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Molecular targets in acromegaly

Artak Labadzhyan* and Shlomo Melmed

Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center,
Los Angeles, CA, United States
Molecular therapeutic targets in growth hormone (GH)-secreting adenomas

range from well-characterized surface receptors that recognize approved

drugs, to surface and intracellular markers that are potential candidates for

new drug development. Currently available medical therapies for patients with

acromegaly bind to somatostatin receptors, GH receptor, or dopamine

receptors, and lead to attainment of disease control in most patients. The

degree of control is variable: however, correlates with both disease

aggressiveness and tumor factors that predict treatment response including

somatostatin receptor subtype expression, granulation pattern, kinases and

their receptors, and other markers of proliferation. A better understanding of

the mechanisms underlying these molecular markers and their relationship to

outcomes holds promise for expanding treatment options as well as a more

personalized approach to treating patients with acromegaly.
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Introduction

Acromegaly is a disease of excess growth hormone (GH) and insulin-like growth

factor (IGF)-1 that is most commonly caused by a pituitary somatotroph adenoma and is

associated with increased mortality (1). The pathophysiology of acromegaly, like that of

other pituitary disorders, is an evolving area of research, and particularly with regard to

how it informs identification of molecular therapeutic targets (2). The underlying

pathogenesis likely involves disruption of cell-cycle control, alteration of signaling

pathways, genetic/epigenetic changes, and abnormal hormone production.

Understanding mechanisms of currently known and exploited targets, as well as other

theoretical targets, allows for an intriguing opportunity for a precision approach in

treating acromegaly (3).

Current pharmacological options for patients with acromegaly include somatostatin

receptor ligands (SRL), growth hormone receptor agonist, and dopamine agonists (DA).

These agents are mostly well tolerated, but have adverse events such as injection site

reactions or gastrointestinal distress, as well as psychological/social stressors that

contribute to the treatment burden (4).
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Precision medicine aims to improve patient outcomes

through targeted treatment employing genetic, biomarker,

phenotypic, or psychosocial characteristics unique to each

patient or the disease process (5). Despite challenges inherent

in precision medicine, namely complexity of disease

classification and expanding library of biomarker, molecular

profiling of acromegaly has the potential for determining

optimal drug efficacy, predicting treatment response and

prognosis, and management strategies that will achieve

optimal outcomes.

Here, we describe immunohistochemical, cell surface, and

intracellular factors that together may comprise a subcellular

basis for determining a precision medicine approach to

acromegaly management (Table 1).
Pathophysiology

Differentiation of GH-producing somatotroph cells in the

anterior pituitary is determined by the PIT1 (POU1F1)

transcription factor. Somatotroph adenomas are almost

invariably sporadic, but familial tumors occur in very rare

disorders such as MEN1, Carney complex, or X-LAG

acrogigantism (6). A notable cause of familial isolated pituitary

adenomas is germ-line mutation in the AIP gene (7).
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Tumorigenesis involves dysregulation of cell proliferation and

GH production through transcriptional, hormonal, and other

growth stimulating factors. GH gene transcription and secretion

is mediated by intracellular cAMP, and alterations in cAMP

signaling leads to dysregulated GH production (4). Activating

GNAS (guanine nucleotide binding protein, alpha stimulating

activity polypeptide 1 gene) mutations, present in up to 40% of

sporadic tumors, leads to constitutive cAMP activation and

consequent excess GH production (8). However, classic oncogene

mutations are not encountered in the pathogenesis of acromegaly.

Several other non-oncogenic factors play important

pathogenic roles, including stimulatory signals from central

and peripheral hormones, and disruption of proteins and

kinases that regulate the cell cycle. Peripheral sex steroids and

hypothalamic growth hormone releasing hormone (GHRH), if

dysregulated, may induce GH production through constitutive

cAMP production, as well as promote tumor cell proliferation.

