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Introduction: Endometrial cancer is currently one of the three most common

female reproductive cancers, which seriously threatens women’s lives and

health. Hypoxia disrupts the tumor microenvironment, thereby affecting tumor

progression and drug resistance.

Methods: We established hypoxia-related gene model to predict patient

prognosis and 1-, 3-, and 5-year overall survival rates. Then, the expression

level of hypoxia-related genes and survival data were extracted for

comprehensive analysis by Cox regression analysis, and the model was

established.

Results:We analyzed the survival and prognosis of patients in the high and low-

risk groups. The Kaplan-Meier curve showed that the low-risk group is

associated with a better survival rate. The 1-, 3-, and 5-year AUC values of

the model were 0.680, 0.698, and 0.687, respectively. Finally, we found that

LAG3 may be a potential immune checkpoint for endometrial cancer.

Conclusion: We found four hypoxia-related genes (ANXA2, AKAP12, NR3C1,

and GPI) associated with prognosis. The hypoxia-related gene model can also

predict prognosis and tumor microenvironment in endometrial cancer.
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Introduction

Endometrial cancer is the most prevalent malignant tumor

in gynecology (1). In China, endometrial cancer has now become

the second-most frequent gynecological cancer (2, 3). There

were about 69,000 new cases of endometrial cancer diagnosed

and 16,000 deaths in 2015, with an annual growth rate of 3.7

percent (2, 3). It is the most common cancer of the female

reproductive organs and the second most malignant tumor of

the female reproductive system in China, after cervical cancer

(1). Despite tremendous improvements in surgical techniques

and medical treatment, the survival rate of Uterine Corpus

Endometrial Carcinoma (UCEC) patients has not improved

efficiently. However, a growing number of studies have found

that the high mortality and poor prognosis of UCEC are linked

to the tumor microenvironment (TME) (4).

Drug resistance is the primary cause of treatment failure in

end-stage cancer (5). The tumor microenvironment is one of the

primary causes of drug resistance (6). Recent research has also

shown that TME is dominated by hypoxia in cancers (6–8).

Uncontrolled multiplication of tumors reduces oxygen

availability and leads to inadequate blood supply (9). Hypoxia

is a common microenvironmental trait in nearly all solid tumors

(10). Abnormal angiogenesis, desmoplasia, and inflammation

are all promoted by an aberrant vasculature and a hypoxic

microenvironment, all of which contribute to tumor growth

and therapeutic resistance (10).

The extremely hypoxic environment causes significant

changes in the tissues and cells in the TME (11). Hypoxia

affects basic mechanisms of pre-mRNA splicing, including

miRNA synthesis and maturation, splicing factor expression

and activity, spliceosome assembly and intracellular localization,

as well as mRNA structure and elongation rate (12). Hypoxia, as

a whole, stimulates the growth of immunosuppressive cells

(MDSC, Treg cells, macrophages, and immunosuppressive

cytokines) in the TME (13). However, it also impairs the

adjustment of anti-tumor immunity by reducing the killing,

survival, and migration of effector cells (NK cells, CD4+, and

CD8+ T cells) (13).

Many clinical trials on immunotherapy for different

malignancies have been conducted in recent years, but they

are limited to the efficacy of therapeutic treatment established on

UCEC (14, 15). Bioinformatics-based exploration has recently

emerged as a viable strategy for clinical development in modern

oncology (16, 17). It has practical application value by detecting

the altered expression of model genes in endometrial cancer

tissues and converting model genes into risk scores to predict

patient prognosis (18, 19). In this study, we built a hypoxia-

related gene model to predict endometrial cancer overall survival

in the TCGA.
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Materials and methods

Raw data sources
and data preprocessing

We analyzed the transcriptome RNA-seq data (normal

count: 23, tumor count: 552) and clinical data (cases: 548)

downloaded from The Cancer Genome Atlas (TCGA, http://

cancergenome.nih.gov/). Based on the limma R package, we

utilized the Wilcoxon test to sort out the meaningful

differentially expressed genes (DEGs). The |log2-fold change

(FC)| > 1 and the adjusted p < 0.05 were chosen as the cut-off

criteria. The tumor immune gene set and hypoxic marker gene

se t were downloaded f rom the Track ing Tumor

Immunophenotype website (http://biocc.hrbmu.edu.cn/TIP/

index.jsp) and the GSEA website (https://www.gsea-msigdb.

