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Purpose: This study aims to investigate the association between paternal

methylenetetrahydrofolate reductase (MTHFR) polymorphisms (C677T) and

embryonic development, pregnancy, and neonatal outcomes in

intracytoplasmic sperm injection (ICSI) treatment.

Methods: A total of 191 infertile men undergoing ICSI treatment at the

Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC,

were recruited between January 2020 and June 2021. The MTHFR C677T

polymorphism genotyping was evaluated in these male patients, and they were

stratified into three groups according to genotyping results: Control (CC),

heterozygote mutated (CT), and mutated homozygote (TT). In addition, we

conducted a comparative analysis of embryonic development, pregnancy, and

neonatal outcomes among these three groups.

Results: The embryonic development (including normal fertilization rate

(80.14% vs. 83.06% vs. 85.10%; p = 0.37), high-quality embryo rate (45.26%

vs. 43.69% vs. 46.04%; p = 0.72), blastocyst formation rate (42.47% vs. 43.18%

vs. 39.38%; p = 0.62), implantation rate (42.47% vs. 36.25% vs. 41.22%; p = 0.62),

and clinical pregnancy rate (64.71% vs. 58.75% vs. 66.67%; p = 0.59) were not

comparable among these three groups. Moreover, no significant difference

was observed in terms of pregnancy outcomes (including miscarriage rate

(24.24% vs. 12.77% vs. 22.5%; p = 0.35) and live birth rate (49.02% vs. 51.25% vs.

51.66%; p = 0.96)). Additionally, no marked difference was observed in terms

of neonatal outcome (including, preterm delivery rate (24% vs. 14.63% vs.

9.67%; p= 0.35), birth height (p= 0.75), birth weight (p = 0.35), neonatal sex (p=

0.48), gestational age at delivery (p = 0.24), Apgar score (p = 0.34), and birth

defects (0% vs. 2% vs. 9%; p = 0.23) among the study groups.
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Conclusion: The paternal MTHFR C677T polymorphism is not associated with

embryo quality, pregnancy, or neonatal outcomes in ICSI treatment. Therefore,

in our population, MTHFR polymorphisms do not provide helpful information in

explaining ICSI failure.
KEYWORDS

MTHFR (C677T), intracytoplasmic sperm injection (ICSI), sperm DFI, male infertility,
assisted reproductive technologies
Introduction

Assisted reproductive technologies (ART) have become

widely accepted as a proven and routine treatment for infertility

(1). However, despite recent advancements in in vitro fertilization

(IVF) and intracytoplasmic sperm injection (ICSI), only about

one-third of these procedures result in live births (2).

Understanding the factors that affect the outcome of IVF/ICSI

pregnancies is crucial to designing safer and more effective

infertility treatments (2). ICSI procedure failures are likely

caused by several factors, including the woman’s age, sperm and

oocyte quality, as well as poor uterine receptivity (3). Previous

literatures have suggested that abnormal semen parameters,

chromosomal anomalies, sperm DNA fragmentation index

(DFI), and genetic–epigenetic aberrations adversely affect

pregnancy outcomes following ICSI procedures (4–6).

According to a number of studies, methylenetetrahydrofolate

reductase (MTHFR) polymorphisms are associated with

oxidative stress, sperm parameters, and sperm DFI (7), implying

that MTHFR polymorphisms may serve as a genetic risk factor

for ICSI.

