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Introduction: Dyslipidemia is a hallmark of T2DM, and as such, analyses of lipid

metabolic profiles in affected patients have the potential to permit the

development of an integrated lipid metabolite-based biomarker model that can

facilitate early patient diagnosis and treatment.

Methods: Untargeted and targeted lipidomics approaches were used to analyze

serum samples from newly diagnosed 93 Chinese participants in discovery cohort

and 440 in validation cohort via UHPLC-MS and UHPLC-MS/MS first. The acid

sphingomyelinase protein expression was analyzed by Western blot.

Results and Discussion: Through these analyses, we developed a novel integrated

biomarker signature composed of LPC 22:6, PC(16:0/20:4), PE(22:6/16:0), Cer

(d18:1/24:0)/SM(d18:1/19:0), Cer(d18:1/24:0)/SM(d18:0/16:0), TG(18:1/18:2/18:2),

TG(16:0/16:0/20:3), and TG(18:0/16:0/18:2). The area under the curve (AUC)

values for this integrated biomarker signature for prediabetes and T2DM patients

were 0.841 (cutoff: 0.565) and 0.894 (cutoff: 0.633), respectively. Furthermore,

theresults of western blot analysis of frozen adipose tissue from 3 week

(prediabetes) and 12 week (T2DM) Goto–Kakizaki (GK) rats also confirmed that

acid sphingomyelinase is responsible for significant disruptions in ceramide and

sphingomyelin homeostasis. Network analyses of the biomarkers associated with

this biosignature suggested that the most profoundly affected lipid metabolism

pathways in the context of diabetes include de novo ceramide synthesis,

sphingomyelin metabolism, and additional pathways associated with

phosphatidylcholine synthesis. Together, these results offer new biological

insights regarding the role of serum lipids in the context of insidious T2DM

development, and may offer new avenues for future diagnostic and/or

therapeutic research.
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1 Introduction

T2DM makes up over 90% of human diabetes cases (1), and is

among the most rapidly growing threats to human health throughout

the globe (2). T2DM develops over several years in prediabetic

individuals (3, 4), early diagnosis and treatment can effectively

prevent the development of diabetes. Therefore, the detection of

reliable biomarkers associated with prediabetes and T2DM is an

area of active research, and multiple biomarkers including fasting

blood glucose (FBG) and glycated hemoglobin A1c(HbA1c) (5–8)

have been proposed as tools to assess the risk of diabetes (3–8). While

valuable, however, these biomarkers fail to fully capture the

complexity of T2DM development, and may also fail to detect at-

risk individuals prior to disease onset (4, 9–11).

Dyslipidemia, and lipoprotein metabolism abnormalities are

commonly detected in those with diabetes (12–14). Detecting these

shifts in lipid profiles thus represents a promising approach to

identifying high-risk patients at earlier time points. Lipidomic

analyses of overall lipid profiles can also offer additional insight

into the pathophysiology of diseases (15–17), including diabetes

(15, 18–22). Several lipidomics studies have provided evidence that

comprehensive lipid profiles have the potential to improve diabetes

risk assessment relative to the use of conventional clinic indices alone

Certain subclasses of lipids including ceramides, sphingolipids,

phospholipids, triglycerides (TGs) having been linked to human

prediabetes and T2DM (23–34)s T2DM is highly prevalent in

European nations (35–37), and the human serum lipidome is

highly complex (38, 39), a majority of recent studies have employed

lipidomics approaches to analyze the serum lipid profiles of European

individuals with prediabetes and T2DM (40–42). However, diabetes

rates are rising rapidly in China such that it is now home to the

highest global diabetes incidence (43), with prediabetes affecting a

remarkable 35.7% of the population (44). Chinese dietary

composition and obesity rates are very distinct from those in

Western nations, and relative to European T2DM patients, those

from China are often diagnosed at younger ages and with lower body

mass index (BMI) values (45). As such, more in-depth analyses of the

roles of endogenous lipids in the pathophysiology of prediabetes and

T2DM in Chinese patients is essential to guide the development of

novel preventative measures or treatment strategies. Furthermore, in

recent years, an increasing number of studies have shown that

synthesis of ceramide by sphingomyel inase hydrolysis

sphingomyelin is considered to be one of the major causes for

insulin resistance (29).

Sphingomyelinase-regulated balance of ceramides and

sphingolipids plays an important role in many diseases (30, 46, 47).

Sphingomyelinase especially acid sphingomyelinase has a central

function for the re-organization of molecules within the cell upon

stimulation and thereby for the response of cells to stress and the

induction of cell death but also proliferation and differentiation (31).

The role and mechanism of ASM research in many diseases has made

great progress, which fully confirmed the important role of ASM/

ceramides pathway in T2DM, However, there are few studies on

prediabetes. It is important to further study the exact regulation
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mechanism of ASM pathway in pathophysiology of prediabetes.