org/gsea/index.jsp), respectively.
Construction of the protein–protein
interaction networks

The hypoxia gene set was utilized to extract hypoxia-related

genes (HRGs) expression levels from transcriptome RNA-seq

data of TCGA. The PPI networks were created by the STRING

database (http://string-db.org) and were visualized and

integrated. Based on the number of interrelationships, the

Cytoscape software (https://cytoscape.org/) platform was used

to examine the correlation of HRGs in the protein interaction

relationship network, and then the top 50 genes with the

maximum number of adjacent nodes were analyzed as the key

core genes.
The constitution of the risk model

We first used univariate Cox regression on key core genes to

discern HRGs with prognostic outcome. The Lasso regression

was then used to guarantee that the multidimensional model

would not overfit. The multivariate Cox regression was to

determine the genes used to construct the model and confirm

their coefficients. Each patient’s risk score was calculated from

the retrieved genes, and patients were divided into low and high

hypoxic risk groups based on the median risk score. The risk

score formula was defined as:

Risk Score = Expression gene1 × Coefficient gene1 +

Expression gene2 × Coefficient gene2+… +Expression geneN

× Coefficient geneN,

where N = 4 indicates the expression levels of a total of the

four HRGs. Gene Expression represented the expression levels of
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each HRG. The coefficient gene represented the corresponding

multivariate Cox regression coefficients.
The prognostic efficacy of the risk model

Subsequently, we examined whether the risk value was

correlated with patient overall survival (OS). The Kaplan-Meier

method was used to calculate OS for patients in the low- and high-

risk groups. We used univariate, Lasso, and multivariate COX

regression analyses to determine whether risk scores could be

distinguished from other routine clinical features as an

independent prognostic factor for patients. The p-value < 0.05

was considered statistically significant, and the 95 percent

confidence interval was also used to determine the hazard ratio

(HR). ROC curves constructed using the survival ROC R package

evaluate the accuracy and reliability of the risk model for predicting

patient OS. To better assess the survival probability of 1, 3, and 5

years for UCEC patients, the nomogrammodel with four genes was

constructed based on the results of both univariate and multivariate

analyses. We also plotted survival curves to confirm if all genes

d i ff e r e n t i a t e d b e twe en h i gh and l ow g r oup i n g

prognosis considerably.
Gene ontology, kyoto encyclopedia of
genes and gene set enrichment analysis

Using the clusterProfiler R package, bar charts and bubble

charts predicted the probable functions of HRGs via GO and

KEGG. We showed the main GO and KEGG pathways

depending on p-value < 0.05 and showed the results in bar

charts and bubble charts using the ggplot2 R package. To

investigate the differences in biological function in the

HRGs between low- and high-risk groups, GSEA was used to

enrich the Molecular Signatures Database (MSigDB)

(h.all.v7.4.symbols.gmt [Hallmarks]). For each analysis, 1000

permutations of gene sets were performed. Statistical

significance was defined as NOM p-value < 0.05 and NES > 1.
Evaluation of immune cell
type components

CIBERSORT (https://cibersort.stanford.edu/) is a tool that

determines the proportion of various cell subtypes in mixed cell

samples. It’s a standard way of estimating and studying immune

cell infiltration. We used it to analyze the proportions of 22

immune cell subtypes, including B cells, T cells, and NK cells, in

the high- and low-risk groups according to the previously

calculated median value of each immune-related cell
Frontiers in Endocrinology 03
infiltration. The sample’s total relative composition of all