The human MTHFR gene is located on the short arm of

chromosome 1 and encodes one of the regulatory enzymes

controlling folate metabolism (8, 9). MTHFR catalyzes 5,10-

methylenetetrahydrofolate to turn into 5-methylenetetrahydrofolate

(5-MTHF), which is necessary for homocysteine’s (Hcy) conversion

into methionine via the methionine synthesis pathway (10). There

are three commonly known polymorphisms of the MTHFR gene,

namely MTHFR C677T (rs1801133), MTHFR A1298C (rs1801131),

and MTHFR G1793A (rs2274976) (11). The MTHFR C677T

polymorphism alters an alanine (Ala) to a valine (Val), which

decreases the thermal stability of the enzyme (8). The enzyme

activity in homozygous TT mutant individuals is around 30% of

that in homozygous CC genotype individuals, whereas enzyme

activity in heterozygous genotype (CT) individuals is

approximately 65% of that in homozygous CC genotype

individuals (12). The MTHFR polymorphism (C667T) was

significantly associated with a higher risk of male infertility in the

Chinese population, while the MTHFR polymorphism (A1298C)
02
was not considered a risk factor for male infertility, according to

numerous studies (8, 13, 14). Some studies have also examined the

association between MTHFR polymorphisms, recurrent

spontaneous abortions, and recurrent implantation failures (15–

17). Although most current reports have focused on women-

related factors (18–20), sperm quality may also play an important

function. As a result, it is necessary to investigate the correlation

between the paternalMTHFR C677T polymorphism and the clinical

outcomes of ICSI treatment.
Materials and methods

Study population

In this study, 191 patients undergoing ICSI treatment at the

Reproductive and Genetic Hospital, The First Affiliated Hospital

of USTC, were recruited between January 2020 and June 2021.

Male participants were enrolled from infertile couples due to a

male factor.

There were no initial exclusion criteria. As part of their

initial prenatal counseling visit, all females were advised to take a

prenatal vitamin containing at least 400 micrograms of folic acid.
Semen analysis

Semen samples from the male patients were obtained after

2–7 days of abstinence and assessed after liquefaction at 37°C for

30 min. Semen parameters were determined according to the

World Health Organization (WHO) guidelines for semen

analysis (fifth edition, 2010). Sperm concentration, progressive

motility, and total motility were assessed by computer-assisted

sperm analysis (CASA) under a phase-contrast microscope

(CX43, Olympus Corporation, Tokyo, Japan) equipped with a

SAS-II system (SAS Medical, Beijing, China). Sperm

morphology was evaluated through Diff-Quick staining

(Ankebio, Hefei, China) at ×100 magnification under a light

microscope (UB100i, UOP, Chongqing, China). Leukocytes
frontiersin.org

https://doi.org/10.3389/fendo.2022.1084463
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wan et al. 10.3389/fendo.2022.1084463
were stained with benzidine for the peroxidase test (Ankebio).

Antisperm antibody (AsA) levels were measured by the mixed

antiglobulin reaction (MAR) method (Ankebio). Sperm DNA

fragmentation was evaluated by flow cytometry according to the

manufacturer’s protocol (Cellpro, Ningbo, China).
Genotype detection

The whole genome DNA was extracted using QIAquick PCR

purification kits (QIAGEN, Germany) from the blood samples of

the male patients. The MTHFR C677T genotype was analyzed

using a fluorescence PCR detection kit (PCR-fluorescence probe)

produced by Tailored Medical (Shenzhen, Guangdong, China).

Fluorescence PCR detection was conducted under the following

conditions: a 4-ml whole genome DNA and a 10-ml PCR reaction

system. Next, the manufacturer recommends 95°C denaturation for

15 s and 60°C annealing/extension for 60 s, with 45-cycle reaction

conditions. After the PCR reaction, the endpoint fluorescence in

each sample well was measured using the ABI 7500 fluorescence

quantitative PCR instrument (Applied Biosystems, Foster City, CA,

USA), and the MTHFR genotyping results were accurately

determined using the ABI 3730 Genetic Analyzer (Applied

Biosystems, Foster City, CA, USA).
Intracytoplasmic sperm injection

ICSI was conducted as previously described (21). The women

were subjected to controlled ovarian hyperstimulation using a

standard long protocol. First, oocyte retrieval was performed 36 h

after 250 µg recombinant hCG (Ovitrelle, Merck Serono,

Switzerland) administration. Next, oocytes were treated with a G-

morpholinepropanesulfonic acid (MOPS) medium (Vitrolife,

Kungsbacka, Sweden). The embryos were then denuded with

hyaluronidase using G-in vitro fertilization (IVF) PLUS medium

(Vitrolife). Embryos were cultured in a G-1 medium (Vitrolife) in a

desktop incubator (COOK Medical, Bloomington, IN, USA) for at

least 3 days. Progesterone was used for luteal support.
Determination of pregnancy