Previous studies have suggested that patients with long-standing

T2DM and had worse metabolic profiles when compared with the

newly diagnosed (48), and multiple complications such as chronic

kidney disease (CKD) and diabetic kidney disease (DKD) remain

common in diabetics in the decade after diagnosis (49). In addition,

long-term use of hypoglycemic drugs such as metformin and acarbose

also could alter the lipid profile of human (50, 51), revealing metabolic

changes of diseases. Thus, it is very key for study of lipid metabolic

profiles of participants with prediabetes and T2DM with the newly

diagnosed. Untargeted lipidomics analyses are limited by their narrow

linear range, poor reproducibility, and low sensitivity (52, 53),

whereas targeted approaches exhibit reduced metabolomics

coverage such that they have the potential to miss metabolites of

interest. As such, combining targeted and untargeted lipidomics

strategies can overcome potential misannotation owing to the

structural diversity and complexity of lipid molecules, thereby

enabling the better confirmation of results to offer insight into lipid

metabolism in the pathophysiology of metabolic diseases.

Herein, we employed untargeted and targeted UHPLC-MS and

UHPLC-MS/MS approaches to analyze the serum lipid profiles of

Chinese individuals with newly diagnosed patients or without

prediabetes or T2DM. Subsequently, western blot analysis of ASM

in different ages of GK rats was performed in order to explore and

confirm whether ASM is responsible for significant disruptions in

ceramide and sphingomyelin homeostasis and the important role of

ASM/ceramides pathway in prediabetes and T2DM patients. The

resultant data were analyzed with both commercial and in-house

software applications. The overall goals of this study were to

systematically screen for potential lipid biomarkers associated with

prediabetes and T2DM incidence in Chinese patients in order to both

better understand lipid pathway dysregulation and to develop a new

integrated biosignature that may aid in diagnosing these conditions.

2 Materials and methods

2.1 Participant recruitment and grouping

All study participants were recruited from Beijing Shijitan

hospital at the Capital Medical University (Beijing, China), Beijing

Jiao Tong University Community Health Center (Beijing, China), The

First Affiliated Hospital of Zhengzhou University (Henan, China),

The First Affiliated Hospital of Henan University of Chinese Medicine

(Henan, China), and Kaifeng Hospital of Traditional Chinese

Medicine (Henan, China). All subjects underwent a physical

examination during which their height, weight, and BMI were

recorded. They then completed a face-to-face interview during

which they detailed their demographics, medical history, family

medical history, and other lifestyle factors. Blood samples were

additionally collected to measure participant plasma total

cholesterol (TC), High density lipoprotein (HDL), Low density

lipoprotein (LDL), triglyceride (TG), FBG, alanine transaminase

(ALT), and aspartate transaminase (AST) levels. Individuals were

eligible for final study enrollment if they met the following criteria: (1)
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patients exhibited an FBG > 7.0 mmol/L (54) or met the diagnostic

criteria for prediabetes (FBG: 5.6-6.9 mmol/L) (55, 56); (2) patients

were 20-70 years of age. Patients were excluded if they: (1) exhibited a

history of cardiovascular or cerebrovascular events; (2) had impaired

liver/kidney function; (3) had a fasting triglyceride level ≥ 10mmol/L;

(4) suffered from other endocrine, autoimmune, renal, cancerous, or

otherwise serious diseases; (5) were undergoing treatment with

antibiotics, glucocorticoids, or traditional Chinese herbal medicines;

(6) were pregnant or expecting to become pregnant; (7) were

currently breastfeeding; (8) suffered from mental health conditions;

(9) declined or were unable to comply with study dietary guidelines;

or (10) suffered from severe infectious diseases. Based upon this

criteria, participants were grouped into control (n=35), prediabetes

(n=31), and T2DM (n=27) discovery cohorts as well as control

(n=150), prediabetes (n=170), and T2DM (n=120) validation

cohorts. The Ethics Committee of Scientific Research, Beijing

Shijitan Hospital, Capital Medical University approved this study,

and all participants provided written informed consent to participate.
2.2 Chemicals and materials

Liquid chromatography/mass spectrometry (LC/MS)-grade

methanol, acetonitrile, 2-propanol, ammonium formate, and

HPLC-grade methyl tert-butyl ether (MTBE) were obtained from

Fisher Scientific (PA, USA). LC/MS-grade ammonium formate was

from Sigma-Aldrich (MO, USA). A Milli-Q system (MA, USA) was

used to prepare ultra-pure water (18.2 MW).

Lysophosphatidylcholine (LPC 19:0), Phosphatidylethanolamine

(PE 12:0/13:0), Ceramide (Cer d18:1/17:0), Sphingomyelin (SM

(d18:1/12:0), TG (15:0/15:0/15:0), and Phosphatidylcholine (PC

12:0/13:0) were purchased for use as internal standard (IS)

compounds from Avanti Polar Lipids (AL, USA). Antibodies used

in this study were rabbit anti-acid sphingomyelinase polyclonal

antibody (Absin, Shanghai, China).
2.3 Sample preparation

For untargeted lipidomics analyses, serum (10 mL) and cold

methanol containing IS compounds (125 mL) were mixed for 30 s,

followed by the addition of MTBE (500 µL). Lipids were then

extracted by constantly agitating these samples for 20 min at room

temperature, followed by the addition of water (125 µL), shaking for

30 s, and centrifugation at 16,826×g for 10 min at 4°C. For untargeted

analyses, 200 µL of the resultant supernatant was dried with a

concentrator prior to resuspension in a 100 µL volume of water:

isopropanol: acetonitrile (5:30:65 (v/v/v). These samples were then

agitated for an additional 30 s, followed by centrifugation at 16,826×g

for 5 min at 4°C. The isolated supernatants were then evaluated via

ultra-performance liquid chromatography/time of flight-mass

spectrometry (UHPLC/TOF-MS) as soon as they had been

collected. For targeted lipidomic analyses, a 100 µL volume of the

supernatant prepared above was dried, resuspended in a 200 µL
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volume, and analyzed via UHPLC/MS-MS. A quality control (QC)

serum sample was also generated for further analyses by mixing

together 5 mL of each serum sample. These QC samples were

processed for analysis in the sample manner as individual samples

throughout the duration of our analyses. The QC samples were

injected every 10 injections, and analyzed 10 times (discovery

cohort) and 44 times (validation cohort) between samples to verify

the stability of the LC-MS system respectively.
2.4 Untargeted and targeted UHPLC-MS
lipidomics analyses

An Acquity UPLC BEH C8 column (2.1 × 100 mm, 1.7 mm) was

used for lipid separation using a mobile phase composed of 5 mM

ammonium formate with acetonitrile/water (A, 6:4; v/v) and 5 mM

ammonium formate with isopropanol/acetonitrile (B, 9:1; v/v). Linear

elution gradient settings for separation were: 0–1.0 min, 100% A; 1.0–

2.0 min, 100–70% A; 2.0–12.0 min, 70–30% A; 12.0–12.5 min, 30–5%

A; 12.5–13.0 min, 5–0% A; 13.0–14.0 min, 0% A; 14.0–14.1 min, 0–

100% A; and 14.1–16.0 min, 100% A. The column was maintained at

55°C. An ACQUITY UPLC connected to a XEVO-G2XS quadrupole

time-of-flight (QTOF) mass spectrometer (Waters, Manchester, NH,

USA) in ESI+ mode was used for untargeted lipidomics analyses with

the following settings: desolvation gas at 800 L/h and 400°C; cone gas

at 50 L/h; source temperature at 100°C; capillary and sampling

voltages of 2,000 V and 40 V, respectively. Mass data were acquired

in MSE mode at a ramping collision energy of 10–60 V. Data accuracy

was ensured using a LockSpray™ source, with the (M+H)+ ions of

leucine-enkephalin being set at m/z 556.2771 for the lock mass in ESI

+ mode. Sample profiling data were acquired from 50 - 1,200 Da. A

UHPLC system (Waters Acquity) with a Xevo TQ-S mass

spectrometer and an ESI ionization source was used for targeted

lipidomics analyses conducted using multiple reaction monitoring

(MRM) in positive ion modes.
2.5 Experimental animals and adipose
tissue collection

Goto–Kakizaki (GK) rat is one of the best characterized animal

models of spontaneous T2DM. This model was established by

selectively breeding of normal Wistar rats with signs of impaired

glucose tolerance (57). It displays hyperglycemia, impaired glucose

tolerance, insulin resistance and also defects in insulin secretion. In

most of the GK studies, Wistar rats of outbreed origin are used as

control animals (58). In additition, GK pups become overtly

hyperglycemic for the first time after 3–4weeks of age only (i.e.,

during the weaning period). The occurrence of basal hyperglycemia

and diabetes in the GK rat is therefore preceded by a period of

prediabetes (22-28 days) (59). This study involved 10 T2DMGKmale

rats (12 week); 10 prediabetic GK male rats (3 week) and 10 control

Wistar male rats obtained from Nanjing Junke Biotechnology Co.,

Ltd. (Jiangsu, China). A GLU Assay Kit (KOFA, China) and an
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automatic biochemistry analyzer (Hitachi 7020, Tokyo, Japan) were

used to measure glucose concentration of GK rats. Rats were

anesthetized using pentobarbital sodium (3%, 0.2 ml/100 g) and

sacrificed by abdominal aortic exsanguination. After the adipose

tissues of the rats was collected, snap-frozen in liquid nitrogen, and

transferred to a -80 freezer until analysis. The experiments were

approved by the China Pharmaceutical University Animal Care and

Use Committee.
2.6 Western blotting

The ASM protein expression was analyzed by Western blot. The

adipose tissue were washed twice by phosphate-Buffered Saline (PBS)

and lysed in radio immunoprecipitation assay (RIPA) lysis buffer. The

protein concentrations were determined by the bicinchoninic acid

(BCA) protein assay kit. 30ul proteins were separated by 10% sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and