Disruption of cell cycle regulatory factors such as cyclin-

dependent kinases (CDK), CDK inhibitors (e.g., p21, p27), and

pituitary tumor–transforming protein (PTTG) also allow for

pituitary tumor growth (4) (Figure 1).

Cell surface receptors for somatostatin, GHRH, and dopamine

play a less direct role in pathogenesis, but are important mediators

of stimulatory and inhibitory signals, and their balance is required

to maintain normal GH secretory physiology.
TABLE 1 Molecular targets in acromegaly.

Target Localization Function Ligand Clinical Significance Targeted Drugs

SST2 Surface receptor Suppress GH SST/SRL Marker of disease aggressiveness and tumor response Octreotide and lanreotide; pasireotide
to a lesser degree

SST5 Surface receptor Suppress GH SST/SRL Marker of disease aggressiveness and tumor response Pasireotide; octreotide and lanreotide
to a lesser degree

D2R Surface receptor Lower GH DA Limited; marker of DA response Cabergoline and bromocriptine

GHR Surface receptor Induction of IGF-1 GH Limited Pegvisomant, Cimdelirsen (investigational)

E-cadherin Surface protein Cell adhesion Marker of disease aggressiveness and tumor response TBD

b-arrestin Surface protein Receptor modulator GPCR Limited; marker of tumor response TBD

EGFR Surface TK receptor Cell proliferation EGF,
TFG-a

Limited TKIs such as gefitinib, lapatinib

Granulation Secretory granules Marker of disease aggressiveness and tumor response TBD

AIP Intracellular Cell-cycle regulator Marker of disease aggressiveness and tumor response TBD

GNAS Intracellular Cell-cycle regulator Limited TBD

PTTG Intracellular Cell-cycle regulator Limited TBD

ZAC1 Intracellular Transcription factor
Cell proliferation

Marker of disease aggressiveness and tumor response TBD

Ki-67 Nuclear antigen Proliferation marker Marker of disease aggressiveness and tumor response TBD

p21 Intracellular CDK inhibitor
Cell senescence

Marker of disease aggressiveness and tumor response TBD

p27 Intracellular Limited TBD

p16 Intracellular CDK inhibitor Limited TBD

p53 Intracellular Tumor suppression
Cell senescence

Limited TBD
TBD, to be determined.
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Cell surface receptors as
molecular targets

Somatostatin receptors

The hypothalamic-pituitary axis involves the interplay of

tightly regulated hormone action through positive and negative

signaling. Somatotroph GH production is attenuated by

hypothalamic somatostatin, which suppresses timing and

amplitude of GH secretory pulses by binding to somatostatin

receptors (SST) (4), a family of G protein-coupled

transmembrane receptors (GPCR) with five known subtypes

(SST1-5), each with differing binding and hormone modulating

capacity. SST2 and SST5 are most abundantly expressed

receptors on somatotrophs and are the primary targets of

adenoma-directed medical therapy (9, 10).

SST2 is expressed in brain, pituitary, stomach, kidney, and

intestines (11). It signals to suppress mainly GH, and less

compel l ingly thyroid-st imulat ing hormone (TSH),

adrenocorticotrophin, and prolactin (12). The prevalent

expression of SST2 in GH-secreting adenomas (9) makes it a
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prime target for treating acromegaly. The SRLs octreotide and

lanreotide preferentially bind to SST2, thereby suppressing GH

expression (1, 13). Disease control with these agents, however,

can be variable with a reported mean response rate of

approximately 55% (14).

SST5 is primarily expressed in the pituitary but is found as

well in the spleen, intestines, and pancreas (15–17). SST5

regulates GH and TSH (12). Unlike with octreotide and

lanreotide, the SRL pasireotide predominantly targets and

binds with high affinity to SST5. It has shown to be more

efficacious in patients resistant to other SRLs (18, 19), but it is

associated with an increased risk of hyperglycemia, likely due to

the role of SST5 in regulating glucose homeostasis through

paracrine regulation of intestinal GLP-1 (20). Intuitively,

lowering circulating GH also enhances insulin sensitivity

thereby countering some of these hyperglycemic effects, but

the risk remains and potentially limits its use.