Clinical pregnancy was confirmed via two blood hCG tests

conducted 14 days after transplantation. An ultrasound
Frontiers in Endocrinology 03
screening was performed 30 days after transplantation to

detect visible sacs and to evaluate their development.
Statistical analysis

Quantitative variables of normal distribution were

represented using mean ± standard deviation (SD). If not,

medians (interquartile range (IQR)) are used. Qualitative

variables were described as frequency and percentage; for

comparative analysis among the three groups, analysis of

variance (ANOVA) was employed for quantitative variables

with normal distribution, and the Kruskal–Wallis test was

used for the nonnormal distribution. Pearson’s chi-square test

or Fisher’s exact test was employed for qualitative variables.

Observed frequencies of different genotypes were separately

tested for deviation from the Hardy–Weinberg equilibrium

using the exact test. All significance tests were two-sided, and

a p < 0.05 was regarded as statistically significant. Statistical

analyses were performed using R (version 3.5.3).
Result

Baseline characteristics

A total of 191 men from infertile couples were recruited for

this study. MTHFR genotyping analysis for locus 677 was

conducted in these patients. In total, we observed homozygosity

for the C allele in 26.70% (n = 51), heterozygosity in 41.88% (n =

80), and homozygosity for the T allele in 31.42% (n = 60) of

patients. According to published studies, our infertile male

patients had a greater frequency of the MTHFR 677T allele

than the general population, and the allele frequency for C677T

was in Hardy–Weinberg equilibrium (Table 1).

Based on the locus 677 genotype evaluation, the patients

were divided into three groups: Control (homozygosity for the C

allele), heterozygote mutated (heterozygosity), and mutated

homozygote (homozygosity for the T allele). Age (p = 0.79),

clinical conditions (BMI (p = 0.12), duration of infertility (p =

0.22), type of infertility (p = 0.96), and maternal baseline FSH

concentration (p = 0.10) were not statistically different between

the three groups (Table 2).

There was also no statistically significant difference among

the three groups in terms of semen parameters (including sperm
TABLE 1 Genotype frequencies according to C677T in patients.

Gene parameters Genotype Allele p-value

CC CT TT C T 0.08

Frequency (%) 26.70 41.88 31.42 47.64 52.36

Data were presented as frequency. p-values were derived from Pearson’s chi-square test.
fron
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concentration, morphology, motility, sperm DFI, and AsA

level) (Table 3).
Correlations of paternal MTHFR
polymorphism (C677T) with embryonic
quality and pregnancy outcomes

The embryonic quality following ICSI intervention was first

compared among the three groups. Results shown in Table 4

revealed no significant differences in the normal fertilization rate

(80.14% vs. 83.06% vs. 85.10%; p = 0.37), high-quality embryo

rate (45.26% vs. 43.69% vs. 46.04%; (p = 0.72)), blastocyst

formation rate (42.47% vs. 43.18% vs.39.38%; p = 0.62),

implantation rate (42.47% vs. 36.25% vs. 41.22%; p = 0.62),
Frontiers in Endocrinology 04
and clinical pregnancy rate (64.71% vs. 58.75% vs. 66.67%; p =

0.59). We further examined whether any of the genotypes could

influence the pregnancy outcomes, and the results showed that

there were also no significant differences in terms of miscarriage

rate (24.24% vs. 12.77% vs. 22.5%; p = 0.35)) or live birth rate

(49.02% vs. 51.25% vs. 51.66%; (p = 0.96)) among the three

groups (Table 4).
Association of paternal MTHFR
polymorphism (C677T) with
neonatal outcome

The neonatal outcome was evaluated based on gestational

age at delivery, preterm delivery, birth height, birth weight,
TABLE 3 Semen parameters of the study’s male population.