transferred to polyvinylidene fluoride (PVDF) membranes, and

blocked by immersing the membrane completely in 5% bovine

serum albumin-tris buffered saline tween (BSA-TBST) and

incubating on a horizontal shaker for 1 h. The membranes were

probed with the primary antibodies of ASM (1:1000), overnight at 4°C

followed by incubation with the secondary antibody goat anti rabbit

IgG (H+L) at room temperature for 1 h. glyceraldehyde-3-phosphate

dehydrogenase (GADPH) were used as control protein. The resulting

complexes were visualized using chemoluminescence Western

blotting detection reagents enhanced chemiluminescence (ECL). The

blot was detected by chemiluminescent detection systems with

LumiGlo and Peroxide (1:1, BU). Densitometric analysis of the

images was performed with Image Pro Plus software (v.6.0) (Media

Cybernetics, Inc, MD, USA).
2.7 Statistical analyses

The Waters MarkerLynx software (Waters; Micromass MS

Technologies, Manchester, UK) was utilized to analyze data from

untargeted lipidomics analyses in an effort to identify serum

biomarkers specifically associated with prediabetes and T2DM

patients. Waters Progenesis QI Applications Manager (v2.3) was

utilized for peak finding, filtering, and alignment with the following

data collection parameters: retention time = 0.5-15.5 min; mass = 50-

1,200 Da. SIMCA-P (v13.0) (Umetrics, Umea, Sweden) was used to

conduct multivariate statistical analyses of the resultant data. Partial

least squares discriminant analysis (PLS-DA) was conducted in order

to visualize the global metabolic difference of individuals between the

control, prediabetes and T2DM groups. To validate the PLS-DA

model, permutation tests were performed (n = 200). The Skyline

software (v21.1) (MacCoss Lab; WA, USA) was used for data

acquisition and peak processing for targeted lipidomics analyses.

MetaboAnalyst 5.0 Web service (www.MetaboAnalyst.ca) was used

to normalize raw data for next statistical analyses. Data have a normal

distributed by Kolmogorov-Smirnov test and Quantile-Quantile plots
Frontiers in Endocrinology 04
(Q-Q plots). Independent samples t-tests and ROC curve analyses

were performed using SPSS (v26.0) (IBM, NY, USA) P-value < 0.05

corrected by FDR was used as the cutoff for significance of differential

metabolites. Column diagrams and forest plots were drawn by

GraphPad Prism 9.0 (GraphPad Software Inc., USA). Python was

used to generate heat maps highlighting correlations between putative

biomarkers and specific clinical parameters calculated based upon

Pearson correlation coefficients.
3 Results

3.1 Patient characteristics

In total, 533 participants ultimately met the criteria for

enrollment of this study, of whom 93 were included in a discovery

cohort (control = 35, prediabetes = 31, and T2DM = 27) and 440 were

included in a validation cohort (control = 150, prediabetes = 170, and

T2DM = 120). Patient clinical characteristics are summarized in

Table 1. As expected, patients in the prediabetes and T2DM groups

in both cohorts exhibited higher FBG and TG concentrations relative

to controls. T2DM patients also exhibited a significant reduction in

HDL content relative to control participants (P = 0.01), with a similar

downward trend being observed for prediabetes patients in the

validation cohort (P < 0.001) together with an increase in their TC

levels (P < 0.001). There were no differences among groups with

respect to age, gender, BMI, ALT, or AST, nor were there any

differences in TC or LDL levels among the discovery cohorts.
3.2 Reproducibility of the lipidomic analysis

Base peak chromatograms generated in positive ion mode in an

untargeted lipidomics analysis are shown in Figures 1A–C. To

validate the method being used herein for biomarker detection,

system stability and result reproducibility were assessed by

analyzing pooled QC samples and determining relative standard

deviation (RSD%) values corresponding to the peak area for IS

compounds (Table S1). RSD% values corresponding to the peak

area for IS compounds are 6.86%-27.61%. This approach confirmed

the high reproducibility and stability of these analyses.
3.3 Exploration of distinct lipidomic profiles
associated with prediabetes and T2DM

Next, we sought to explore differences in the serum lipidomic

profiles of control, prediabetes, and T2DM study subjects by using a

PLS-DA model to evaluate the global lipid profiles of these groups as

detected through the untargeted lipidomics approach validated above.

The resultant 2D and 3D score plots achieved satisfactory

classification, revealing that the lipid metabolic state in the serum

of prediabetes and T2DM patients was distinct from that in healthy

control serum (Figures 1D, E). These results suggested that T2DM is
frontiersin.org
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associated with the disruption of endogenous metabolic processes

such that patients exhibit a distinct metabolic fingerprint. Notably, we

also observed substantial separation between prediabetes and T2DM

patient samples in these PLS-DA plots, suggesting that prediabetic

and diabetic individuals also exhibit distinct lipid metabolic profiled.
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R2 Y represents the goodness of fit of the PLS-DA model on the Y-

axis, while Q2 estimates predictive capability (60). The R2 Yand Q2 of

the established PLS-D model were 0.925 and 0.609. A permutation

test (n=200) was additionally used to validate this model, confirming

the goodness of fit and predictive reliability (Figure S1).
DA

B

E

C

FIGURE 1

The BPI chromatograms of samples via the untargeted lipidomics approach in the Control group (A); prediabetes group (B); T2DM group (C). 2D PLS-DA
model score plots for individual serum samples in the control (green), prediabetes (red), and T2DM (blue) groups analyzed via an untargeted lipidomics
approach 3D PCS-DA model score plots (E).
TABLE 1 Baseline patient characteristics in the discovery and validation cohorts.