immune cell types was equal to one.
Immune function and
immunosuppressive genes

ssGSEA is used to quantify the tumor-infiltrating cell-related

pathways (MHC class I, CCR, APC co-stimulation, APC co-

inhibition, HLA, check-point, cytolytic activity, inflammation

promoting, parainflammation, T cell co-inhibition, type I_IFN

response, T cell co-stimulation, and type II_IFN response). It

could be seen if there was a link between the two risk groups and

the immunological state. We investigated genes in the model

related to immune checkpoints, m6A-related genes and several

immunosuppressive genes in low- and high-risk groups. Heat

maps and histograms showed the difference in expression using

the ggplot2 packages. The TIP was used to acquire related-

gene signatures.
Validation of the prognostic
gene signature

UCEC (pathologically confirmed by two independent senior

pathologists) and tumor-adjacent normal tissues were obtained

from the Department of Biobank of Shanghai First Maternity

and Infant Hospital. All patients were informed, and formal

informed permission was obtained. This study was approved by

our hospital’s Protection of Human Subjects Committee and was

performed according to the relevant guidelines. Specimens were

acquired with written informed consent from patients at the

Shanghai First Maternity and Infant Hospital affiliated with

Tongji University. The study was conducted in accordance

with the Declaration of Helsinki. The TRIzol (Invitrogen,

Carlsbad, CA, USA) reagent was used to extract RNA from

tissue samples. The QuantiTect Reverse Transcription Kit

(QIAGEN, Valencia, CA, USA) was used to reverse-transcribe

RNA into cDNA. SYBR-Green (Takara, Otsu, Shiga, Japan) was

used to quantify real-time PCR results, and levels were

standardized to ACTB levels. The primers for five genes are

listed in Table 1. Western blot analysis was performed using

antibodies against rabbit monoclonal antibody-anti-human

GAPDH (1:5000, AC001), ANXA2(1:1000, A11235), GPI

(1:1000, A6916), NR3C1 (1:1000, A19583) from ABclonal, and

rabbit monoclonal antibody-anti-human AKAP12 (1:500,

25199-1-AP) from Proteintech, followed by incubation with

horseradish peroxidase (HRP)-coupled rabbit secondary

antibody (1:1000, #7074, Cell Signaling Technology). We

verified the expression of four genes in normal and tumor

tissue by utilizing the Human Protein Atlas (HPA) database.
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Results

Hypoxia-related genes in UCEC

Figure 1 shows the work flow diagram for this study. The

clinical information of patients with endometrial cancer was

shown in Table 2. The volcano plot showed a differential

distribution of gene expression levels between the normal and

tumor groups (Figure 2A). We then used the PPI network

analysis software, the STRING online database, and

CYTOSCAPE to establish the relationship between these genes

(Figure 2B). The top 50 genes with the highest levels of
Frontiers in Endocrinology 04
interaction were selected as key genes. The results showed that

the key genes, including GAPDH, JUN, IL6, FOS, SLC2A1,

LDHA, CAV1, GPI, et al. (Figure 2C).
The risk score model was built based on
core HRGs

By the univariate Cox analysis, eight HRGs (ANXA2,

NR3C1, AKAP12, GPI, IRS2, FBP1, SLC2A1, KLF7) were

shown to be strongly related to patient OS prognosis

(Figure 2D). According to the optimum l value (Figures 2E,

F), four core HRGs of them were chosen to build the model by

the multivariate Cox regression analysis (Figure 2G,

Supplementary Table 1). The heatmap displayed contrasts in

the expression of four core HRGs in the normal and tumor

groups (Figure 2H). We additionally investigated the correlation

between four genes identified as predicting patient prognosis in

the risk model (Figure 2I). Red and green represented positive

and negative relationships, respectively. Simultaneously,

Spearman correlation analysis revealed no significant

correlation between the four HRGs. The risk score was

calculated as: Risk Score = (-0.340*ANXA2 expression level) +

(0.423*NR3C1 expression level) + (0.171*AKAP12 expression

level) + (0.402*GPI expression level).
Patients with various risk scores had
varying prognoses

The heatmap revealed that the expression of three genes

(NR3C1, AKAP12, and GPI) increased substantially with risk

scores (Figure 3A). Risk scores were observed in low- and high-

risk groups, and hypoxia risk scores increased with increased

risk levels of patients (Figure 3B). Figures 3C, D revealed that

patients in the high-risk group had a significantly higher death

rate than those in the low-risk group, with significant prognostic

differences. All the above results explain that as hypoxia risk

scores rise, mortality also increases in endometrial cancer

patients. Patients with various risks were also well segregated

into two groups by principal component analysis (PCA) and t-

distributed stochastic neighbor embedding (t-SNE) analysis

(Figures 3E, F).

The OS curve showed that high-risk hypoxia scores were

related to worse prognostic outcomes as compared to low-risk

hypoxia scores (Figure 4A). ROC curves showed AUCs of 0.680,

0.690, and 0.687 that were predicted by the 1, 3, and 5-year OS,

respectively (Figure 4B). ROC demonstrated that AUC at 1, 3,

and 5-year was higher than 0.6, indicating our risk model’s

predictive potential (Figure 4B). In addition, we established the

nomogram to further calculate the survival probability for each

patient (Figure 4C). Each patient’s 1, 3, and 5-year survival rates

might be estimated based on the expression of four genes.
TABLE 1 Primer sequences.