Sperm parameters CC (n = 51) CT (n = 80) TT (n = 60) p-value

Abstinence time (days; mean ± SD) 5.47 ± 4.77 5.88 ± 7.44 5.40 ± 3.96 0.87

Semen volume (ml; median (Q1, Q3)) 2.90 (2.00, 3.80) 2.70 (1.90, 3.70) 2.75 (1.92, 3.87) 0.79

Sperm concentration (×106 ml−1; median (Q1, Q3)) 31.63 (10.95, 56.80) 36.75 (11.75, 97.69) 40.84 (8.71, 66.77) 0.39

Progressive motility (%; median (Q1, Q3)) 16.84 (9.42, 33.00) 18.82 (12.66, 40.07) 20.92 (8.05, 29.77) 0.19

Total motility (%; median (Q1, Q3)) 20.45 (12.42, 37.57) 25.28 (15.25, 44.71) 25.53 (10.43, 35.72) 0.18

Normal morphology (%; median (Q1, Q3)) 3 (2, 4.5) 3 (1, 5) 3 (2, 4.75) 0.88

Leukocyte count (×106 ml−1; median (Q1, Q3)) 0.24 (0.08, 0.47) 0.16 (0.08, 0.34) 0.19 (0.08, 0.44) 0.50

AsA (%; median (Q1, Q3)) 1 (0, 5) 0 (0, 2) 1 (0, 3.75) 0.06

DFI (%; mean ± SD) 22.68 ± 12.03 (n = 19) 22.97 ± 11.92 (n = 45) 21.59 ± 13.18 (n = 27) 0.89

HDS (%; mean ± SD) 11.41 ± 11.22 (n = 19) 9.37 ± 5.17 (n = 45) 8.85 ± 5.32 (n = 27) 0.43

AsA, antisperm antibody; DFI, DNA fragmentation index; HDS, high DNA stainability; Q1, 25th percentile; Q3, 75th percentile. p-values derived from analysis of variance (ANOVA) or
the Kruskal–Wallis test for continuous variables.
fron
TABLE 2 Characteristics of the patients enrolled in this study.

Clinical characteristics CC (n = 51) CT (n = 80) TT (n = 60) p-value

Age of male (years; mean ± SD) 33.92 ± 6.49 33.19 ± 5.89 33.40 ± 5.96 0.79

Age of female spouse (years; mean ± SD) 32.56 ± 5.49 31.96 ± 5.58 32.17 ± 5.47 0.83

BMI of male (kg m−2; mean ± SD) 24.26 ± 3.08 23.81 ± 3.26 24.89 ± 2.87 0.12

BMI of female spouse (kg m−2; mean ± SD) 22.47 ± 3.18 22.59 ± 3.82 22.94 ± 2.98 0.73

Duration of infertility (years; mean ± SD) 4.05 ± 3.08 3.19 ± 2.50 3.38 ± 2.40 0.22

Primary infertility (n (%)) 29 (56.86) 47 (58.75) 34 (56.67) 0.96

Secondary infertility (n (%)) 22 (43.14) 33 (41.25) 26 (43.33)

Maternal baseline FSH concentration (U/L; mean ± SD) 7.22 ± 1.60 7.11 ± 2.41 7.91 ± 2.52 0.10

Duration of female induction (days; mean ± SD) 9.78 ± 4.08 10.18 ± 3.75 9.97 ± 5.16 0.87

Female endometrial thickness on hCG day (mm; mean ± SD) 11.24 ± 2.62 11.12 ± 2.94 10.21 ± 2.90 0.09

BMI, body mass index; FSH, follicle stimulating hormone; hCG, human chorionic gonadotropin. Normally distributed quantitative. Variables were represented using mean ± SD.
Qualitative variables were described as a percentage. Pearson’s chi-square test and analysis of variance (ANOVA) were employed for qualitative and quantitative variables with
normal distribution.
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neonatal sex, and Apgar score among the three groups (Table 5).

