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Exploring the common gene
signatures and pathogeneses of
obesity with Alzheimer’s disease
via transcriptome data

Ting Li †, Jingru Qu †, Chaofei Xu, Ting Fang, Bei Sun*

and Liming Chen*

NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases,
Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University,
Tianjin, China
Background: Obesity is a complex condition that influences several organ

systems and physiologic systems. Obesity (OB) is closely linked to Alzheimer’s

disease (AD). However, the interrelationship between them remains unclear. The

purpose of this study is to explore the key genes and potential molecular

mechanisms in obesity and AD.

Methods: Themicroarray data for OB and ADwere downloaded from the Gene

Expression Omnibus (GEO) database. Weighted gene correlation network

analysis (WGCNA) was used to delineate the co-expression modules related

to OB and AD. The shared genes existing in obesity and AD were identified

through biological process analyses using the DAVID website, which then

constructed the Protein–Protein Interaction (PPI) Network and selected the

hub genes by Cytoscape. The results were validated in other microarray data by

differential gene analysis. Moreover, the hub gene expressions were further

determined in mice by qPCR.

Results: The WGCNA identifies five modules and four modules as significant

modules with OB and AD, respectively. Functional analysis of shared genes

emphasized that inflammation response and mitochondrial functionality were

common features in the pathophysiology of OB and AD. The results of

differential gene analysis in other microarray data were extremely similar to

them. Then six important hub genes were selected and identified using

cytoHubba, including MMP9, PECAM1, C3AR1, IL1R1, PPARGC1a, and COQ3.

Finally, we validated the hub gene expressions via qPCR.

Conclusions: Our work revealed the high inflammation/immune response

and mitochondrial impairment in OB patients, which might be a crucial
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susceptibility factor for AD. Meanwhile, we identified novel gene candidates

such as MMP9, PECAM1, C3AR1, IL1R1, PPARGC1a, and COQ3 that could be

used as biomarkers or potential therapeutic targets for OB with AD.
KEYWORDS

obesity, Alzheimer’s Disease, hub genes, weighted gene correlation network analysis
(WGCNA), differential gene analysis
Introduction

Obesity is one of the most serious global public health

problems. According to the World Health Organization’s (WHO)

estimation, 2 billion adults worldwide are overweight or obese, of

which more than 650 million are obese (1). At the current pace, an

estimated 1 billion people globally, including one in five women and

one in seven men, will be living with obesity by 2030 (2). Obesity is

defined as an imbalance between energy intake and expenditure

that leads to fat accumulation in the adipose and non-adipose

tissues. Obesity is the primary risk factor for most chronic diseases,

including type 2 diabetes mellitus (T2DM), dementia, liver diseases,

cardiovascular diseases, numerous cancers, and so on (3–8). There

is evidence that obesity could increase susceptibility to dementia (9–

11). Somemeta-analysis studies demonstrated that obese patients as

well as those with other metabolic disorders, had a two-fold risk of

developing Alzheimer’s disease (AD) (12). It is generally accepted

that obesity is a state of chronic inflammation, resulting in

hypertrophic adipocyte secretion of proinflammatory cytokines

and adipokines that have peripheral and brain effects (13).

Meanwhile, neuroinflammation is widely recognized as a

hallmark of neurodegenerative diseases such as AD (14, 15).

Alternatively, obesity is closely associated with the development

of insulin resistance and mitochondrial dysfunction which is also

considered a critical influential factor on cognitive function (16, 17).

However, the molecular mechanisms linking obesity to AD remain

unknown. The influence of lipid accumulation on the

neurodegenerative process has not been well determined.

Therefore, more studies need to be conducted.

With the rapid development of sequencing technology and

bioinformatics, researchers can measure the expression of

thousands of genes in various diseases. This contributes to a

more thorough understanding of the pathogenesis of diseases at

the genetic level. Weighted gene co-expression network analysis

(WGCNA) was developed by Zhang and Horvath in 2005.