Primer sequences(5′-3′)

ANXA2 forward CCGGCTCTGCTCAGCATTTG

ANXA2 reverse GCTATGCTACAAGATAACCTGGGC

AKAP12 forward CTGTCTGCCGTCAATGGTGTA

AKAP12 reverse TGAAGCAGGGATCTGTTCGAT

NR3C1 forward ACAGCATCCCTTTCTCAACAG

NR3C1 reverse AGATCCTTGGCACCTATTCCAAT

GPI forward CAAGGACCGCTTCAACCACTT

GPI reverse CCAGGATGGGTGTGTTTGACC

ACTB forward CATGTACGTTGCTATCCAGGC

ACTB reverse CTCCTTAATGTCACGCACGAT
FIGURE 1

Flow of this study.
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Figures 4D-F show separately how the 1, 3, and 5-year curve

levels well overlap the calibration curve. The outcome indicated

that it could evaluate the prediction accuracy of the model and

that the risk model could better predict the prognosis of

endometrial cancer.
Hypoxia risk factors were prognostic
independently from
clinical characteristics

To investigate whether the hypoxia risk score could be used

as an independent prognostic factor in predicting the survival of

UCEC patients, we employed both univariate and multivariate

Cox regression analyses on the four HRGs to compare

clinicopathological features (age, gender, grade, and stage)

(Supplementary Table 2). The age, grade, stage, and risk score

were all connected to overall survival according to the univariate

Cox regression (Figure 5A). Then we found that the hypoxia risk

score was independently related to the difference in overall

survival of UCEC patients (Figure 5B). Two analyses were as

follows: our panel might be regarded as an independent

prognostic indicator for UCEC. The heatmap depicted the

expression characteristics of the four genes in various risk

groups and their correlation to clinical factors (stage, age,
Frontiers in Endocrinology 05
grade) (Figure 5C). We observed that the risk score was

merely associated with age and tumor grade. We studied how

the four genes are expressed differently in patients of diverse ages

and grades (Figures 5D, E). All four genes were expressed at

different levels in patients of various grades (Figure 5D). Based

on the risk score, age, and grade, the 1, 3, and 5-year survival

ra te s o f each pat i en t cou ld be pred ic ted by the

nomogram (Figure 5F).
GO, KEGG and GSEA

GO indicated that the most enriched GO terms were BP

(biological process) including the monosaccharide metabolic

process, CC (cellular component) including collagen-

containing extracellular matrix, and MF (molecular function)

including monosaccharide binding (Supplementary Figures 1A,

B). KEGG pathways were mainly related to HIF-1 signaling

pathway, Glycolysis/Gluconeogenesis and Carbon metabolism

(Supplementary Figures 1C, D). According to GSEA analysis, the

potential signaling pathways such as E2F targets, G2M

checkpoint, Mitotic spindle, Mtorc1 signaling, MYC targets,

KRA signaling, and hypoxia were considerably enriched in

high-risk groups (Supplementary Figure 2).
Immune cell infiltration

We used CIBERSORT to evaluate the immune cell types and

immune cell infiltration rates of the high-risk group and the low-

risk group. (Figure 6A). There were significant differences in

eight immune cells in the high-risk and low-risk groups. The

results showed that the proportions of T cells CD4 memory

activated (p = 0.0063), macrophages M1 (p = 1.6*10-5),

macrophages M2 (p = 0.037), and T cells follicular helper (p =

0.026) were considerably higher in the high risk of hypoxia

group (Figures 6B-E). However, in the high hypoxia risk group,

the levels of dendritic cells resting (p = 0.005), neutrophils (p =

0.0023), NK cells activated (p = 0.017), and T cell regulatory

(Tregs) (p = 0.00029) were markedly lower (Figures 6F-I). These

data revealed that immune cell infiltration was substantially

associated with hypoxia risk (p < 0.05), indicating that

research into hypoxia is critical for future immunotherapy in

tumor patients.
Immune function and
immunosuppressive genes

Seven algorithms, including TIMER, CIBERSORT-ABS,

QUANTISEQ, XCELL, MCPCOUNTER, EPIC, and

CIBERSORT, were used to create a heatmap of tumor immune

cell infiltration (Figure 7A). By single-sample gene set enrichment
TABLE 2 Clinical information of Uterine Corpus Endometrial
Carcinoma cohort.