Discovery Validation

Control
n=35

prediabetes
n=31

T2DM
n=27

P1
value

P2
value

P3
value

Control
n=150

prediabetes
n=170

T2DM
n=120

P1
value

P2
value

P3
value

Females (%) 25.71 35.48 25.92 0.985 0.793 0.490 43.33% 35.88% 30.83% 0.1938 0.0505 0.6206

Age (years)
49.26 ±
12.21

46.29 ±
13.38

47.71 ±
12.74

0.829 0.874 0.576
45.96 ±
9.79

47.91 ± 10.96
49.98 ±
9.95

0.1195 0.2071 0.2044

FBG (mmol/L)
5.31 ±
0.45

6.37 ± 0.19
8.20 ±
2.27

0.00001 0.00001 0.001
5.05 ±
0.51

6.43 ± 0.24
9.54 ±
2.57

0.00001 0.00001 0.00001

BMI (kg/m2)
24.42 ±
2.42

24.65 ± 2.40
25.60 ±
3.30

0.226 0.877 0.478
24.80 ±
2.84

25.44 ± 3.36
25.67 ±
4.32

0.0980 0.0619 0.7773

Total cholesterol
(mmol/L)

4.53 ±
0.28

4.62 ± 0.34
4.85 ±
0.87

0.103 0.943 0.383
4.70 ±
0.46

4.98 ± 0.73
4.77 ±
0.96

0.0003 0.4920 0.1267

Triglyceride
(mmol/L)

1.16 ±
0.25

1.14 ± 0.27
1.59 ±
0.77

0.013 0.821 0.017
1.10 ±
0.28

2.04 ± 1.17
2.07 ±
1.31

0.00001 0.00001 0.9590

HDL-C (mmol/L)
1.45 ±
0.24

1.47 ± 0.25
1.20 ±
0.48

0.045 0.859 0.043
1.43 ±
0.27

1.37 ± 0.27
1.12 ±
0.26

0.0902 0.00001 0.00001

LDL-C (mmol/L)
2.54 ±
0.26

2.66 ± 0.31
2.78 ±
0.72

0.093 0.480 0.434
2.86 ±
0.40

3.01 ± 0.65
3.16 ±
0.78

0.0400 0.0001 0.1867

ALT (U/L)
18.89 ±
5.07

20.00 ± 6.11
24.71 ±
18.86

0.193 0.702 0.493
20.68 ±
6.97

22.87 ± 11.16
23.84 ±
16.56

0.0780 0.0589 0.7886

AST (U/L)
19.54 ±
3.09

18.90 ± 3.87
20.86 ±
11.63

0.637 0.655 0.466
20.54 ±
3.63

20.4 ± 5.40
20.34 ±
9.45

0.7883 0.8071 0.9409
front
Values are given as mean ± SD or number of individuals (%), unless otherwise indicated. P-value; independent t-test and adjusted by FDR, “P1” Control VS Prediabetes, “P2” Control VS T2DM, “P3”
Prediabetes VS T2DM. BMI, body mass index; FBG, fasting blood glucose; HDL-C, high-density lipoprotein cholesterol; LDL-C,low-density lipoprotein cholesterol; ALT, alanine transaminase; AST,
aspartate transaminase; NGT, normal glucose tolerance; IFG, impaired fasting glucose; T2DM, type 2 diabetes mellitus.
Bold values mean P value.
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3.4 Identification of putative prediabetes-
and T2DM- related biomarkers via
untargeted and targeted lipidomics analyses

For untargeted lipidomics analyses, the Progenesis QI software

was used to detect tens of thousands of features in the LC-MS data.

Based on ion fragmentation patterns, accurate compound masses,

published data, and chemical standards, 166 lipids were identified in

these serum samples (Table S2). To screen for metabolites that were

differentially abundant in the serum of prediabetes and T2DM

patients, we next conducted independent sample t-tests with P-

value < 0.05 corrected by FDR. 49 candidate lipids show similar

significant trends in prediabetes and T2DM relative to controls in

untargrted lipidomics analyse (discovery cohort). These differences

were additionally emphasized through heatmaps and clustering

analyses (Figure 2). Based on these results from the discovery

cohort, subsequently, a high selectivity, reproducibility and

sensitivity targeted lipidomics approach including more than 200

lipids of interest was used to assess the serum lipid profiles of patients

in the validation cohort (Table S3). In this analysis, 37 lipids including

LPCs, LPEs, PCs, PEs, SMs, Cers, and TGs were significantly

differentially abundant in samples from the control group and the

prediabetes/T2DM groups (Figure 3). Levels of all of these lipids were

significantly elevated in those with prediabetes/T2DM, suggesting the

dysregulation of the ceramide synthesis, SM metabolism, PC

biosynthesis pathways (Figure 3). By venn diagram (Figure S2), 9

potential biomarkers including LPC 22:6, PC(16:0/20:4), PE(22:6/

16:0), Cer(d18:1/24:0), Cer(d18:1/23:0), Cer(d18:1/22:0), TG(18:1/

18:2/18:2), TG(16:0/16:0/20:3), and TG(18:0/16:0/18:2) (FDR < 0.05

and P < 0.05) were overlapping between 49 candidate lipids

metabolites screened from non-targeted lipidomic data (discovery

cohort) and 37 differential lipids from targeted lipidomic data

(validation cohort), and they show similar significant trends in

prediabetes and T2DM relative to controls (Table 2 and Figure 4).

