozotocin-induced DM

rabbit model by different routes including intravenous injection,

subconjunctival injection and intraocular injection. They

showed that AD-MSC-derived EVs were able to repair DM-
FIGURE 1

The molecular mechanism of DR regulated by intraocular/extraocular cell-derived EVs plays roles in the pathogenesis/diagnosis/prognosis
of DR.
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induced retinal damage and hemorrhage by shuttling micRNA-

222, which may occur through its role in regulation of vascular

cell biology. And it is necessary to further explore the

mechanism by which hyperglycemia caused decrease in

expression level of micRNA-222.

3.1.2 Umbilical cord MSC-derived EVs
Xu, N.D et al. (51) showed that human umbilical cord

mesenchymal stem cells (UC-MSC)-derived EVs could

modulate the proliferation, apoptosis and migration of human

RPE cells in hypoxia. Furthermore, Zhang, W et al. (52) found

that UC-MSC-derived EVs overexpressing miR-126 could

attenuate hyperglycemia-induced inflammatory response and

endothelial injury by inhibiting the HMGB1 signaling

pathway. Moreover, Li, W et al. (53) injected UC-MSCs-

derived EVs into the vitreous body of diabetic mouse model,

and reveal that UC-MSCs-derived EVs decreased the levels of

blood glucose and HbAlc, reduced the contents of inflammatory

cytokines and VEGF, alleviated oxidative damage and inhibited

retinal cell apoptosis in DR mice via shuttling miR-17-3p

targeting STAT1.

3.1.3 Bone marrow MSC-derived EVs
Bone marrow contains the highest concentrations of adult

stem cells, which are easily harvested and expanded in tissue

culture and have the ability to repair damaged tissue, making

them more promising for treating retinal diseases. Li, W et al.

(54) made high glucose-treated müller cells co-cultured with

bone marrow mesenchymal stem cells (BM-MSC)-derived EVs,

and demonstrated that up-regulation of miR-486-3p induced by

BM-MSC-derived EVs inhibited oxidative stress, inflammation

and apoptosis via TLR4/NF-kB axis repression. Cao, X et al. (55)

confirmed that BM-MSC-derived EVs could transfer SNHG7 to

HRMECs and suppressed EndoMT and tube formation viamiR-
Frontiers in Endocrinology 05
34a-5p/XBP1 axis. Both studies indicated that BM-MSC-derived

EVs played protective roles in DR (Figure 2).
4 Limitations of EVs in DR

EVs can be used not only as diagnostic biomarkers for DR,

but also as novel targets for therapeutic intervention in DR.

Nonetheless, EVs has not been quantitatively used to grade the

severity of DR, and EVs’ efficient and natural drug carrier role

has not yet been used. The regulation of DR by EVs is very

complex, and the protein and miRNA information carried by

EVs still needs to be supplemented. The complete information

database carried by EVs can provide directions for future

researches of DR from pathogenesis to diagnosis and treatment.
5 Conclusion

The proteins and miRNAs contained in EVs can participate in

the occurrence of DR pathological processes such as

inflammation, oxidative stress, apoptosis, neovascularization and

EndoMT through different mechanisms. Intraocular cell-derived

EVs have two-sided effects according to the organism state. In

physiological state, EVs maintain retinal homeostasis, while in

pathological state, EVs induce oxidative stress and inflammation

to damage retinal tissue, which can be alleviated by interfering

with specific miRNAs or proteins in EVs. MSC-derived EVs can

not only perfectly replicate the regeneration and differentiation

abilities of MSCs, but also avoid their side effects. Therefore, EVs

have the potential to be the natural material for the treatment of

DR. Circulating EVs are relatively convenient and non-invasive to

obtain, and the changes in their quantity and content of specific

components in the early stage of DR are expected to be potential
FIGURE 2

Molecular mechanism of MSC-derived EVs to alleviate DR progression.
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biomarkers for early diagnosis. In addition, circulating EVs can

also regulate the neovascularization and inflammatory response of

DR, which are expected to play the roles of DR drug therapy

carriers. In conclusion, the research on EVs in DR is still in its

infancy, and has broad application prospects, which need to be

further explored.
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