Clinical features TCGA-UECE(N=548)

No %

OS

0 461 84.12

1 87 15.88

Age

<=60 209 38.35

>60 336 61.65

Stage

I 339 62.20

II 52 9.54

III 124 22.75

IV 30 5.50

Grade

I 99 18.07

II 122 22.26

III 316 57.66

IV 11 2.01
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analysis (ssGSEA), the difference in immune cell activities revealed

that CCR, HLA, and type I IFN response were all significantly

different between the two risk groups (Figure 7B). We employed

Gene Set Variation Analysis (GSVA) to investigate the differences

in key immune checkpoint expression and m6A-related gene

expression between the two risk groups since they are important

in immunotherapy. Except for FTO and YTHDC2, most m6A-

related gene expression differed markedly between the two risk

groups (Figure 7C). Many immune checkpoint genes were shown

to be substantially different between the two groups according to

the boxplot (Figure 7D). In clinical treatment, however, these

genes were rarely utilized as genes of immune checkpoint. We

examined the commonly used five immune checkpoints (PD-1,

PD-L1, TIM3, CTLA-4, and LAG3) in clinical treatment
Frontiers in Endocrinology 06
(Supplementary Figure 3). Only the LAG3 expression levels

differed substantially between the high- and low-risk groups.

Following that, we depicted a box plot and a correlation curve

to show the relationship between the expression levels of this gene

and the risk score. The heatmap of the expression of gene sets

involved in the negative regulation of anti-tumor immunotherapy

was shown in Figure 8A. The box plot showed that low- and high-

risk groups have different levels of gene expression (Figure 8B).

The correlation curve revealed that the expression level of this

gene was positively connected with the patient’s risk score

(Figure 8C). Figure 8D reflected that most genes enriched in

negatively regulated genes were higher in the high-risk score

group, and the high hypoxia risk tended to favor the

immunosuppressive microenvironment. It meant that patients
A B C

D E F

G H I

FIGURE 2

Selecting hypoxia-associated key core genes and constructing the model by Univariate, Lasso, and Multivariate Cox Analysis. (A) Volcano map of
differential hypoxia-associated genes, absolute log2-fold change (FC) > 1, and adjusted p value < 0.05 were used as screening criteria for differential
genes. (B) Protein-protein interaction network containing these genes. (C) The top 50 genes were selected based on the number of nodes.
(D) Univariate Cox regression analysis identified candidate genes with the p-value < 0.05. (E, F) Establishing a hypoxia prognostic model by
LASSO regression analysis. (G) Multivariate Cox regression analysis of hypoxia-related genes. (H) Heatmap of differential hypoxia-associated
genes in normal samples and endometrial cancer. (I) Correlations between the genes included in the risk model. *** represents a p value < 0.001.
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A B C

D E F

FIGURE 3

The expression levels of the four genes included in the model and the prediction of patient risk in the hypoxia model. (A) Heatmaps of four gene
expression levels in the risk model for the high- and low-risk groups. (B) Patient risk scores in the high- and low-risk groups. (C) Survival rates in
the high- and low-risk groups. (D) Patient survival in the high- and low-risk groups. (E, F) Principal component analysis (PCA) plot and t-
distributed stochastic neighbor embedding (t-SNE) for the different gene expression patterns of samples.
A B C

D E F

FIGURE 4

Effects of the hypoxia model on patient prognosis. (A) Kaplan–Meier survival curves for patients, stratified according to risk scores; comparison
of the median survival time with log-rank tests (p < 0.001). (B) Receiver operating characteristic curve analysis of the prognostic accuracy of the
model. (C) Nomogram based on four genes for predicting the prognostic survival rate of patients. (D-F) Calibration curves of the nomogram for
predicting the survival outcomes at 1-, 3-, and 5-years.
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with high hypoxia risk became insensitive to immunotherapy and

had a poor immunotherapy outcome.
Differential expression of markers was
validated in an independent cohort