A one standard deviation change in the levels of these 9 putative

biomarkers was associated with prediabetes and T2DM effect sizes

ranging from odds ratios (ORs) of 1.235 - 8.306 and 1.189 - 11.479,

respectively (Figure 4).
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3.5 Integrated biomarker development
and validation

While no significant differences in SMs levels were observed

among groups in the discovery cohort, levels of SM (d18:2/24:1),

SM (d18:1/24:1), SM (d18:2/23:0), SM (d18:1/19:1), SM (d18:1/19:0),

SM (d16:0/19:0) and SM (d18:0/16:0) trended downwards in

prediabetes and T2DM samples from the validation cohort

(Figure 4). Ceramides and SMs are closely linked through the

sphingomyelinase pathway, and several ceramide levels trended

upward in the prediabetes and T2DM groups in both cohorts.

Sphingomyelinase-regulated Cer/SM balance plays a variety of roles

in cancer, coronary heart disease and neurodegenerative disorders

progression and prevention (16, 61, 62), To investigate whether Cer/

SM can predict prediabetes and T2DM, we have carried out binary

logistic regression and ROC curve analyses for Cer(d18:1/24:0), Cer

(d18:1/23:0), Cer(d18:1/22:0) first. The results show that Cer(d18:1/

24:0) have higher predictive power in prediabetes and T2DM

compared with Cer(d18:1/23:0) and Cer(d18:1/22:0) (Figures S3A,

B). Then we performed binary logistic regression and ROC

curve analyses for the ratio of Cer(d18:1/24:0) to 7 different SM

such as Cer(d18:1/24:0)/SM(d18:2/24:1), Cer(d18:1/24:0)/SM(d18:1/

24:1), Cer(d18:1/24:0)/SM(d18:2/23:0), Cer(d18:1/24:0)/SM(d18:1/

19:1), Cer(d18:1/24:0)/SM(d18:1/19:0), Cer(d18:1/24:0)/SM(d16:0/

19:0) and Cer(d18:1/24:0)/SM(d18:0/16:0). The results show that

Cer(d18:1/24:0)/SM(d18:1/19:0) and Cer(d18:1/24:0)/SM(d18:0/

16:0) have higher predictive power in prediabetes and T2DM

compared with others candidate features (Figures S3C, D). As such,

we selected Cer(d18:1/24:0)/SM(d18:1/19:0) and Cer(d18:1/24:0)/SM

(d18:0/16:0) as candidate features for the development of an

integrated diagnostic biosignature for prediabetes and T2DM. The

resultant integrated potential biomarker model consisted of LPC 22:6,

PC(16:0/20:4), PE(22:6/16:0), Cer(d18:1/24:0)/SM(d18:1/19:0), Cer

(d18:1/24:0)/SM(d18:0/16:0), TG(18:1/18:2/18:2), TG(16:0/16:0/

20:3), and TG(18:0/16:0/18:2), and was assessed through binary

logistic regression and ROC curve analyses. As shown in

Figures 5A, B, the AUC values for this integrated biomarker in

prediabetes and T2DM patients were 0.841 (cutoff: 0.565) and 0.894
FIGURE 2

Metabolites that were significantly differentially abundant among groups in the discovery cohort were arranged in a heatmap, with increased and
decreased metabolites being shown in red and blue, respectively.
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(cutoff: 0.633), respectively. As all of these values were > 0.5, this

indicated that this model is reliable and able to effectively diagnose

prediabetes and T2DM. Pearson correlation analyses were then

performed to assess relationships between these biomarkers and

clinical parameters, revealing the levels of all of these biomarkers to

be positively correlated with patient FBG (Figure 5C). We

additionally found that Cer(d18:1/24:0)/SM(d18:1/19:0) and Cer

(d18:1/24:0)/SM(d18:0/16:0) were significantly negatively correlated

with sex (Figure 5C). PE(22:6/16:0) and TG (18:0/16:0/18:2) levels

were positively correlated with TG. In addition, TG (18:0/16:0/18:2)

level was significantly negatively correlated with LDL level, and PE

(22:6/16:0) level were significantly negatively correlated with HDL.
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3.6 Increased ASM protein expression in
prediabetes and T2DM rats

As shown in Figure 5D, Wistar rats and prediabetic rats had

comparable non-fasting blood glucose, and the non-fasting blood

glucose values of T2DM rats were about >2 times higher compared to

wistar rats. The intensity of individual ASM bands were obtained by

western blot analysis of GK rat adipose tissue. Compared with wistar

rats, the levels of ASM in prediabetic rats (3-week GK rat) and T2DM

rats (12-week GK rat) were significantly increased (p < 0.05)

(Figures 5E, F), which demonstrated the process of diabetes could

affect the changes of ASM content in the patient.
FIGURE 3

Potential prediabetes and T2DM-related serum biomarker networks. Arrows ("↑↓") indicated metabolites that were significantly up- and down-regulated
in prediabetes (pink) and T2DM (blue) patients relative to healthy controls. Metabolites that were significantly altered in the prediabetes group relative to
the T2DM group are also shown in yellow. PLD, phospholipase; PAP, phosphatidic acid phosphatase; phospholipase AZ, PLA2; PEMT,
phosphatidylethanolamine N-methyltransferase.
TABLE 2 Potential serum biomarkers.

