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Emerging concepts on Leydig
cell development in fetal and
adult testis
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Leydig cells (Lc) reside in the interstitial compartment of the testis and are the

target of Luteinising hormone (LH) for Testosterone (T) production, thus

critically regulates male fertility. Classical histological studies have identified

two morphologically different populations of Lc during testicular development

[fetal (FLc) and adult (ALc)]. Recent progress in ex vivo cell/organ culture,

genome-wide analysis, genetically manipulated mouse models, lineage

tracing, and single-cell RNA-seq experiments have revealed the diverse

cellular origins with differential transcriptomic and distinct steroidogenic

outputs of these populations. FLc originates from both coelomic epithelium

and notch-active Nestin-positive perivascular cells located at the gonad–

mesonephros borders, and get specified as Nr5a1 (previously known as

Ad4BP/SF-1) expressing cells by embryonic age (E) 12.5 days in fetal mouse

testes. These cells produce androstenedione (precursor of T, due to lack of

HSD17b3 enzyme) and play critical a role in initial virilization and patterning of

the male external genitalia. However, in neonatal testis, FLc undergoes massive

regression/dedifferentiation and gradually gets replaced by T-producing ALc.

Very recent studies suggest a small fraction (5-20%) of FLc still persists in adult

testis. Both Nestin-positive perivascular cells and FLc are considered to be the

progenitor populations for ALc. This minireview article summarizes the current

understanding of Lc development in fetal and adult testes highlighting their

common or diverse cellular (progenitor/stem) origins with respective

functional significance in both rodents and primates. (227 words)
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1 Introduction

Testosterone (T), which is produced by testicular Leydig cells (Lc), is essential for the

fetal differentiation of male reproductive track, virilization of male external genitalia,

pubertal maturation of testicular Sertoli cells (Sc) followed by meiotic progression of male

germ cells (Gc) and spermiation, and controls sex drive/libido, making it an absolutely
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indispensable factor for male fertility (1). Historically, in 1850,

German anatomist Franz von Leydig identified these cells in the

interstitial compartment of seminiferous tubules (2). Bouin and

Ancel suggested that androgens are produced by the interstitial

Lc in 1903 (3). During the 1960s, Hall & Eik-Nes (4) and Ewing

& Eik-Nes (5) independently proposed the involvement of

pituitary gonadotropins in synthesis of testicular androgens.

Finally, in 1969, Hall et al., demonstrated the bioconversion of

T from cholesterol by these cells (6).

Classical histological studies have identified two

morphologically distinct sub-populations of Lc during

testicular development (7–10). In fetal mouse testis, Lc gets

specified soon after sex determination (8–10). The expansion of

fetal Leydig cells (FLc) occurs throughout the in utero life,

peaking during birth, gradually declines and subsequently

disappears during neonatal/pre-pubertal life (8–10). During

pubertal testicular maturation, a second population known as

Adult Leydig cells (ALc) get differentiated and colonize the

testicular interstitium to support masculinity and male fertility

throughout adulthood (8–10). The ALc are stimulated by

luteinizing hormone (LH); LH binds its cognate receptor (LH-

R, a typical G protein coupled receptor) on the ALc and initiate

cAMP signaling, which in turn activates the protein kinase A

(PKA) to induce expression of steroidogenic acute regulatory

protein (STAR). STAR operates on mitochondria to stimulate

cholesterol transport from outer to inner membranes and

thereby initiates the bioconversion of pregnenolone by

CYP11A and subsequently leading to synthesis of cholesterol.

However, both of the Lc populations are significantly different

in terms of origin, morphology, histology, and physiology

(8–10). This article critically discusses the fundamental

concepts of Lc differentiation during fetal and post-natal

testicular development.
2 FLc

2.1 Origin

In mice, the nascent bipotential gonads arise from the

coelomic epithelial layers surrounding the mesonephros, at

embryonic age (E) E 9.5-10.5 days (10, 11) . The

transcriptional cascade of sex determination gets triggered

with activation of Sry gene by Sc in XY embryos at E 11.5

days (11). FLc get specified in XY gonads by E 12.5 days (11).

