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Changes in cellular metabolism involving fuel sources are well-known

mechanisms of cancer cell differentiation in the context of carcinogenesis.

Metabolic reprogramming is regulated by oncogenic signaling and

transcriptional networks and has been identified as an essential component of

malignant transformation. Hypoxic and acidified tumor microenvironment

contributes mainly to the production of glycolytic products known as lactate.

Mounting evidence suggests that lactate in the tumor microenvironment of

colorectal cancer(CRC) contributes to cancer therapeutic resistance and

metastasis. The contents related to the regulatory effects of lactate on

metabolism, immune response, and intercellular communication in the tumor

microenvironment of CRC are also constantly updated. Here we summarize the

latest studies about the pleiotropic effects of lactate in CRC and the clinical value of

targeting lactate metabolism as treatment. Different effects of lactate on various

immune cell types, microenvironment characteristics, and pathophysiological

processes have also emerged. Potential specific therapeutic targeting of CRC

lactate metabolism is also discussed. With increased knowledge, effective

druggable targets might be identified, with the aim of improving treatment

outcomes by reducing chemoresistance.
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1 Introduction

Colorectal cancer (CRC) is the second most common adult cancer in females and the third

most common in males. It is the fourth leading cause of cancer-related death, accounting for

9.2% of deaths worldwide (1, 2), and is considered a global health concern. Despite consistent

improvements in morbidity and mortality with the application of chemotherapy and targeted

therapies, there is an urgent need to develop novel effective treatment strategies (3). Human

tumor cells and their structures have important complex of metabolic patterns with marked

heterogeneity (4, 5). The concept of “metabolic reprogramming” refers to the reprogramming

metabolic pathways in the presence of mutations responsible for the initiation of cancer to allow

developing tumor cells to acquire metabolic properties that support cell survival, escape
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immune surveillance, and hyperplastic growth. It is considered to be an

essential component of malignant transformation, and its unqiue

metabolic phenotype is associated with tumor genotype, tumor

progression and metastasis (6–8). “Metabolic reprogramming” is

regulated by oncogenic signaling and transcriptional networks to

alter the metabolic patterns of glucose, amino acids, lipids, and

nucleic acids through processes such as aerobic glycolysis, glutamine

catabolism, macromolecular synthesis, and nuclear acid homeostasis (4,

9). In the context of carcinogenesis, alterations in cellular metabolism

involving fuel sources (glucose, fatty acids, etc.) have emerged as an

important mechanism for the differentiation of cancer cells (10).

Abnormal metabolites or intermediates of tumor metabolism play an

important role in regulating the proliferation, differentiation, activation

and function of immune cells (11–13). Its metabolism is highly

dynamic, responding to both intracellular and extracellular effects (7),

and could affect the immune system, which is closely related and

collectively referred to as “immune metabolism” (14).