Immunohistochemical expression of SST2 and SST5 may

predict treatment outcomes, especially as expression is less

abundant in more aggressive adenomas that are less prone to

treatment responsiveness (21). For example, we showed that SRL
FIGURE 1

Molecular markers and targeted drugs. AIP, aryl hydrocarbon receptor-interacting protein; D2R, dopamine receptor subtype 2; GHR, growth hormone
receptor; GNAS, guanine nucleotide binding protein, alpha stimulating activity polypeptide 1 gene. SST, somatostatin receptor; PTTG, pituitary tumor–
transforming protein; ZAC1, zinc finger regulator of apoptosis and cell cycle arrest. Bolded* denotes the higher/predominant affinity of drug to receptor.
The action of pegvisomant on GHR is mainly peripheral and not in the pituitary. © Giovanna Santoni, CMI. Used by permission.
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treatment efficacy is typically high in patients with low or

intermediate tumor aggressiveness, and these patients show

concordant abundant SST2 expression. By contrast, SST2

expression is lower in patients with more aggressive and

highly unresponsive tumors (21). Others have reported that

response rate to SRL may be as high as 81% in the presence of

SST2 expression compared with no response observed in the

absence of SST2 expression (22, 23). Further, a higher SST5:SST2

ratio correlates with better response to pasireotide and resistance

to octreotide/lanreotide (24–26). Of note, epigenetic factors,

such as the natural antisense transcript SST5-AS, has been

shown to alter SST5 expression, potentially influencing

adenoma behavior and treatment response (27).

Although not routinely evaluated by clinical pathologists,

SST expression may be a valuable molecular marker for

precision-based acromegaly treatment, as decision for repeat

surgery, radiotherapy, or choice of a specific SRL could be better

guided with knowledge of SST2 and SST5 expression.
Growth hormone receptor

Human growth hormone receptor (GHR) is a transmembrane

protein structurally related to a family of cytokine receptors (28,

29). Binding of GH leads to GHR dimerization and activation

through the JAK/STAT pathway, leading to induction of IGF-1

(30). GHR is the target of the peripheral GHR antagonist

pegvisomant, which is highly effective in treating acromegaly

both as monotherapy and in combination with SRL (31, 32). A

novel drug in development, Cimdelirsen (IONIS-GHR-LRx; ISIS

766720), which is an antisense molecule that acts by reducing

GHR synthesis in the liver, has also shown promise in treating

acromegaly (33). Polymorphisms in GHR, such as d3-GHR, has

been studied in acromegaly but correlation with clinical features

or therapeutic outcomes has not been consistent (34).

GHR expression is observed in normal somatotroph cells

and to a lesser degree in somatotroph adenomas (35, 36).

Pegvisomant may in part affect growth hormone production

through direct action on GHR on somatotroph cells without

impacting cell proliferation (37). However, the value of GHR as

either a peripheral or central molecular marker for predicting

treatment response is uncertain.
Dopamine receptors

Dopamine receptors (DR) comprise five GPCR subtypes

numbered D1R through D5R and are present abundantly in the

central nervous system, and peripherally in the pituitary, kidney,

and vasculature (38, 39). D2R is present in two isoforms of equal

activity and distribution, and is the predominant DR found in

normal pituitary as well as in somatotroph and lactotroph

adenomas (25).
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The downstream cellular action of activated DR includes