The mRNA and protein levels of the four genes were

subsequently determined using the RT-PCR experiment, which

showed that GPI and ANXA2 were highly expressed in UCEC

compared to adjacent normal endometrial tissue, but NR3C1

and AKAP12 were downregulated (Figures 9A-E). In addition,

we further explored the protein expression encoded by the four

genes in endometrial cancer tissues. As shown in Figure 10 from

HPA database, ANXA2 and GPI were strongly positive in UCEC

tissues when compared with corresponding expression levels in
Frontiers in Endocrinology 08
non-tumor tissues. In contrast, AKAP12 and NR3C1 showed

strong positivity in normal liver tissues.
Discussion

Endometrial cancer is one of the most frequent

gynecological cancers in the world and it affects roughly

420,000 women globally each year, with an approximated

76,000 women dying from it (20, 21). Although the impact of

surgical therapy and medical treatment of endometrial cancer

has improved in recent years, both the incidence and mortality

of cancer are on the rise (22, 23). Hypoxia usually causes a lack of

oxygen and nutrients in a variety of solid tumors, as well as

problems with drug delivery. Tumor invasiveness, angiogenesis,

and metastasis are all supported by hypoxia heterogeneity. These
A

B

D

C

E

F

FIGURE 5

Relationship between the risk model and clinical factors. (A) A single-factor prognostic analysis included age, grade, stage, and the risk scores of
patients with endometrial cancer. (B) Multifactor prognostic analysis included age, grade, and the risk scores of patients with endometrial
cancer. (C) Heatmap (green: low expression; red: high expression) for the connections between clinical characteristics (stages, grades, and ages)
of patients in high-risk and low-risk samples. (D, E) Comparisons of the expression levels of various genes in the hypoxia model for different
ages and grades. (F) Nomogram based on risk, age, and grade for predicting the prognostic survival rate of patients. * represents a p-value <
0.05, ** represents a p-value < 0.01, *** represents a p-value < 0.001.
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variables reduce anticancer medication therapeutic effectiveness

and can be a barrier to progressing drug leads beyond the early

phases of preclinical studies (24, 25). As a result, we constructed

a model based on HRGs, investigated tumor-infiltrating immune
Frontiers in Endocrinology 09
cells in the prognosis of endometrial carcinoma, the tumor

immune checkpoints, and m6A-related gene expression, and

identified promising biomarkers and therapy targets for UCEC

to assess prognostic and therapeutic efficacy.
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FIGURE 6

Enrichment of hypoxia pathways and infiltration of hypoxia-related immune cells. (A) A bar chart of hypoxia risk and immune cell infiltration.
(B-I) Immune cells whose infiltration is significantly associated with the risk of hypoxia (p < 0.05).
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In recent decades, development of Whole Genome

Sequencing (WGS) has made biological data analysis easier,

enabling the rapid growth of innovative treatments. Hypoxia is a

significant characteristic of cancer. Previous research has found

out how oxygen affects particular forms of cancer and how it

might be used to predict prognosis, such as in oral squamous cell

carcinoma (26), hepatocellular carcinoma (27), lung

adenocarcinoma (28), and cervical cancer (29), et al. In

comparison to these findings, our highlights and ideas

included using the LASSO advanced algorithm to eliminate

extra genes and investigating the relationship between hypoxia

and the immune microenvironment, m6A-related genes,

immune checkpoints, and incorporating multiple tumor-

infiltrating immune cells and validity through experiment.

Our risk model is made up of four HRGs (ANXA2, AKAP12,

NR3C1, and GPI), the majority of which are strongly up-regulated
Frontiers in Endocrinology 10
(Table 3). ANXA2 is detected in a variety of malignancies and

regulates apoptosis, metastasis, cell proliferation, invasion,

adherence, and tumor neovascularization, all of which are

important in tumor progression (30). The inhibition of ANXA2

also inhibits tumor cell growth, metastasis, and survival (31). As a

critical regulator of glucocorticoid hormone effects,NR3C1 can alter

gene expression in target cells and tissues, potentially leading to

cancer (32). AKAP12 controls cell signaling pathways and

accelerates oncogenic development in cancer (33). AKAP12 is a

major HIF target gene that controls endothelial functional

responses. Furthermore, AKAP12 loss and gain of function

studies revealed the reliance of AKAP12 on the management of

microvascular endothelial tube growth, in which it works as a

“braking”mechanism for angiogenesis (34). According to new data,

GPI is profoundly linked with a range of malignancies, and it might

be exploited as a biomarker for cancer treatment (35). According to
A

B C D

FIGURE 7

Heatmap for immune cells and their related functions, m6A-related genes, immune checkpoints (A) Heatmap for immune cells based on TIMER,
CIBERSORT, CIBERSORT−ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms between two risk groups. (B) The immune cells
related functions (C) m6A-related genes (D) immune checkpoints. ns represents a p value >0.05, * represents a p value < 0.05, ** represents
a p value < 0.01, and *** represents a p value < 0.001.
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Huang et al., GPI might potentially be employed as a novel

biomarker for GC prognosis, and it might be helpful in the

diagnosis and treatment of GC patients (36). However, less study

has been done on these RNAs in endometrial cancer. These findings

add to our understanding of the relationships between tumor

progression and clinical outcome.