Multiple cellular origins have been demonstrated in contributing

to the FLc population e.g.- coelomic epithelium, neural crest,

notch active, Nestin-positive perivascular cells located at the

gonad-mesonephros border region (12, 13) or interstitial nuclear

receptor subfamily 5, group A, member 1 (Nr5a1or Ad4BP/SF-

1)-positive (14) and WT1 (Wilms’ Tumor Gene 1) - positive

stem/progenitor cells (15) etc.
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2.2 Differentiation

The FLc expands in number throughout the fetal life,

peaking around birth (10). Despite being mitotically quiescent

(16, 17), the dramatic rise in FLc numbers is considered to be

contributed by the constant differentiation of multiple stem/

progenitor cells (18). Several factors like NR5A1 or SF1, dosage-

sensitive sex reversal, adrenal hypoplasia critical region, on

chromosome X, gene 1 (DAX1), desert hedgehog (DHH),

platelet-derived growth factor- A (PDGF-A), orphan nuclear

receptor chicken ovalbumin upstream promoter transcription

factor II (COUP-TFII), insulin-like growth factor 1 (IGF-1),

hepatocyte growth factor (HGF), homeobox gene Aristaless

(ARX), etc. regulate this differentiation process (19). Double

mutants of Sf-1 and Daz1 show a complete loss of FLc suggesting

a synergistic effect of these two factors on FLc differentiation

(20). Both DHH and PDGF-A are derived from fetal Sc and act

via respective receptors e.g.- Patched (Ptch) 1 and PDGF-a
expressed by interstitial stem/progenitor cells (18, 19).

Furthermore, data from either Dhh-null mouse (showing

reduced numbers of FLc) (21) or over-expressing/

constitutively activated DHH-induced downstream signaling

molecule Gli 1 (Gli- Kru¨ppel family of transcription factor1)

(22) and Smo (23) (showing hyperplasia of FLc) confirmed the

crucial inductive role of DHH signaling in FLc differentiation.

COUP-TFII plays a critical role in maintaining the FLc pool

either by promoting the differentiation of FLc-progenitor cells

(24) or by repressing the functional maturation of FLc via

antagonizing SF1 (25). However, constitutive activation of

Notch signaling in fetal testes leads to a dramatic decrease in

FLc number, suggesting Notch signaling (downstream target

Hes1) being a negative regulator of FLc differentiation (26).

Notably, vasculature-dependent Notch signaling has been

shown to regulate the critical balance between self-renewal and

differentiation of FLc stem/progenitor cells (13). Firstly, FLc-

progenitors that are derived from coelomic epithelium

progressively lose Notch activation as they ingress into fetal

testes, thereby directly get differentiated to FLc (13). Secondly,

FLc-progenitors that originate from mesenchymal-perivascular

progenitors get exposed to high Notch signal [since they co-

migrate with JAG-1-positive (Notch-ligand) endothelial cells

from the mesonephros into nascent testis] thereby serving as a

potential pool of Lc-stem cells via self-renewal (13).
2.3 Key features & functions

Differentiated FLc are found to be transcriptionally robust as

compared to that of the non-steroidogenic, interstitial, SF1-

positive stem/progenitor cells. To be specific, the transcription

of essential enzymes/cofactors involved in energy-generating

critical metabolic pathways e.g. – glycolysis, TCA cycle,
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oxidative phosphorylation etc. are found to be augmented in FLc

(27). Despite being responsive towards embryonic pituitary LH,

functions of FLc are completely independent of gonadotropins

(10). Notably, unlike ALc, mouse FLc express 11b-hydroxylase
(Cyp11b1) & 21-hydroxylase (Cyp21) however lack 17b-
hydroxysteroid dehydrogenase type 3 (Hsd17b3). Therefore,
although they can respond to ACTH signals but fail to convert