inhibition of adenylyl cyclase and activation of potassium

channels, leading to inhibitory action of hypothalamic

dopamine on prolactin production (40). In somatotroph

adenomas, dopamine lowers GH production (41). This is

likely the mechanism underlying the modest efficacy of DA

monotherapy in the treatment of mild acromegaly (42) as

expression of DR on somatotroph adenoma may have some

value in predicting clinical response to SRL (25) yet serum

prolactin level does not correlate with GH responses to

cabergoline (42).The very limited value of using D2R as a

therapeutic marker for acromegaly is limited to identifying

patients with mild disease who may respond to DA as

monotherapy or as an adjunct to SRL therapy.
Other cell-surface molecules

E-cadherin

E-cadherin is a transmembrane adhesion protein found on

epithelial cells, and its loss is implicated in invasiveness and

metastasis (43). Its expression has been suggested to be functional

for somatotroph adenoma growth (44), but this association is

modest, likely because other factors that promote cell senescence

(45) prevent low expression of E-cadherin from causing

transformation of pituitary adenomas to malignant tumors.

Decreased E-cadherin expression in somatotroph tumors

correlates with larger size, invasiveness, and response to SRL

treatment (44). Sparsely granulated somatotroph adenomas,

which are more likely to be aggressive (discussed below), also

show lower E-cadherin expression compared to densely

granulated tumors (46, 47). The association between low E-

cadherin expression and poor SRL response seems independent

of SST2 expression but may correlate inversely with SST5

expression (48). Such correlations between histological and cell

surface markers provide an interesting intersection of molecular

markers of tumor aggressiveness. However, direct relationships of

these factors are not known, and they may simply represent the

phenotypic components of more aggressive tumors.
Epidermal growth factor receptor (EGFR)

The EGFR family of tyrosine kinase receptors including

EGFR (ErbB1 and HER1), p185Her2/neu (ErbB2 and HER2),

ErbB3 (HER3) and ErbB4 (HER4), and their activating ligands

including EGF and transforming growth factor-a are expressed

in lacto-somatotroph cells and are potential targets for treatment

(49). EGFR tyrosine kinase inhibitors (TKI) such as gefitinib,

lapatinib, and canertinib have shown promising results in

patients harboring aggressive corticotroph and lactotroph

adenomas (50, 51). Although EGFR and EGF are abundantly
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expressed in somatotroph adenomas, trials evaluating TKI in

treatment of aggressive acromegaly are lacking.
b-Arrestin

b-arrestin binds to GPCR and thereby regulates signaling (52).

Results of studies on the role of b-arrestin in responsiveness of

somatotroph adenomas to therapy has been mixed. In a study of

31 somatotroph adenomas, lower expression of b-arrestin-1
correlated with improved responsiveness to SRL (53), and a

similarly sized study showed an inverse relationship between

low b-arrestin-1/2 and SST2 expression, as well as a more

favorable long-term response to SRL treatment (54). However,

this relationship was not observed in another study of 40 patients,

which showed no correlation of b-arrestin with SST2, SST5, or D2
expression, nor an association between b-arrestin and SRL

response or tumor invasiveness (55). Therefore, the significance

of b-arrestin as a molecular target for acromegaly remains unclear.
Granulation

Somato t roph adenomas a re c l a s s ified in two

immunohistochemical subtypes - sparsely or densely granulated –

with important clinical implications (56). The granulation pattern

refers to the density of intracellular GH secretory granules as seen on

electron microscopy, and is distinguished immunohistochemically

by expression of cytokeratin expression, which is a cytoplasmic

fibrous protein belonging to the family of intermediate filament

proteins comprising the cytoskeleton of the cell (57, 58). As a dense

granulation pattern is seen in normal somatotroph cells, densely

granulated tumors more closely resemble nontumorous cells, while

sparsely granulated tumors with scattered small secretory granules

resemble poorly differentiated cells (59). The clinical outcomes

associated with granulation pattern is generally consistent with

outcomes associated with tumors harboring normal or poorly

differentiated cells. Densely granulated adenomas are smaller at

diagnosis, express higher levels of SST2, and are more responsive

to treatment; therefore, these are less aggressive tumors. Conversely,

sparsely granulated tumors are more likely to be aggressive: they are

larger at diagnosis, show sparsity of SST2 expression, and are less

responsive to treatment (21, 22).
Cell-cycle regulatory factors

Aryl hydrocarbon receptor-interacting
protein (AIP)

Inactivating mutations of the tumor suppressor gene AIP in

pituitary tumors is associated with familial acromegaly syndromes

and is rarely seen in sporadic acromegaly (7). Familial acromegaly
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involving AIP mutation is more aggressive and less responsive to

SRL (60). AIP expression has been associated with dense

granulation (61), and inversely correlates with Ki-67 expression

(62), suggesting a pro-proliferative state.