Currently, WGCNA is widely used for describing the

correlation patterns among genes across microarray or RNA-

seq samples (18, 19). We attempted to identify gene clusters of

correlating and connected shared genes in obesity and AD by
02
WGCNA. This method has been successfully applied to identify

molecular mechanisms and the risk genes associated with the

phenotypes of multiple diseases.

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/

geo/) mining identifies co-expression modules in obesity and AD. Our

research demonstrated that inflammation/immune-related and

mitochondrial-related genes were presented in modules highly related

to obesity and AD. Inflammation pathways and mitochondrial

functionality might play an extraordinary role in obesity and AD.

The results were confirmed in other datasets by differential gene

expression analysis. Furthermore, we verified gene expression in

animals. As far as we know, this might be the first study to explore

the shared gene signatures between obesity and AD using a systems

biology approach.
Materials and methods

Data source

We used the key term “obesity” or “Alzheimer’s disease”

to search OB and AD mRNA microarray datasets in the GEO

database. The obtained datasets were filtered by the

following criteria. First, the microarray datasets should

consist of control and case groups. Second, all specimens

included should be restricted to Homo sapiens. Third, these

datasets must provide processed or raw data that could be

reanalyzed. Fourth, the datasets for performing WGCNA

analysis should not have fewer than 10 samples in each

group. Finally, GEO datasets GSE151839, GSE118553,

GSE44000, and GSE122063 were selected for further study.

The data were preprocessed using the Limma package,

involving background correction, normalization, and

expression calculation. According to the annotation

document of the corresponding platforms, the probe

names were replaced with official gene symbols. The

average expression level of a gene was retained if the gene

corresponded to multiple probes. At last, gene expression

matrix files were obtained for subsequent analyses.
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Weighted gene co-expression
network analysis

Weighted gene co-expression network analysis (WGCNA)

is an algorithm that can cluster genes and construct co-

expressed gene modules. It is capable of exploring the

relationship between gene networks and diseases. Therefore,

we used the WGCNA package to build the gene co-expression

networks of OB and AD. Before analysis, the Hclust function

and goodSamplesGenes were performed to exclude missing and

outlier samples. At first, both Pearson’s correlation matrices and

the average linkage method were performed for all pair-wise

genes. Then, a weighted adjacency matrix was constructed with

the formula A_mn = |C_mn|b (C_mn = Pearson’s correlation

between Gene_m and Gene_n; A_mn= adjacency between

Gene_m and Gene_n). Next, the adjacency was transformed

into a topological overlap matrix (TOM) and the corresponding

dissimilarity (1−TOM) which could estimate its connectivity

property in the network. Average linkage hierarchical clustering

was used to conduct a clustering dendrogram of the TOM

matrix, and similar gene expressions were divided into

different modules.

Furthermore, the correlation between the phenotype and

each module was assessed. Finally, the Eigengene network

was visualized.
Identification of significant modules and
functional annotation

We selected highly correlated OB and AD modules. And we

uploaded the list of all genes in the OB and AD significant

modules to DAVID (https://david.ncifcrf.gov/summary.jsp) for

functional annotation analysis.
Protein–protein interaction (PPI)
network construction

The STRING database (https://string-db.org/) was used to

construct a PPI network for analyzing protein interactions. The

PPI pairs with a confidence score >0.4 were considered statistically

significant, and the visualization of the PPI network of these genes

was achieved by Cytoscape (version 3.9.1).
Selection and analysis of hub genes

The hub genes were predicted using the CytoHubba. Three

algorithms (MCC, MNC, and Degree) were performed to
Frontiers in Endocrinology 03
evaluate and select the hub genes. Subsequently, we