The hypoxic tumor microenvironment induces the glycolytic

phenotype of many cancer cells, and glycolysis and mitochondrial

oxidative phosphorylation(OXPHOS) jointly maintain the balance of

energy metabolism in cancer cells (15). Cancer cells still prefer to

utilize glycolytic functions rather than OXPHOS, even under

normoxic conditions. This phenomenon is the Warburg effect, also

known as aerobic glycolysis, which is a crucial component of

metabolic reprogramming in most tumors (16). A variety of

malignant tumors, including CRC, have been found to undergo

glycolysis at a higher rate than non-tumor tissues. The metabolic

regulation and alteration of cancer cells are complex. The energy

obtained from glycolysis is conducive to the proliferation, invasion,

migration, and epithelial-mesenchymal transition(EMT) of cancer

cells (17). The mechanisms leading to this “selfish” metabolic

reprogramming may be related to the Hypoxia-inducible factor-1

(HIF-1) overexpression (18), activation of oncogenes such as c-Myc

and Ras, and PI3K/Akt/mTOR pathways (19–25). Oncogenic

mutations and proto-oncogene expression can enhance the activity

of certain metabolic enzymes to acquire and maintain sufficient

nutrients to meet synthetic and metabolic requirements at the edge,

leading to metabolic reprogramming of cancer cells. The high

expression of c-Myc increases the level of metabolic enzymes and

enhances glycolysis, glutaminolysis, nucleotide metabolism, and fatty

acid synthesis (21–23). Mutated Ras and c-SRC may assist cancer cells

in transporting extracellular proteins and cell debris to phagocyte

more amino acids and lipids (20). K-Ras can directly regulate the

conversion of glycolytic enzymes such as Hexokinase 1 (HK1) to

cause mitochondrial dysfunction, enhance glycolysis, and promote

the occurrence of tumors in colorectal and pancreatic tissues (26, 27).

In addition, some differentially expressed lincRNAs could be

regulated by specific molecular signaling pathways to promote

cellular apoptosis or inhibit cellular proliferation in CRC cells via

the Warburg effect (28, 29). One of the final metabolites in the aerobic

glycolysis process of tumor tissue is lactate.

As a relatively common and ancient signaling molecule, lactate

easily accumulates in the tissue microenvironment, leading to lactic

acidosis (30). Additionally, lactate may regulate metabolic pathways,

immune responses and intercellular communication in the tumor

microenvironment, and has a wide range of physiological functions in

carbon metabolism, cell signaling and epigenetic regulation (20, 29–
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31). Elevated levels of VEGF and arginase are involved in metabolism

and immune regulation in the tumor microenvironment, with the

acidification of lactic acid caused by excessive glycolysis. Lactate

mediates the polarization of Mj toward pro-tumor phenotypes.

Classically activated Mj regulates metabolic and inflammatory

phenotypes by promoting the production of lactate in glycolysis

mediated by the AKT/mTOR/HIF-1a pathway, and their alternate

activation has different pathway changes (31–34).

In this review, we summarize the latest studies on lactate as a

metabolite and signaling molecule of glycolysis, which promotes

metastatic progression of CRC through metabolic reprogramming,

activation of immune cell interactions, and effects on epigenetic

modifications of immune cells from oncological and immunological

perspectives. More importantly, their implications for future study are

evaluated, and potential strategies targeting lactate metabolism are

proposed to break through the restriction of current therapies.
2 Effect of lactic acid on immune cells
in the tumor microenvironment of CRC

It is well known that the immune system contains a variety of

immune cells, such as monocytes, macrophages, dendritic cells(DCs),

lymphocytes, and natural killer cells (NK cells) (35). The resting

immune system can be activated to respond to external stimuli such

as inflammation or infection (36), and immune cells in different states

may have different metabolic patterns to meet changing demands for

energy use (37, 38). In addition to being present in cancer cells, the

shift in metabolic patterns can be a feature of the rapid proliferation of

other immune cells (37). Immune cells in the TME may be

accompanied by different degrees and types of cancer cell

infiltration. Cancer cells can inhibit the antitumor effect of immune

cells by competing and consuming nutrients necessary for

metabolism or reducing the metabolic fitness of immune cells in

the tumor microenvironment by other methods (39, 40). More

importantly, glucose is an essential nutrient for immune cells to

proliferate and function (41, 42). Like cancer cells, TILs require

nutrients in the TME to support their proliferation and

differentiation and further participate in the immune response (43).

As confirmed in previous studies, lactic acid plays a vital role in the

metabolic coupling of cancer-associated fibroblasts(CAFs) and cancer

cells. It targets and inhibits CAFs glycolysis through different

metabolic patterns to reduce the invasion and metastasis of tumor

cells (44). Both lactate-mediated intracellular signaling and nuclear

induction are all involved in this regulation (Figure 1).
2.1 T cells

T cells are involved in the immune regulation of almost all tumors.

They play an essential role in the pathogenesis and progression of CRC

(45), mainly including helper CD4+T cells and cytotoxic CD8+T cells.