Our results showed that paternal MTHFR polymorphism may

not contribute to the neonatal outcome, with no significant

difference found in terms of preterm delivery rate (24% vs.

14.63% vs. 9.67%; p = 0.35), birth height (p = 0.75), birth weight

(p = 0.35), neonatal sex (p = 0.48), gestational age at delivery (p =

0.24), and Apgar score (p = 0.34). In addition, no statistically

significant differences in terms of birth defects (0% vs. 2% vs. 9%;

p = 0.23) were observed among the three MTHFR C677T

genotype groups. The birth defect of one case in the CT group

is congenital heart disease, and the birth defect of three cases in

the TT group is of patent foramen ovale of heart, congenital

heart disease, and cerebral hemangioma.
Frontiers in Endocrinology 05
Discussion

The MTHFR enzyme is a key enzyme in folate metabolism and

is necessary for the homocysteine conversion to methionine (22).

The 677 C>T MTHFR polymorphism results in decreased activity

of MTHFR, causing an increase in homocysteine (Hcy)

concentrations in body fluids (12). DNA damage and incorrect

methylation caused by excess Hcy can impact the developing

gametes and embryos (23). There has been a long-standing

interest in the relationship between MTHFR polymorphism(s)

and pregnancy outcomes (16). Likewise, numerous studies have

investigated the association between maternal MTHFR genetic

polymorphism and adverse health outcomes (11, 12, 19).
TABLE 5 Neonatal outcomes in association with MTHFR polymorphism.

Neonatal birth parameters CC (n = 51) CT (n = 80) TT (n = 60) p-value

Gestational age (weeks; mean ± SD) 38.33 ± 2.26 39.18 ± 2.41 38.23 ± 3.07 0.24

Preterm delivery rate (n (%)) 6/25 (24) 6/41 (14.63) 3/31 (9.67) 0.35

Cesarean delivery rate (n (%)) 19/25 (76) 29/41 (71) 23/31 (74) 0.89

Normal delivery rate (n (%)) 6/25 (24) 12/41 (29) 8/31 (26)

Female baby birth rate (n (%)) 19/31 (61.29) 22/44 (50) 16/34 (47.05) 0.48

Male baby birth rate (n (%)) 12/31 (38.71) 22/44 (50) 18/34 (52.95)

Apgar score (mean ± SD) 9.90 ± 0.30 9.93 ± 0.26 9.76 ± 0.07 0.34

Birth height (cm; mean ± SD) 48.61 ± 2.73 49.14 ± 2.89 49.18 ± 4.33 0.75

Birth weight (kg; mean ± SD) 3.01 ± 0.69 3.25 ± 0.70 3.16 ± 0.72 0.35

Neonatal birth abnormality rate (n (%)) 0/31 (0) 1/44 (2) 3/34 (9) 0.23

p-values derived from Pearson’s chi-square test or Fisher’s exact test and ANOVA.
fron
TABLE 4 Embryo quality and pregnancy outcome in association with MTHFR polymorphism.

Embryo and pregnancy parameters CC (n = 51) CT (n = 80) TT (n = 60) p-value

Number of MII oocytes (mean ± SD) 9.04 ± 4.97 9.70 ± 6.08 8.17 ± 6.10 0.31

Cleavage rate (n (%)) 327/342 (95.61) 652/674 (96.74) 417/434 (96.08) 0.65

Normal fertilization rate (n (%)) 327/408 (80.14) 652/785 (83.06) 417/490 (85.10) 0.37

High-quality embryo rate (n (%)) 148/327 (45.26) 343/785 (43.69) 192/417 (46.04) 0.72