The mechanism of AIP mutation and tumorigenesis likely

involves alterations in PDE4 phosphodiesterases as well as

defective cAMP signaling. Specific PDE4 isoforms, PDE4A4

and PDE4A8, are under-expressed in normal pituitary and

overexpressed in somatotroph adenomas, suggesting that

disruptions of PDE4-AIP interaction play a role in

tumorigenesis (63). Dysfunction in cAMP signaling through

defective and decreased expression of Gai subunits, which help

regulate AIP mediated cAMP signaling, also plays a key role

(64). The mechanism of interplay between expression of AIP

and cell-surface molecular receptors requires further study and

may yield novel sub-cellular targets for treatment.
GNAS

Mutations in GNAS are present as somatic mutations in up

to 40% of sporadic somatotroph adenomas and as mosaic

mutations in McCune-Albright syndrome, a genetic disorder

characterized by skin and bone manifestations as well as

increased incidence of acromegaly (65). The impact of GNAS

mutation on treatment response is uncertain. Though a meta-

analysis showed a greater GH reduction in response to SRL

treatment in GNAS mutations (66), a more recent study did not

show a significant difference in SRL response and GNAS

mutations (67). Pegvisomant is also an effective treatment

option for acromegaly in patients with MAS (68); however,

whether GNAS mutation influences treatment outcome between

different available therapies is not known.
PTTG

PTTG is a homolog of securin proteins that prevent sister

chromatin separation (69), and regulate the cell cycle through

interaction with p53 (70). Over 70% of somatotroph adenomas

overexpress PTTG, and this expression is an important component

of cell senescence (71). PTTG expression may correlate with

aggressiveness across different pituitary adenoma types (72), but

it’s role as a molecular marker for clinical use in somatotroph

adenoma characterization and targeted treatment warrants

further investigation.
ZAC1

Zinc finger regulator of apoptosis and cell cycle arrest (ZAC1) is

a tumor suppressor that attenuates cell proliferation (73). The

antiproliferative property of SRL therapy may be mediated in part
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through increased ZAC1 gene expression (74), with evidence that

suggests increased AIP expression is the linking mechanism (75).

The lack of difference in ZAC1 expression between densely and

sparsely granulated adenomas implies that ZAC1 does not play a

significant role in tumor aggressiveness (57).
Ki-67

In the2017WHOClassificationofTumorsof thePituitaryGland,

the term or classification of atypical adenoma, which was defined

partly byKi-67 proliferative index, was no longer recommended (76).

However, Ki-67 may still hold value in predicting aggressiveness and

treatment response in somatotroph adenomas.

Most non-aggressive adenomas show a Ki-67 proliferative

index of <3% (21), and low Ki-67 expression has been associated

with more favorable SRL response (67). Additionally, Ki-67

index correlates inversely with cavernous sinus invasion,

surgical cure, and response to medical therapy (77). SRL

treatment may also alter Ki-67 expression as evidenced by

lower adenoma Ki-67 values observed in patients treated

chronically with octreotide (78).
Cyclin-dependent kinase inhibitors

CDK and their inhibitors may serve as markers of

somatotroph adenoma subtypes (4, 79). p21, a CDK inhibitor

that plays a key role in cell senescence, is activated to maintain

the benign nature of somatotroph adenomas (45, 71). Increased

expression of p21 is associated with less aggressive somatotroph

adenomas, likely exerting a dampening effect on cell

proliferation (21). However, its impact in predicting curative

success of surgery may be limited. In a series of 55 patients

undergoing surgical adenoma resection, p21 overexpression did

not correlate with biochemical remission after surgery (80),

likely because the skill and volume of the surgeon, is a

primary predictive factor for surgical success, more so than

any one particular molecular factor (81).