We applied GO, KEGG, and GSEA to identify pathways that

are enriched in high-risk and low-risk groups. Significant

enrichment of genes in hypoxia-related pathways was discovered
Frontiers in Endocrinology 11
by GO and KEGG enrichment analysis. Using GSEA, we found that

most of the enrichment pathways were related to cell cycle

regulation and cell division, which implies that these genes might

affect tumor division and thus have therapeutic effects. Recently, it

has gotten a lot of attention that N6-methyladenosine (m6A) is the

most common mRNA alteration in eukaryotic cells (37). Many

facets of RNA metabolism were affected by the m6A alteration,

including RNA processing, nuclear export, RNA translation, and

decay (37). According to new findings, m6A methylation played a
A

B C

D

FIGURE 8

A microenvironment with a high risk of hypoxia tends to be immunosuppressive. (A) The heatmap displays the expression of the gene set
involved in the negative regulation of anti-tumor immunotherapy in the low and high hypoxia risk groups. (B) The expression levels of LAG3 in
high and low hypoxia risk groups. (C) Correlation between the expression of LAG3 and hypoxia risk score. (D) The expression of tumor
immunosuppressive genes in the low and high hypoxia risk groups. (*P < 0.05, **P < 0.01 and ***P < 0.001).
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critical role in endometrial cancer through a variety of pathways

and expanded the potential for early cancer detection and therapy

(38–40).

In the past years, tumor immune checkpoints have been

associated with immune evasion and tumor microenvironment in

a rising number of investigations (41). Immune checkpoints might

be utilized to treat cancer, and inhibitors that block key molecules

are seen to be useful in cancer treatment. Immune checkpoint

blockade therapy has been demonstrated to be useful in some

cancers but has had little effect on UCEC. As a result, it has been

proposed that the primary immune checkpoint molecules

associated with UCEC immunosuppression are probably PD1,

PDL1, CTLA4, LAG3, and TIM3 (41–46). According to our

findings, associated immune checkpoint molecules were not

significantly enhanced in the high hypoxia risk group. Ultimately,

we found that only LAG3 is the most meaningful checkpoint for the

immunosuppressive environment in UCEC under hypoxic

conditions. Blocking this checkpoint might have significant

therapeutic implications for endometrial cancer patients.

Hypoxia can alter the cellular components and impair immune

cell function, resulting in tumor growth either directly or indirectly.

Impaired immune cell activity is a key component of the tumor

immunological microenvironment, such as natural killer (NK) cells.

NK cells are known as the immune cell system’s toxic lymphocytes.

According to research, the expression of natural killer group 2

member A (NKG2A) of the NK cell receptor is up-regulated in the

peripheral blood of colon cancer patients, and the monitoring and

killing capabilities of NK cells are blocked, resulting in the immune

escape of colon cancer cells (47). Patients were also shown to have

considerably lower numbers of NK cells than normal participants,

which might be a factor in the development of UCEC. These

findings imply that using these activator receptors to reactivate NK
Frontiers in Endocrinology 12
cells might be a potential target for cancer treatment (11). The

following two types of CD4+ T cells can be differentiated from naive

CD4+ T cells: Th1 cells secrete IL-2 and IFN-, which stimulate

macrophages and CD8+ T-cell proliferation and promote cell-

mediated immune responses (48).