Blastocyst formation rate (n (%)) 79/186 (42.47) 171/396 (43.18) 102/259 (39.38) 0.62

Implantation rate (n (%)) 44/107 (42.47) 58/160 (36.25) 47/114 (41.22) 0.62

Clinical pregnancy rate (n (%)) 33/51 (64.71) 47/80 (58.75) 40/60 (66.67) 0.59

Miscarriage rate (n (%)) 8/33 (24.24) 6/47 (12.77) 9/40 (22.5) 0.35

Live birth rate (n (%)) 25/51 (49.02) 41/80 (51.25) 31/60 (51.66) 0.96

Singleton birth rate (n (%)) 19/25 (76) 38/41 (92.68) 28/31 (90.32) 0.17

Multiple-birth rate (n (%)) 6/25 (24) 3/41 (7.32) 3/31 (9.68)

p-values derived from Pearson’s chi-square test or Fisher’s exact test and ANOVA.
tiersin.org

https://doi.org/10.3389/fendo.2022.1084463
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wan et al. 10.3389/fendo.2022.1084463
According to several reports, MTHFR polymorphisms in 677 C>T

and hyperhomocysteinemia lead to decreased global sperm DNA

methylation and are considered to be risk factors for semen

parameters and human infertility (7, 15). Testing for paternal

MTHFR polymorphisms may also be crucial because it is widely

acknowledged that the paternal genome has a significant role in

embryonic development (24). Nevertheless, the correlation between

MTHFR genetic polymorphism variants in men and clinical

outcomes has not been well established. The present study is the

first to investigate the effects of paternal MTHFR polymorphisms

on clinical outcomes following ICSI treatment in terms of

embryonic quality, pregnancy, and neonatal outcomes. Based on

our findings, the male MTHFR genetic polymorphism (677 C>T)

does not affect embryo quality, the frequency of early losses, or

neonatal outcomes after ICSI treatment. Dobson et al. previously

found that paternal MTHFR C677T was not associated with

pregnancy rate, positive pregnancy tests, and clinical pregnancy

rate in IVF treatment (20). Meanwhile, Poorang et al. also indicated

that no significant difference was observed in the frequency of the

methylated MTHFR epigenotype between recurrent pregnancy loss

(RPL) and non-RPL men (15). This is somewhat surprising; one

possible reason for the lack of association between paternalMTHFR

genotype and ICSI outcomes in our study is that oocytes may store

folic acid or other methyl donors, such as SAM. It is known to all

that according to the Chinese guidelines for the prevention of neural

tube defects (NTDs) by periconceptional folic acid

supplementation, all women trying to conceive ought to take 400

or 800 µg of folate daily at the time of preparation (25). Another

possible reason is that the sample size of ICSI patients (N = 191) in

our research seems insufficient. This is one of the limitations of our

study. It should be emphasized that although there was no

statistically significant difference, the proportion of birth

abnormalities was higher in the MTHFR 677TT group. Possibly,

increasing the sample size could bring about more

convincing results.

There has recently been evidence that the MTHFR

polymorphism (677 C>T) is associated with male infertility in

different populations (8, 13, 14, 26). Indeed, scientists found the

222 Val allele (677CT) and Val–Val (677TT) genotypes were

significantly more frequent in azoospermic and oligozoospermic

men (27–29). A similar result was found in our study of male

patients with severe and very severe oligozoospermia. In our

study, however, we found that sperm DFI was not affected by the

MTHFR polymorphism, consistent with several reports

published by Cornet et al. (7).

In conclusion, we did not find any association between the

paternal MTHFR C677T polymorphisms and embryonic

quality, pregnancy outcomes, including miscarriage, live birth

rate, or neonatal outcomes, such as preterm delivery, birth

height, birth weight, or gestational age at delivery. Further

studies investigating the combined effect of paternal MTHFR

polymorphisms on ICSI outcomes with larger sample sizes

are recommended.
Frontiers in Endocrinology 06
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