androstenedione to T (10) . In feta l mouse testes ,

androstenedione gets converted totestosterone by Sc (10). In

mice, intra-testicular T is first detectable at E 13.0 days then

peaks at E 17-19 days prior or during the time of birth (1). In

utero life,testosterone induces the initial virilization of the male

external genitalia (1). The other critical hormone produced by

FLc is INSL3, a member of the insulin-relaxin family of peptides

which operates via G-protein coupled receptor relaxin/insulin-

like family peptide receptor 2 (RXFP2). Null mutations in either

Insl3 or Rxfp2 result in cryptorchidism (28, 29). On the other

hand, transabdominally descended ovaries are found in female

mice over-expressing Insl3 (30, 31).
2.4 Fate in post-natal testes

The differentiation of FLc occurs throughout the fetal life,

peaking during birth, gradually declining by the first two weeks

of postnatal life, and subsequently disappears completely during

pre-pubertal age (1). The concentration of intra-testicular (and

in systemic circulation)T also drops along with the progressive

regression of FLc in neonatal mouse (32). However, external

supplementations of T from day 7 to 11 of postnatal age

substantially augments Notch signalling in Androgen Receptor

(AR) expressing perivascular cells indicating that T may provide

a feedback response to maintain the FLc stem/progenitor pool

(32). Classical histological studies (33–35) and recent lineage

tracing experiments (36) have demonstrated that a sub-fraction

of FLc are retained in adult testes, contributing around 5–20% of

the total Lc population. This unique population of FLc persistent

in adult testes remains functionally debatable as they remain

unresponsive towards T, despite sharing comparable

transcriptomic profiles with that of ALc (37, 38).
3 ALc

3.1 Origin, differentiation and capacity
of regeneration

Since it has been claimed that FLc are replaced by ALc in

pre-pubertal mouse testes, researchers continue to argue on the

presence of a common stem/progenitor pool for both FLc and

ALc (18, 19) or alternatively having a unique stem/progenitor

system specific to ALc (39). Although FLc number remains

unaffected in AR knockout (AR-KO) mice, no ALc is detectable
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in adult testes indicating unlike, FLc, T plays a crucial rolein ALc

differentiation (10). Furthermore, fetal androgen deficiency leads

to compromised ALc function during adulthood indicating a

critical role of T in programming these interstitial stem/

progenitor cells during fetal life (40). As discussed in the

earlier section, these stem/progenitor cells are non-

steroidogenic, interstitial cells of multiple lineages e.g.- SF1-

positive cells (18, 19) or Nestin-positive perivascular cells (13)

having mesenchymal-like morphological appearances. Like FLc,

DHH, PDGF-A, and COUP-TFII are considered to be the

critical regulators of ALc differentiation (10, 18, 19). Dhh

ablation with Sf1 haploinsufficiency leads to the complete loss

of both FLc and ALc (41). Furthermore, insulin-like growth

factor I (IGF1), Leukemia inhibiting factor (LIF), and c-kit-

ligand/Stem cell Factor (SCF) are also reported to be essential for

the functional maturation of ALc (10). The presence of a potent

stem/progenitor pool for ALc has been confirmed by the

regeneration of ALc within 3 months of administration of

alkylating agent ethylene sulfonate (EDS) in adult rat testes

(42–45). It is evident that EDS can selectively ablate ALc only

and the Lc-stem/progenitor cells remain insensitive towards it

(44, 45). However, external administration of T inhibits/delays

such regenerative process confirming T acts on perivascular cells

and suppresses the differentiation of Lc-stem/progenitor cells

(13, 32). Some studies also claim that the peritubular-myoid cells

may serve as the precursor of ALc, too (18). Sc-derived Anti

Mullerian Hormone (AMH) has been shown as a negative

regulator of Lc-stem/progenitor cells (10). AMH over-

expressing (46) or AMH-KO (47) adult mice have been shown

to have poor ALc number and Lc hyperplasia respectively.

Characterization of these stem/progenitor cells of ALc has also

been achievable by isolation and culture from 7-days-old

neonatal rat testes. These cells continue to show indefinite

proliferative capacity (via self-renewal) in long-term culture,

thyroid hormone, IGF1, and LH, stimulated in vitro maturation

with elevated expression of 3b-HSD & production of T and post-

transplantation colonizing ability to the host-testicular

interstitium and subsequent differentiation to ALc in vivo (48).
3.2 Uniqueness

As compared to FLc-morphology, ALc have relatively lower

lipid droplets with a robust network of smooth endoplasmic

reticulum (sER) and tubule-vesicular mitochondria, etc. (10).