constructed an interaction network of these hub genes using

GeneMANIA (http://www.genemania.org/), which was reliable

for discovering functionally similar genes and identifying

internal relations between genes.
DEGs and functional enrichment analysis

The R package “limma” was used to identify the DEGs

between the control group and the disease group in the

GSE44000 and GSE122063 datasets, respectively. The

threshold of DEGs was set as p-value <0.05 and |logFC (fold

change) | ≥0.58. Then the function and pathway of DEGs were

analyzed by Gene Ontology (GO) and KEGG pathway by the R

package “clusterProfiler”. The common DEGs in OB and AD

were obtained using Venn.
Animals

Eight-week-old male db/db mice, male littermate db/m mice

(purchased from GemPharmatech, China), five-month-old male

APP/PS1 transgenic mice, and male C57BL/6J mice (purchased

from Si Pei Fu, China) were maintained at room temperature

(20–24°C) and fed with a standard chow diet ad libitum in

environmentally controlled animal facilities at the Tianjin Key

Laboratory of Metabolic Diseases. Each group contained six

mice. After being fed for five months, body weight was

measured, and blood samples of db/db and db/m mice were

collected. All mice were sacrificed by exsanguination under

anesthesia with inhaled 5% isoflurane in room air. All animal

procedures were approved by the Laboratory Animal Ethical

Committee, Tianjin Medical University Chu Hsien-I

Memorial Hospital.
Morris water maze (MWM) test

The Morris water maze test was conducted to evaluate APP/

PS1 mouse learning and memory as cognitive functions. Briefly,

the MWM test was conducted in a black pool with water and a

hidden platform. The pool was covered with black curtains to

hide room cues and divided into the northeast, northwest,

southeast, and southwest quadrants. During the orientation

navigation test with four trials per day, the mice were

continuously trained for 5 days. Each trial was terminated

when the mice found the hidden platform, or after 60 s. The

escape latency time (the time spent to find the platform) and the

swim path were recorded by a camera above the task. At the end

of the fifth day, the mice swam for 60 s to search for the platform
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after the removal of the hidden platform. The number of mice

crossing the platform area and the time spent in the target

quadrant were measured using the S-MART program

(TECHMAN, Chengdu, China) to measure cognitive function.
Quantitative RT‐qPCR analysis

Total RNA was extracted from subcutaneous adipose and

cortex tissues separately using TRIzol reagent (Ambion). Then,

complementary DNA (cDNA) was synthesized using the reverse

transcription kit (TRAN, AT301-03) via the manufacturer’s

protocol at 42°C for 15 min and 85°C for 5 s. Subsequently,

messenger RNA (mRNA) levels were assessed by performing

qRT-PCR using a SYBR Green PCR kit (TRAN, AQ602-24) on a

CFX96 real-time PCR system (Bio-Rad, United States). All

primer sequences were synthesized by Tsingke Biotechnology

(Beijing, China). The primer sequences are shown in the

Supplemental material.
Statistical analysis

Statistical analyses were performed with Prism 8.0 software

(GraphPad, La Jolla, CA, United States). All data were presented

as the mean ± standard error of the mean (SEM).

Comparisons between two groups were analyzed by one-way

ANOVA followed by the Tukey post-test. Statistical significance

was accepted at p <0.05.
Results

GEO information

In the present study, four GEO datasets (GSE151839,

GSE118553, GSE44000, and GSE122063) were loaded. The

information from the four datasets is summarized in Table 1.

For GSE151839 and GSE118553, we constructed a gene

coexpression network based on WGCNA. GSE44000 and

GSE122063 were applied to validate the differentially expressed

genes (DEGs) analysis.
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Identification of critical modules in OB
and AD

A total of 15 modules were detected in GSE151839 according

to the WGCNA and labeled with a unique color. To assess the

correlation between modules and OB, a heat map was drawn

about MEs and sample traits using the Pearson correlation

coefficient (Figures 1A, B). The results showed that five

modules were significantly associated with OB and were

selected as OB-related modules (pink module: r = 0.78, p =

5.9e−5; salmon module: r = 0.66, p = 1.4e−3; gray60: r = 0.58, p =

6.9e−3; blue module: r = −0.82, p = 8.8e−6; midnightblue

module: r = −0.77, p = 7.9e−5). Three modules (the pink,

salmon, and gray60 modules) were positively related to OB,

while the other two modules (the blue and midnightblue

modules) were negatively related to OB. Likewise, a total of 14

modules were identified in GSE118553. Four modules were

closely correlated with AD and were selected as AD-related

modules (blue module: r = −0.51, p = 1.0e−6; turquoise module:

r = −0.54, p = 1.4e−7; cyan: r = −0.59, p = 3.5e−9; lightgreen

module: r = 0.59, p = 3.3e−9). Lightgreen module was the only

one positively related to AD. Three modules (the blue, turquoise,

and cyan modules) were negatively related to AD (Figures 1C,

D). Then the above modules were remained for further analysis.
Function annotation of the
critical modules

Next, we investigated the biological function and pathways of

genes from critical modules and their correlation with OB and

AD, respectively by GO analysis. For the OB database, Figure 2A

shows that genes from positive OB-related modules were enriched

in inflammatory/immune response, keratinization, and synapse

assembly, respectively. As shown in Figure 2B, genes from

negative OB-related modules were related to fatty acid beta-

oxidation, mitochondria, and RNA polymerase II, respectively.

These results illustrated that OB was linked to an inflammatory/

immune response and mitochondrial dysfunction.

Regarding the AD database, Figure 2C reveals that genes

from positive AD-related modules were involved in the

processes of the inflammatory response, including cell–cell

adhesion and cell migration. Figure 2D indicates that genes
TABLE 1 Summary of those four GEO datasets involving OB and AD patients.

ID GSE number Platform Samples Source types Disease

1 GSE151839 GPL570 10 patients and 10 controls Subcutaneous adipose tissue OB

2 GSE118553 GPL10558 52 patients and 27 controls Cortex tissue AD

3 GSE44000 GPL6480 7 patients and 7 controls Subcutaneous adipose tissue OB

4 GSE122063 GPL16699 12 patients and 11 controls Cortex tissue AD
front
iersin.org

https://doi.org/10.3389/fendo.2022.1072955
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2022.1072955
from negative AD-related modules were enriched in the G-

protein-coupled receptor signaling pathway, ion transport-

related, and chemical synaptic transmission, respectively.

However, mitochondria are fundamental to ion transport and

synaptic transmission. Previous studies reported that

mitochondrial dysfunction was believed to be an important

contributor to the pathogenesis of AD (20, 21). These results

demonstrated that AD was related to inflammation, ion

transport dysfunction, and synaptic dysfunction.
The common gene functional annotation
in OB and AD

There were 66 genes and 848 genes shared in positive and

negative related modules of OB and AD, respectively, which

were named gene sets 1 (GS1)-UP (Figure 3A) and GS1-DOWN

(Figure 3C) and strongly linked to the pathogenesis of OB and

AD. To understand the potential effects of GS1, we conducted
Frontiers in Endocrinology 05
GO analysis. As for GS1-UP, the results showed that the

biological processes (BP) changed in the positive regulation of

angiogenesis and inflammatory-related processes (inflammatory

response, defense response to Gram-negative bacteria, cell death,

and regulation of osteoclast differentiation). Cell component

(CC) was mainly associated with the cell’s outer membrane

(extracellular region, plasma membrane, extracellular space,

membrane raft, and extracellular matrix). In terms of

mo l e cu l a r func t i on s (MF) , on l y th r e e pa thways

(transmembrane receptor activity, collagen protein binding,

and diacylglycerol binding) were significantly enriched (p-

value <0.05) (Figure 3B). Regarding GS1-DOWN, changes in

BP are mainly associated with the mitotic spindle assembly

checkpoint, the triglyceride biosynthetic process, the cellular

response to tumor necrosis factor, vesicle fusion, and

gluconeogenesis. These changes in CC were notably focused

on enrichment of the mitochondrion (mitochondrial matrix,

mitochondrial large ribosomal subunit, and mitochondrial inner

membrane) and microtubule. In the MF section, GS1-DOWN
B

C

D

A

FIGURE 1

Weighted gene co-expression network analysis (WGCNA). (A) The Gene clustering tree (dendrogram) in OB. (B) Module–trait relationships in
OB. Each cell contains the corresponding correlation and p-value. (C) The Gene clustering tree (dendrogram) in AD. (D) Module–trait
relationships in AD. Each cell contains the corresponding correlation and p-value. OB, obesity; AD, Alzheimer’s disease.
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was principally enriched in receptor activity (SNAP receptor

activity) and enzymatic activity (NAD+ activity, transferase

activity, and oxidoreductase activity) (Figure 3D).