The value of other CDK inhibitors such as p16 and p27 as

molecular drivers in acromegaly are less certain. p16 expression

is low or undetectable in all pituitary adenoma types and does

not correlate with somatotroph tumor aggressiveness (21, 82).

Low or absent p27 expression seems to play an especially

important role in aggressive corticotroph adenomas as well as

malignant pituitary tumors. Although p27 expression is also

lower in somatotroph adenomas, its correlation to tumor

aggressiveness or response in acromegaly is less clear (83).

Despite limitations, CDK inhibitors may serve as compelling

molecular predictors of tumor proliferative growth and as targets

for development of novel drugs that target CDK pathways.
Frontiers in Endocrinology 06
p53

p53-mediated tumor suppression in pituitary pathology acts

through the p53/p21 senescence pathway (71). However, p53 is

not reliable in predicting tumor aggressiveness. Somatotroph

adenoma p53 overexpression has not shown significant

association with tumor invasiveness or response to treatment

(84–86).
Conclusion

The molecular profile of acromegaly affords an array of

potential targets that may predict tumor aggressiveness or

treatment response. Somatostatin receptors are the most well

studied markers, and SST2 and SST5 are the targets of standard

of care SRL treatment, and varying expression levels of these

receptors also reliably predict response to specific types of SRL as

well as overall resistance to treatment. The cell surface receptors

GHR and DA also serve as targets for the highly effective GHR

antagonist pegvisomant and for DA used primarily in an

adjunctive treatment setting, respectively, but there is less

evidence regarding their use as markers of tumor

aggressiveness. Cell-surface molecules and cell-cycle regulatory

factors involved in the complex interplay of cell signaling and

cell cycle regulation in somatotroph tumors, including

E-cadherin, CDK inhibitors, and EGFR TKIs, hold potential as

targets for new therapies in the future.
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27. Pedraza-Arevalo S, Ibáñez-Costa A, Blázquez-Encinas R, Branco MR,
Vázquez-Borrego MC, Herrera-Martı ́nez AD, et al. Epigenetic and post-
transcriptional regulation of somatostatin receptor subtype 5 (SST. Mol Oncol
(2022) 16(3):764–79. doi: 10.1002/1878-0261.13107

28. Leung DW, Spencer SA, Cachianes G, Hammonds RG, Collins C, Henzel
WJ, et al. Growth hormone receptor and serum binding protein: purification,
cloning and expression. Nature (1987) 330(6148):537–43. doi: 10.1038/330537a0

29. Bass SH, Mulkerrin MG, Wells JA. A systematic mutational analysis of
hormone-binding determinants in the human growth hormone receptor. Proc Natl
Acad Sci U S A (1991) 88(10):4498–502. doi: 10.1073/pnas.88.10.4498

30. Cunningham BC, Ultsch M, De Vos AM, Mulkerrin MG, Clauser KR, Wells
JA. Dimerization of the extracellular domain of the human growth hormone
receptor by a single hormone molecule. Science (1991) 254(5033):821–5. doi:
10.1126/science.1948064

31. van der Lely AJ, Hutson RK, Trainer PJ, Besser GM, Barkan AL, Katznelson
L, et al. Long-term treatment of acromegaly with pegvisomant, a growth hormone
receptor antagonist. Lancet (2001) 358(9295):1754–9. doi: 10.1016/S0140-6736(01)
06844-1

32. Bonert V, Mirocha J, Carmichael J, Yuen KCJ, Araki T, Melmed S. Cost-
effectiveness and efficacy of a novel combination regimen in acromegaly:
A prospective, randomized trial. J Clin Endocrinol Metab (2020) 105(9):e3236–
e3245. doi: 10.1210/clinem/dgaa444