Moreover, unlike FLc, ALc are ACTH insensitive and the

development and function of ALc are completely dependent

on LH and T (49). Recent studies have demonstrated the

requirement of AR in LH-induced differentiation of ALc by

inhibiting the adrenal characteristics in the testicular

interstitium (50). The expressions of StAR, Cyp11a1, Cyp17a1,

3b-HSD type 6, and 17b-HSD type 3 are substantially higher in

ALc as compared to FLc (1). Finally, unlike FLc, the maturing/
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differentiating ALc are mitotically active and TGFb, IGF1, NGF,
etc signaling pathways promote such proliferation (10).
3.3 Function

In the adult male, androgens critically maintain masculinity

(sex drive/erectile function) and fertility (1). ALc expresses both

LH-receptor (LH-R) and AR (10). LH critically regulates Lc

steroidogenesis (biosynthesis of testicular androgen, T) and T

acts on ALc via an autocrine fashion (1). Although Lc-specific

AR knockout (KO) mice are found to be sub-fertile (51, 52), both

LH-b (53) and LH-R (54) null mice are sterile, indicating critical

endocrine dependence of ALc.T is absolutely required for

pubertal maturation of Sc (55), the establishment of blood-

testis barrier (BTB) (56), progression and completion Gc

meiosis and spermiation (57).
4 Difference between rodent and
primate Lc

Rodent and primate Lc differ in structure, development and

function (10). There are three fundamental differences observed

in human FLc as compared to that of the rodents.

Firstly, FLc of both the species are independent of fetal LH

action, despite being responsive towards LH signal (58). Mouse

FLc express LH-R by E 16 days (10), whereas in humans LHCG-

R (both for LH and hCG) is detectable in testes by the 11th week

of gestation (10). FLc number or external genitalia are unaffected

in hpg (hypogonadal lacking GnRH) (59), LH-R (54), LH-b (53)

and ARKO (60, 61) adult male mice suggesting murine FLc are

functionally independent of LH or T. In humans, T

concentration peaks during 12-14 weeks of gestation fetal

circulation coinciding with placental hCG which is around 10-

fold higher than pituitary LH (10). The decline in fetal T is also

well-correlated with the drop in circulatory hCG during the

second trimester (10). Furthermore, although patients having

LH-b mutations show normal masculinized development (62,

63), LHCG-R mutations lead to pseudo-hermaphroditism (64)

indicating a definite role of hCG on FLc functioning in men.

Secondly,T is the major androgen in fetal murine testes (FLc

produces androstenedione via the canonical pathway which gets

converted toT in Sc).However, dihydrotestosterone (5a-DHT) is

a more potent/bioactive androgen recently reported to be critical

for the virilization of human male external genitalia (1). In the

reproductive tract of adult men,T gets bio-converted to 5a-DHT

by 5a-reductase type 2 (coded by the Srd5a2 gene) and men with

inactive Srd5a2 mutations have ambiguous genitalia (10).

However, recent studies have indicated that an alternative

backdoor pathway is operational in human male fetal testes

where 5a-DHT is biosynthesized [without getting converted to

dehydroepiandrosterone (DHEA), using 5a-dihydro-
Frontiers in Endocrinology 04
progesterone, allopregnanolone,17-hydroxyallopregnanolone,

androsterone and androstanediol as intermediates] from

androstanediol by alfa-keto-reductases (coded by Akrc2 and

Akrc4) (65). The critical role of this DHEA-independent

backdoor pathway has been established from comparable birth

defects found in men with Srd5a2 or Akrc2/4 inactivating

mutations (65, 66). Intriguingly, male fetal genital

development and fertility remain unaffected in Hsd17b3null
mice having complete ablation of canonical production ofT

(via intermediates like DHEA and androstenedione) (67).