Taken together, inflammation and mitochondrial

dysfunction may be shared pathologies in obesity and

AD patients.

PPI network establishment and analysis of
hub genes

The PPI network of genes from GS1-UP with a confidence

score >0.4 was constructed to represent protein interactions

through STRING and Cytoscape. There were 26 nodes and 26

edges (Figure 4A). Then hub genes were calculated via cytoHubba,

including C3AR1, SLAMF8, ABCG2, ANXA5, CD163, IL1R1,

MMP9, IL6R, PECAM1, and KCNN3. Next, the GeneMANIA

database was used to analyze the co-expression network and

related functions of these genes. These genes showed a network

with a co-expression of 93.5% and a co-localization of 4.32%. The

function of these genes is mainly involved in immunity and

inflammation, particularly the neuroinflammatory response

(Figure 4B). Similarly, the PPI network of genes in GS1-DOWN

was established, which contained 639 nodes and 1,463 edges and

selected hub genes, including PPARGC1a, DGAT1, CPT2,
COQ3, TNF, PCK1, APOB, ACSL1, GPT, and IRS1

(Figure 4C). Then the GeneMANIA database showed that the
Frontiers in Endocrinology 06
network of hub genes had a co-expression of 74.52% and a co-

localization of 17.1%. These hub genes were associated with

metabolic and ATP processes (Figure 4D). These results

emphasized the important role of inflammation and immune

and metabolic pathways in these two diseases.
Validation of genes in OB and AD

To validate our results, we selected two other datasets,

GSE44000 and GSE122063, to analyze differential genes. For

GSE44000, we obtained 3,178 DEGs, including 1,382 upregulated

genes and 1,796 downregulated genes. In GSE122063, we obtained

3,209 DEGs, including 1,217 upregulated genes and 1,992

downregulated genes. There were 220 common upregulated genes

and 210 common downregulated genes that overlapped, which

were respectively defined as gene sets 2 (GS2)-UP and GS2-DOWN

(Figures 5A, D). For GS2-UP, GO CC analysis was mainly enriched

in plasmamembrane, cell surface, and an integral component of the

plasma membrane (Figure 5B). The major KEGG pathways were

FCgR-mediated phagocytosis, osteoclast differentiation, and

leukocyte transendothelial migration (Figure 5C). For GS2-

DOWN, GO CC results showed these genes were chiefly involved

in the mitochondrion, mitochondrial matrix, and mitochondrial

inner membrane (Figure 5E). The KEGG analysis showed that these
B

C D

A

FIGURE 2

GO enrichment analysis of the modular genes. (A) The GO biological process analyses of three positive OB-related modules. (B) The GO
biological process analyses of two negative OB-related modules. (C) The GO biological process analyses of one positive AD-related modules.
(D) The GO biological process analyses of three negative AD-related modules. OB, obesity; AD, Alzheimer’s disease; GO, gene ontology.
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genes were primarily related to metabolic pathways, pyruvate

metabolism, and the citrate cycle (Figure 5F). These results were

highly consistent with the results in Figure 3.