Discovery Validation

FDR-adjusted P-value and trend FDR-adjusted P-value

Lipid Control VS
Prediabetes Control VS T2DM Prediabetes VS

T2DM
Control VS
Prediabetes Control VS T2DM Prediabetes VS

T2DM

LPC 22:6 0.0078 (↑) 0.0004 (↑) 0.4031 (-) 0.0007 (↑) 0.00001 (↑) 0.7424 (-)

PC(16:0/20:4) 0.0081 (↑) 0.0181 (↑) 0.8881 (-) 0.0058 (↑) 0.0076 (↑) 0.9945 (-)

PE(22:6/16:0) 0.0069 (↑) 0.0367 (↑) 0.7589 (-) 0.0008 (↑) 0.00001 (↑) 0.2894 (-)

Cer(d18:1/24:0) 0.0130 (↑) 0.0005 (↑) 0.0033 (↑) 0.0004 (↑) 0.00001 (↑) 0.2065 (-)

Cer(d18:1/23:0) 0.0059 (↑) 0.0012 (↑) 0.000001 (↑) 0.0007 (↑) 0.00001 (↑) 0.0422 (↑)

Cer(d18:1/22:0) 0.0296 (↑) 0.0030 (↑) 0.000001 (↑) 0.0006 (↑) 0.00001 (↑) 0.0453 (↑)

TG(18:1/18:2/
18:2)

0.0140 (↑) 0.0314 (↑) 0.6526 (-) 0.00001 (↑) 0.0001 (↑) 0.8134 (-)

TG(16:0/16:0/
20:3)

0.0042 (↑) 0.0087 (↑) 0.6971 (-) 0.00001 (↑) 0.0003 (↑) 0.9209 (-)

TG(18:0/16:0/
18:2)

0.0122 (↑) 0.0054 (↑) 0.5711 (-) 0.00001 (↑) 0.0003 (↑) 0.1559 (-)
P-value corrected by FDR; “↑” means a higher level of metabolites; “↓” means a lower level of metabolites; “–” represents no statistically significant difference Control represents control group;
prediabetes represents prediabetes group; T2DM represents T2DM group.
Bold values mean P value.
frontiersin.org

https://doi.org/10.3389/fendo.2022.1065665
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yang et al. 10.3389/fendo.2022.1065665
4 Discussion

In this study, we employed targeted and untargeted approaches to

identify serum lipid profiles in control, prediabetes, and T2DM

patients via UHPLC-MS and UHPLC-MS/MS. This approach led to

the identification of LPC, PC, PE, Cer, SM, and TG lipids that were

differentially abundant in those with prediabetes/T2DM relative to

control individuals.

Ceramides are the simplest sphingolipid family molecules and are

central to sphingolipid metabolism such that they can impact

important T2DM-related processes such as insulin resistance,

oxidative stress, inflammation, and apoptosis (63, 64). There are

three primary ceramide synthesis pathways (65, 66). The first of

these involved de novo ceramide synthesis within the endoplasmic

reticulum (ER) from L-serine and palmitoyl-CoA via a multi-stage

process (Figure 3) (67, 68). Enhanced de novo ceramide synthesis can

promote protein phosphatase 2A (PPA2) activation, thereby

inhibiting insulin sensitivity and b-cell function through the

inactivation of protein kinase B (Akt) in the insulin-signaling

pathway (69–71). Sphingosine can be used to generate ceramide by

many enzymes through a recycling pathway, such as lysosomal
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ceramidase and ceramide synthetase in the ER (72, 73). Ceramides

can also be synthesized through the hydrolysis of SM and

glycosphingolipids by sphingomyelinase (SMase) within the Golgi.

Through the activity of sphingomyelin synthase (SMS) and

phospholipase (PLD), the phosphocholine portion of PC can be

transferred to the primary hydroxyl group of ceramide to yield

diacylglycerol (DG) and SM, the latter of which is an important

bioactive lipid associated with cellular proliferation, migration, and

survival (74, 75). We did not detect significant differences in SM levels

among groups for serum samples in the discovery cohort. Whereas in

the validation cohort, compared with controls, we observed

significantly lower levels of SM (d18:2/24:1), SM (d18:1/24:1), SM

(d18:2/23:0), SM (d18:1/19:1), SM (d18:1/19:0), SM (d16:0/19:0) and

SM (d18:0/16:0) in prediabetes and T2DM patient serum samples.

This may suggest that the limited number of samples in the discovery

cohort may have yielded false-negative results. We also found that

ceramides including Cer(d18:1/24:0), Cer(d18:1/23:0), and Cer

(d18:1/22:0) were significantly more abundant in prediabetes and

T2DM patients relative to controls in both cohorts. Multiple prior

analyses (76, 77), including the European Prospective Investigation

into Cancer and Nutrition (EPIC)-Potsdam study (78), have found
DA B

E F

C

FIGURE 4

Plot of ORS per one SD increment and 95% Cls of lipids that emerged significant (FDR < 0.05 and P < 0.05) in the discovery and validation cohorts
(A–D); potential serum biomarkers in discovery cohort (E) and validation cohort (F). *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001.
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SM levels to be negatively correlated with T2DM incidence. Similarly,

one large cohort analysis of prediabetic and diabetic individuals found

that odd-chain SMs were negatively correlated with T2DM risk (27),

in line with our findings. We detected significant disruptions in

ceramide and SM homeostasis in prediabetes and T2DM patients.