Finally, unlike mice and rats, primate Lc development is

triphasic (68, 69). In humans, FLc gets dedifferentiated by the

end of the second trimester with a decline of hCG, very few FLc

successfully escape this event and remain active during the time

of birth (69). A unique population of neonatal-Lc (NLc) is

reported in neonatal/infant boys for the first 4-6 months of

age when the hypothalamic-hypophyseal testicular (HHT) axis

remains active (70). These NLc are morphologically comparable

to FLc with anastomosing sER, pleomorphic mitochondria,

extensive trans-Golgi network, etc. (69). However, like ALc

these NLc lack cytoplasmic reticulum Reinke crystals

(69).Multiple claims have been postulated on the fate of NLc,

e.g. during the onset of the juvenile period (inactive HHT axis)

massive involution occurs in NLC population, NLc undergoes a

partial regression at the end of in the infantile period and a

limited fraction of NLc survive synthesizing a low basal T

throughput the juvenile age (69). The ALc population

originates from the dedifferentiating NLc population or

directly differentiates from the stem/progenitor cells (69).
5 Lc aging

Progressive decline in T production is manifested with

testicular aging (71–74). Studies in both humans and rats have

demonstrated that the efficacy of LH-induced T production gets

diminished with testicular age, despite no significant change in

the number of ALc (75, 76). Features of Lc aging include

morphological alteration of sER and mitochondrial structure,

compromised LH-R signaling/responsiveness, impaired

cholesterol trafficking, poor expression and activity of

steroidogenic enzymes, accumulation of reactive oxygen

species (ROS) due to metabolic impairment/disruption of the

pro/antioxidant balance and deficiency in autophagy leading to

poor cellular homeostasis (75). Furthermore, the EDS–induced

regenerative capacity of the Lc-stem/progenitor population is

also not maintained for the long term indicating a probable

influence of the aged microenvironment on Lc function (75). A

most recent model of premature aging having constitutive

CISD2 (CDGSH iron sulfur domain 2, a redox-active protein

of ER) deficiency confirmed that the age-related dysfunction of

Lc is not completely intrinsic but largely depends on the

associated supportive microenvironment of the testes (77).
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6 Conclusion and future directions

In summary, both traditional histological studies and

modern high-throughput multi-omics approaches using

genetically manipulated mice models have revealed the diverse

origin of Lc during testicular development (8–10, 12, 13). Both

FLc and ALc may be lineage independent of each other or share

multiple common cellular precursor cells (18, 19). However,

both of them significantly differ in terms of structure and

function (1). The migration of mesonephric endothelial cells

to the nascent testis establishes a testis-specific vasculature

pattern which is considered to be the prerequisite of testicular

cord formation- precursor structure of seminiferous tubules (11,

78). This testicular vascular niche recently has been shown to

direct the Notch signaling to maintain the critical balance

between perivascular- stem/progenitor cells and differentiating

Lc (12, 13). The existence of persistently present androgen-

insensitive FLc in adult testes also has been established (36).

Although FLc from rodents or primates is independent of fetal

LH signaling, human FLc is fully dependent on placental hCG
Frontiers in Endocrinology 05
(10). However, both LH andT signaling are critical regulators of

ALc function in both species (10). Figure 1 schematically

represents the developmental schedule of Lc in both mouse

(A-I, A-II) and human (B-I, B-II) discussed here, whereas

Table 1 summarizes the critical difference between FLc and

ALc in both mouse (A) and human (B).