Then, we found six overlapped genes in hub genes from GS1

and GS2, which could be divided into two categories: upregulated

hub genes including MMP9 (Matrix Metallopeptidase 9),

PECAM1 (platelet endothelial cell adhesion molecule-1), C3AR1

(Complement C3a Receptor 1), and IL1R1 (IL-1 receptor type 1),

and downregulated hub genes PPARGC1a (PPARG Coactivator

1 Alpha) and COQ3 (Coenzyme Q3, Methyltransferase).
Validation of candidate targets in
animal models

We next verified the seven mentioned genes, respectively, in

AD and OB animal models. Regarding the AD animal model,
Frontiers in Endocrinology 07
results from the MWM demonstrated that learning and memory

ability were significantly decreased in the AD animal model as

compared with that in the control mice on the training and

testing days. The AD mice had a reduction period to stay in the

quadrant where the platform was located and declined the

number of times that mice crossed the platform (Figures 6A–

E). OB mice developed significant obesity in comparison with

wild-type (WT) mice (Figure 6F).

Finally, we performed quantitative RT-qPCR of these genes

both in OB and ADmice. Our results showed that the expression

levels of Mmp9, Pecam1, C3ar1, and Il1r1 in AD mice were

significantly higher than those in control mice (Figure 6G). And

the expressions of these genes in OB mice were also higher than

those in WT mice (Figure 6H). About the expressions of

Ppargc1a and Coq3, OB and AD mice showed significantly

lower levels accompanied by WT and control mice

(Figures 6G, H).
B

C

D

A

FIGURE 3

Venn diagram and GO enrichment analysis. (A) The shared genes between positive OB related and AD related modules. (B) GO analysis of
shared genes between positive OB related and AD related modules. (C) The shared genes between negative OB related and AD related
modules. (D) GO analysis of shared genes between negative OB related and AD related modules. OB, obesity; AD, Alzheimer’s disease.
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Discussion

Various studies have suggested that mid-life obesity is a risk

factor for later-life dementia, Parkinson’s disease, and

Alzheimer’s disease (9, 22, 23). Particularly, obesity increases

the risk of Alzheimer’s disease by 35% (24). Obesity and

Alzheimer’s disease might have overlapping pathogenic

pathways, particularly inflammation and mitochondrial

dysfunction. However, it is still unclear how peripheral

mitochondrial dysfunction and inflammation lead to brain

mitochondrial dysfunction and neuroinflammation.

On the one hand, in obesity conditions, the hypertrophic

adipose tissue secretes several pro-inflammatory adipokines,

generating low-grade chronic inflammation (25). These

processes affect not only adipose tissue but also put the brain

in a low-grade chronic inflammatory state with activation of

endothelial cells and glial cells (26, 27). In addition, recent

evidence indicates that inflammation is recognized as a key

component in Alzheimer’s disease pathogenesis (28). The pro-

inflammatory cytokines can cross and disrupt the blood–brain

barrier (BBB) (29–32). Central inflammation is exacerbated by
Frontiers in Endocrinology 08
a compromised BBB, contributing to disease progression in

Alzheimer’s disease (33). In our study, we identified four hub

genes (MMP9, PECAM1, C3AR1, and IL1R1) that were

upregulated in all datasets. These genes are almost associated

with inflammation and immune. Among these, MMP9 is

involved in complications of obesity or metabolic syndrome

through the breakdown of extracellular matrix (ECM)

molecules (34). MMP9 may cause severe BBB disruption,

resulting in enhanced inflammatory diseases of the central

nervous system (35). Next, expression of Pecam1 was

significantly upregulated and correlated strongly with body

weight in diet-induced obese (DIO) mice (36). PECAM1 was

also shown to be involved in the pathogenesis of Alzheimer’s

disease via promoting neuroinflammation (37). Third,

overexpressing C3aR could exacerbate obesity and other

metabolic dysfunctions (38). The heightened C3a/C3aR

signaling through endothelial cells promoted a series of

inflammatory reactions, and BBB dysfunction contributes to

overall neuroinflammation in aging and neurodegenerative

disease (39). Fourth, IL-1R1 regulates the inflammatory

response through agonistic and antagonistic modulation of
B

C

D

A

FIGURE 4

PPI network and co-expression network of hub genes. (A) PPI network diagram of GS1-UP. (B) GeneMANIA analysis of hub genes and their co-
expression genes in GS1-UP. (C) PPI network diagram of GS1-DOWN. (D) GeneMANIA analysis of hub genes and their co-expression genes in
GS1-DOWN. GS1, gene set 1.
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cytokine activity. The IL-1 inflammatory cytokine is closely