Macrophages, a key element of the TME, promote metastasis,

invasion, immunosuppression, and angiogenesis, all of which

contribute to cancer (49). In the TCGA database, we found

substantial variations in the amount of activated M0 macrophages

between high- and low-risk groups. According to the findings of

this study, hypoxia can attract immune cells into the TME. TAMs

are formed when blood macrophages respond to tumor signals and

are classified into two types: M1 and M2. The polarization of

macrophages is important in carcinogenesis. Indeed, M1-polarized

macrophages (traditional activation) inhibit cancer progression and

spread, whereas M2-polarized macrophages (alternative activation)

enhance it (50). Hypoxia-induced cancer factors including IL-10

and TGF-beta can cause tumor-associated macrophages to develop

into M2 macrophages, which have immunosuppressive properties

(51). When inflammatory substances like interferon-gamma and

lipopolysaccharide excite monocytes, they activate M1

macrophages, which can emit inflammatory factors like IL-6 and

tumor necrosis factor-alpha and phagocytize invading infections

and tumor cells (52). Hypoxia and cell death in tumor tissue

generate significant quantities of cell debris and cause the release

of inflammatory factors that attract and polarize macrophages and

monocytes. Macrophages release inflammatory substances after

polarization (52). Cancer-associated neutrophils can cause tumor

suppression as well as tumor growth (53). It is well established that

hypoxic TME promotes neutrophil engagement in tumors by

regulating their adhesion to epithelial cells (54). HIF1 and HIF2

have both been proven to improve the survivability and
A B C D

E

FIGURE 9

Validation of the relative expression level of ANXA2, AKAP12, NR3C1 and GPI in para-carcinoma tissues (P) and tumor tissues (T) using qRT-PCR
(A–D) and western blot (E). * represents a p value < 0.05, ** represents a p value < 0.01.
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FIGURE 10

Differences in protein expression of the four HRGs in endometrial tissues from HPA.
TABLE 3 The full name, summaries and pathways of 4 hypoxia-related genes (HRGs) in endometrial carcinoma.

HRGs Full name Summaries Pathways

ANXA2 Annexin A2

regulate cellular growth and signal transduction pathway, correlate with resistance to treatment
against various cancer forms

Innate Immune
System
Ca, cAMP and Lipid
Signaling
Tyrosine Kinases /
Adaptors

AKAP12
A-Kinase Anchoring
Protein 12

associate with protein kinases A and C and phosphatase, and serves as a scaffold protein in
signal transduction

Activation of cAMP-
Dependent PKA
Activation of PKA
through GPCR

NR3C1
Nuclear Receptor
Subfamily 3 Group C
Member 1

encode glucocorticoid receptor as a regulator of transcription factors, involve in inflammatory
responses, cellular proliferation, and differentiation

Glucocorticoid
Receptor Signaling
MIF Mediated
Glucocorticoid
Regulation

GPI
Glucose-6-Phosphate
Isomerase

encode a member of the glucose phosphate isomerase protein family, as a lymphokine that
induces immunoglobulin secretion and a tumor-secreted cytokine and angiogenic factor

Glycogen metabolism
Glycolysis and
gluconeogenesis
F
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functionality of neutrophils (55). Follicular helper T (Tfh) cells are a

special kind of CD4+T cell that help to create germinal centers

(GCs) and boost B cell responses, both of which are necessary for

the creation of high-affinity antibodies to kill invading pathogens

(56). Patients with high-risk scores showed larger proportions of

neutrophils and mast resting cell morphologies, according to

CIBERSORT. Immunosuppressive cells, such as follicular helper

T cells and CD8 T cells, were increased in the low-risk group,

indicating that the two groups had different levels of

immunological impairment.

Based on the expression of HRGs, we built a 4-gene-based

hypoxia risk model that accurately predicts the prognoses of

patients with UCEC. Our model described how hypoxia status

alters the immune microenvironment in UCEC patients and

acted as an independent predictive factor for UCEC patients.

The connection between hypoxia and the immune cells of

tumors is undeniably intricate, and more independent factors

and functional tests are needed to conduct a more thorough

investigation. The HRGs score performs well in determining

biological state and predicting UCEC survival. However, our

research still has many shortcomings and flaws. First, there are

no more basic experiments to demonstrate the effect of hypoxia

on the prognosis of endometrial cancer. Second, the mechanism

by which hypoxia affects cancer progression has not been

revealed. Therefore, more research by well-designed

experiments is needed.
Conclusion

In our study, we have built a hypoxia-related gene risk score

model consisting of ANXA2, AKAP12, NR3C1, andGPI. The risk

score was positively and significantly correlated with the

infiltration abundance of immune cell types, suggesting a close

and strong relationship between the hypoxia microenvironment

and tumor immune activity. This predictive model provides a

novel prognostic signature for endometrial carcinoma patients

and may improve treatment strategies for individuals.
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