This may be the result of the increased expression of enzymes

responsible for regulating the conversion between Cer and SM,

such as Smases like acid sphingomyelinase (79),. The results of

western blot analysis of frozen adipose tissue from 3- and 12-week

GK rats also confirmed that ASM is responsible for significant

disruptions in ceramide and sphingomyelin homeostasis in

prediabetes and T2DM patients. Mice in which SM synthase has

been knocked out exhibited reduced SM levels, ceramide

accumulation, and impaired mitochondrial activity resulting in

impaired ATP production, increased reactive oxygen species (ROS)

levels, and decreased glucose-induced insulin secretion, consistent

with our hypothesis (80). This ceramide/SM homeostasis has been

suggested to be a promising target for therapeutic intervention in

multiple pathological contents (81), though whether glucose

supplementation can effectively modulate sphingolipid metabolism

within b cells by enhancing ceramide to SM conversion remains to be

confirmed (82). We ultimately selected Cer(d18:1/24:0)/SM(d18:1/

19:0) [(OR: 2.980; 95% CI:1.874-4.737 in prediabetes) and [(OR:

5.507; 95% CI: 3.233-9.379 in T2DM)] and Cer(d18:1/24:0)/SM

(d18:0/16:0) [(OR: 2.883; 95% CI:1.801-4.614 in prediabetes) and

(OR: 8.308; 95% CI: 4.778-14.445 in T2DM)] as one of components of

an integrated biomarker model capable of predicting prediabetes and

T2DM risk.
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PE synthesis is important in the metabolic processing of lipids in

the muscle tissue, and muscle PE levels may be linked to insulin

resistance (83). Plasma PE levels have been shown to rise in

individuals affected by insulin resistance in population studies (84).

In line with such findings, we observed significant increases in PE

(22:6/16:0) levels in the serum of prediabetes and T2DM patients in

the discovery and verification cohorts. PC is the most common

phospholipid in the body, wherein it is produced both by the

Kennedy pathway and by additional synthetic pathways in the liver

catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT)

(85). Samad et al. (86) reported that individuals with diabetes exhibit

plasma PC levels distinct from those in healthy individuals.

Consistently, we found that PC (16:0/20:4) levels were significantly

altered in prediabetes and T2DM patients in both cohorts.

Phospholipase A2 (PLA2) can catalyze the formation of LPC from

PC (87). LPC is a lipid that serves as an important signaling molecule

in the context of cellular proliferation and invasion, and increase

levels of LPC 22:6 have previously been reported in obese individuals

and those with prediabetes or diabetes (88, 89). The proinflammatory

properties of LPC have also been previously documented, as it can

both drive inflammatory molecule upregulation (90) and increase

vascular endothelial permeability (91). Following PC synthesis

through the additional pathway in the liver, PC and ceramide can

processed by PLD to yield DG and SM. DG in turn gives rise to TG

under the action of acyl-CoA: diacylglycerol acyltransferase (DGAT).

Aberrant PC metabolism may increase levels of TG through the

activation of SREBP-1 and the induction of de novo lipogenesis (92–

94). Levels of TG, in turn, are well-studied as a risk factor linked to
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FIGURE 5

ROC curves of the integrated biomarker in prediabetes group (A), T2DM group (B). Heat map of the Pearson correlation coefficients between potential
biomarkers and clinical parameters (C). Basal plasma glucose in GK and control Wistar rats (D). Representative Western blot gel documents and
summarized data showed the expression of ASM in adipose tissue (E, F). *P < 0.05, **P < 0.01.
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dysregulated glucose metabolism in the general population. Our

Pearson correlation analyses revealed a positive correlation between

plasma TG levels and FBG, with plasma TG (18:1/18:2/18:2), TG

(16:0/16:0/20:3), and TG (18:0/16:0/18:2) levels being significantly

elevated in prediabetes and T2DM patients relative to controls.

T2DM patients inevitably exhibit hyperlipidemia, while individuals

with prediabetes frequently present with higher circulating TG and

free fatty acid (FFA) levels (95), in part owing to impaired lipid

processing within adipose tissue (96). Diabetes-related dyslipidemia is

also linked with a marked increase in cardiovascular risk (97).
5 Conclusions

In this study, we first herein conducted an untargeted lipidomics

analysis of newly diagnosed Chinese prediabetic and T2DM patients

in a discovery cohort, leading to the identification of changing

phospholipid and sphingolipid profiles associated with prediabetes

and T2DM that were confirmed for the first time in a separate

validation cohort via targeted lipidomics analyses. Furthermore,

potential biomarkers were confirmed for the first time in separate

validation cohort via targeted lipidomics analyses. Moreover, the

results confirmed ASM is responsible for significant disruptions in

ceramide and sphingomyelin homeostasis in prediabetic and T2DM.

Finally, this study developing a new integrated biomarker signature

that may better aid in the diagnosis of Chinese prediabetes and

T2DM, and provides a better biological understanding of the

insidious progression to diabetes from a lipid perspective.
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