related to rheumatoid arthritis, type 2 diabetes mellitus,

obesity, cancer, and neurodegenerative diseases (40). By

further verification, we found that four hub genes were

highly expressed both in the mice model of obesity and

Alzheimer’s disease. Overall, inflammation may play the role

of a bridge between obesity and Alzheimer’s disease, and the

four hub genes above (MMP9, PECAM1, C3AR1, and IL1R1)

are critical to this.

On the other hand, mitochondrial dysfunction has been

observed in AD as well as obese individuals (41, 42).

Mitochondrial morphological changes in presynaptic neurons

impair synaptic homeostasis and may, therefore, lead to

neurodegeneration (43). Obesity consistently results in

mitochondrial dysfunction (44). Meanwhile, the mitochondrial

impairment of obesity is able to stimulate the production of

reactive ROS further to promote inflammation, thereby

accelerating Alzheimer’s disease progression (45). We selected
Frontiers in Endocrinology 09
two hub genes (PPARGC1a and COQ3) that were

downregulated in all datasets and were closely related to

mitochondrial function. Downregulation of PPARGC1a
impairs mitochondrial biogenesis and oxidative metabolism in

obesity (46). PPARGC1a expression has been reported to be

altered in neurodegenerative disorders, leading to mitochondrial

defects and increased ROS levels; increasing its levels results in

reductions in Alzheimer’s disease pathology and improvements

in behavior (47). COQ3 is thus far unavailable in obesity and

AD. COQ3 is a critical component of the electron transport

pathways of both eukaryotes and prokaryotes, which are in the

mitochondria’s inner membrane. Thus, obesity leads, at least in

part, to the onset of AD by compromising mitochondrial

function, while PPARGC1a and COQ3 play key roles in

this process.

In conclusion, we illustrated the possible mechanism of AD

secondary to OB via novel bioinformatic tools and approaches.

Meanwhile, we revealed that the increased inflammation/
B
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F

A

FIGURE 5

Venn diagram and enrichment analysis of the common DEGs. (A) The Venn diagram of the upregulated genes in GSE44000 and GSE122063. (B)
The GO biological process analyses of common-upregulated genes. (C) The KEGG pathway of common-upregulated genes. (D) The Venn
diagram of the downregulated genes in GSE44000 and GSE122063. (E) The GO biological process analyses of common-downregulated genes.
(F) The KEGG pathway of common-downregulated genes. GO, gene ontology; DEGs, differentially expressed genes.
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immune response and mitochondrial dysfunction in OB might

be an essential susceptible factor for AD and identified novel

gene candidates (MMP9, PECAM1, C3AR1, IL1R1,

PPARGC1a, and COQ3) who could be used as biomarkers or

as potential therapeutic targets.
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FIGURE 6

Confirmation of the different expression of candidate targets in animal models. (A–E) AD mice were subjected to hippocampal-dependent
cognitive testing using the MWM. Data in (A, B) show the MWM training and data in (C, D) show the MWM testing. Data in (E) show mice
swimming speeds. (F) Weight in in WT and OB mice. (G) The expressions of Mmp9, Pecam1, C3ar1, Il1r1, Ppargc1a, and Coq3 were analyzed by
qPCR analysis in cortex tissues from AD and NC mice. (H) The expressions of Mmp9, Pecam1, C3ar1, Il1r1, Ppargc1a, and Coq3 were analyzed
by qPCR analysis in subcutaneous adipose tissues from OB and WT mice. MWM, Morris water maze; WT, wild type; OB, obesity; NC, negative
control; AD, Alzheimer’s disease. *p <0.05, **p <0.01, ***p <0.001.
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