Recent advancements in targeted reprogramming [like

selective ablation of Wt1 in Ctnnb1 (cadherin-associated

protein b1) over-expressing Sc results into Lc cell-like tumor

development (79), manipulation of SF1, GATA4,etc. in either

fibroblast cells (80) or in induced human pluripotent stem cells

(81) leads to T producing Lc- like cells,etc.] has revolutionized

the field with a potential clinical promise for cell-based therapy

for hypogonadism (82, 83). However, more in-depth studies are

still required in different stages of testicular maturation (fetal,

neonatal, pre-pubertal, and adult) using lineage tracing and

single-cell RNA-seq approaches to reveal unique molecular

markers for each different stage of Lc differentiation of each

lineage including Lc-stem/progenitor cells. Testicular

macrophages [critical for fetal testicular morphogenesis (84)
A-I

B-I

A-II

B-II

FIGURE 1

Endocrinal regulation and functions of three major types of Leydig cells. Panel A: In mouse; A-I: Relationship between the development of FLc
and ALc with blood testosterone level during various phases of murine life. A-II: Synthesis, hormonal regulation, and function of Leydig cells in
mice. Panel B: Human; B-I: Association between FLc, NLc, and ALc development and blood testosterone levels throughout human life. B-II:
Synthesis, hormonal regulation, and function of different lineages of Leydig cells in humans.
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and spermatogonial differentiation (85)] are developmentally

coupled with interstitial Lc (86, 87). Sincere efforts are also to be

made in the future to investigate the molecular crosstalk between

these two cells with respect to testicular development and aging.
Frontiers in Endocrinology 06
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TABLE 1 Cross-species comparative study on different Leydig cell functions.

1A: Comparison between properties and functions of murine fetal and adult Leydig cells.

Key points Fetal Leydig cell (FLc) Adult Leydig cell (ALc)

Developmental
Time of
Occurrence

Appear during Embryonic age (E) 13.5-15.5 days, peak at E 17-19 days,
remain up to Post-natal age (P) 15-21 days, a small fraction (5-20%)
persistent in adult testes

Appear during P 15-21 days, peak by P 30-40 days, remain constant
throughout adulthood

Origin

Coelomic epithelium, neural crest, notch active, Nestin-positive
perivascular cells located at the gonad-mesonephros border region,
interstitial Nr5a1or Ad4BP/SF1-positive and WT1 - positive stem/
progenitor cells

FLc, notch active, Nestin-positive interstitial perivascular cells,
interstitial Nr5a1or Ad4BP/SF1-positive cells

Inducer SF1, DAX1, DHH, PDGF-A, COUP-TFII, IGF-1, HGF, ARX, etc.
SF1, DHH, PDGF-A, COUP-TFII, IGF-1, LIF, SCF, Thyroid
hormone, etc.

Repressor Notch, COUP-TFII Notch, AMH, EDS, etc.

Morphology High lipid droplets
Lower lipid droplets with a robust network of smooth endoplasmic
reticulum (sER) and tubule-vesicular mitochondria

Mitotic activity Not Active
Differentiating ALc are active by IGF-1, TGF-b, NGF, etc., and
differentiated ALc are inactive.

ACTH
responsiveness

Responsive Insensitive

LH dependence Responsive but independent Completely dependent

T dependence Independent Significantly dependent

Regenerative
capacity

Not Established Well established, within 3 months of EDS exposure

Steroidogenic
markers

Like the adrenal cortex, high Cyp11b1&Cyp21but no 17b-HSD type 3, etc. High StAR, Cyp11a1, Cyp17a1, 3b-HSD type 6, 17b-HSD type 3 etc.

Major
hormones
secreted with
functions

Androstenedione (gets converted to T by fetal Sc) for initial virilization of
the male external genitalia and INSL3 for testicular descent.

T (which gets converted to 5a-DHT in the male genital tract) for
maintaining masculinity and fertility (pubertal maturation of Sc etc.,
meiotic progression of Gc, spermiation, sex drive/libido, etc.).

1B: Comparison amongfunctions of mouse and human FLc, NLc and ALc.

Key points Mouse Human

Mode of Devel-
opment Biphasic Triphasic

FLc

i) Though responsive but independent of fetal LH and/or

ii) Synthesize Androstenedione

iii) Persistent in adult testes

i) Though responsive but independent of fetal
LH, but completely dependent on placental
hCG

ii) Synthesize T and 5a-DHT (via DHEA
independent backdoor pathway)

iii) Completely absent in pubertal/adult testes

NLc No such transitional stage reported
During neonatal/infantile life with a robust
HHT axis for the first 4-6 months of post-natal
age

ALc
Originate from either FLc or notch active, Nestin-positive interstitial perivascular cells,
interstitial Nr5a1or Ad4BP/SF1-positive cells

Originate from either NLc or interstitial stem/
progenitor cells
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