33. Bhanot S, Fleseriu M, Geary R, Hu K, Li L, Melmed S, et al. OR27-4 placebo-
controlled and open-label extension study of a novel hepatic-targeted antisense
cimdelirsen (IONIS-GHR-LRx) under investigation in acromegaly patients. J
Endocr Soc (2022) 6(Supplement_1):A526. doi: 10.1210/jendso/bvac150.1095

34. Boguszewski CL, Barbosa EJL, Svensson PA, Johannsson G, Glad CAM.
MECHANISMS IN ENDOCRINOLOGY: Clinical and pharmacogenetic aspects of
the growth hormone receptor polymorphism. Eur J Endocrinol (2017) 177(6):
R309–R21. doi: 10.1530/EJE-17-0549

35. Mertani HC, Pechoux C, Garcia-Caballero T, Waters MJ, Morel G. Cellular
localization of the growth hormone receptor/binding protein in the human anterior
pituitary gland. J Clin Endocrinol Metab (1995) 80(11):3361–7. doi: 10.1210/
jcem.80.11.7593452
frontiersin.org

https://doi.org/10.1038/s41572-019-0071-6
https://doi.org/10.1056/NEJMra1810772
https://doi.org/10.1210/endrev/bnac010
https://doi.org/10.1210/endrev/bnac010
https://doi.org/10.1172/JCI39375
https://doi.org/10.1056/NEJMsb1503104
https://doi.org/10.1210/jc.2015-3653
https://doi.org/10.1126/science.1126100
https://doi.org/10.1210/jc.2012-1274
https://doi.org/10.1210/jcem.78.2.8106629
https://doi.org/10.1210/jcem.79.3.7521350
https://doi.org/10.1073/pnas.89.1.251
https://doi.org/10.1172/JCI119225
https://doi.org/10.1038/s41574-018-0058-5
https://doi.org/10.1210/jc.2013-3757
https://doi.org/10.1006/bbrc.1993.2122
https://doi.org/10.1210/endo.133.6.8243278
https://doi.org/10.1097/00129039-200006000-00007
https://doi.org/10.1210/jc.2008-1919
https://doi.org/10.1016/S2213-8587(14)70169-X
https://doi.org/10.1016/S2213-8587(14)70169-X
https://doi.org/10.1172/jci.insight.143228
https://doi.org/10.1210/jc.2014-2468
https://doi.org/10.1007/s11102-012-0445-1
https://doi.org/10.1210/jc.2007-1986
https://doi.org/10.1210/jc.2017-00135
https://doi.org/10.1210/jc.2008-1826
https://doi.org/10.1530/EJE-15-0832
https://doi.org/10.1002/1878-0261.13107
https://doi.org/10.1038/330537a0
https://doi.org/10.1073/pnas.88.10.4498
https://doi.org/10.1126/science.1948064
https://doi.org/10.1016/S0140-6736(01)06844-1
https://doi.org/10.1016/S0140-6736(01)06844-1
https://doi.org/10.1210/clinem/dgaa444
https://doi.org/10.1210/jendso/bvac150.1095
https://doi.org/10.1530/EJE-17-0549
https://doi.org/10.1210/jcem.80.11.7593452
https://doi.org/10.1210/jcem.80.11.7593452
https://doi.org/10.3389/fendo.2022.1068061
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Labadzhyan and Melmed 10.3389/fendo.2022.1068061
36. Kola B, Korbonits M, Diaz-Cano S, Kaltsas G, Morris DG, Jordan S, et al.
Reduced expression of the growth hormone and type 1 insulin-like growth factor
receptors in human somatotroph tumours and an analysis of possible mutations of
the growth hormone receptor. Clin Endocrinol (Oxf) (2003) 59(3):328–38. doi:
10.1046/j.1365-2265.2003.01851.x

37. Cuny T, Zeiller C, Bidlingmaier M, Défilles C, Roche C, Blanchard MP, et al.
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