The differences in the activation status and types of T cells may be

closely related to the prognosis of CRC patients (46–48). The activation

of CD4+T cells by antigen-presenting cells promotes the migration of

highly cytotoxic CD8+T cells to the tumor site and plays the role of
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tumor immune mediators (49). Exhausted CD8+T cells have abundant

high expansion potential in TME (48). As a commonmetabolite, lactate

can be rapidly produced by both tumor cells and activated T cells, but

its function is not unchanged. Due to the heterogeneity of the

microenvironment, it may have different effects on the activation of

T cells and antitumor immunity. An example is that lactic acid can

inhibit the activity of histone deacetylase, leading to the increase of

H3K27 acetylation at the Tcf7 super-enhancer site and the increase of

Transcription factor 7(Tcf7) gene expression to induce the stemness of

CD8+T cells and enhance the anti-tumor immunity (50). Notably,

Galon studied samples from about 400 patients and concluded that

CD8 and CD45RO T cells at the tumor core were better prognostic

factors in CRC than traditional clinical staging (49). Lactic acid(LA)

promoted the expression of CXCL10 and Cadherin-11 in CD115+

precursor cells through the PI3K-AKT pathway, and CXCL10

stimulates the recruitment of CD4+ T cells to the metastatic site and

induces RANKL production, leading to CRC bone metastasis (51, 52).

On the other hand, lactic acidosis can not only promote the

activation of T cells but also inhibit the activation of P38 and JNK/c-

JUN pathways triggered by T cell receptors to inhibit the immune

function of cytotoxic T lymphocytes(CTLs) and regulate the change

of IFN-g (53). Tumor-derived lactate can down-regulate the level of

nicotinamide adenine dinucleotide through translation, leading to

autophagy defects, and then affect mitochondrial overactivation and

reactive oxygen species(ROS) production, induce apoptosis of naive t

cells, and reduce the antitumor immunity mediated by it (54).

Accordingly, the immunosuppressive properties of lactate may be

limited to hypoxic conditions (55), where the hypoxic and acidified

microenvironment created further complicates the effects of lactate on

T-cell function. Lactate as a fuel can support the tricarboxylic acid

(TCA) cycle regeneration of effector T cells, meet the energy supply of
Frontiers in Endocrinology 03
effector T cells, and promote the activation of effector T cells (56).

Moreover, although the co-transport of lactic acid and H+ through

MCT-1 and MCT-4 can prevent excessive intracellular acidification

in activated T cells, the acidic environment tends to inactivate MCT

isoforms and inhibit glycolysis rate through adverse feedback

endpoints, ultimately inhibiting CD8+T cell activation (57). Newly

presented evidence suggested that lactic acidosis can inhibit the

production of IFN-g by CD8+ T cells in CRC, and HIF-1a
increases the transcription and enrichment of PTTG3P in the

promoter region of CRC under the hypoxic microenvironment

(58). MiR-1271-5p/PTTG3P/YAP1 axis promoted CRC cell

proliferation and the production of glycolytic product lactate

(Figure 1). The resulting aggravation of lactate acidification may

further facilitate the proliferation and metastasis of CRC cells (58). It

has also been confirmed that the accumulation of lactic acid produced

by CRC cell metabolism and the acidified environment can not only

inhibit the glycolysis and function of T cells (59) but also interferes

with the translocation of NFAT to the nucleus (Figure 1). In this case,

calcineurin regulates NFAT transport ASIC2-mediated acidosis

through calcineurin/NFAT1 (C/N1) signaling (60, 61), reversal of

the C/N1 pathway reduces the invasion and metastasis of CRC cells

under acidosis by down-regulating ASCI2 expression (61).
2.2 NK cells

NK cells, first identified in 1975 by Herberman and Kiessling et al.

(62, 63) are a distinct lymphocyte subset that arises primarily from

standard lymphoid progenitor cells and contains characteristic

cytoplasmic granules that constitute a third lymphoid cell in a

MHC-I and antibody-independent manner. Tumors lacking MHC-I
FIGURE 1

Immune modulation by lactate in the tumor microenvironment of CRC. The tumor microenvironment (TME) of CRC is filled with various cell populations.
In addition to CRC cells, there are a variety of immune cells and tumor stromal cells. Similarly, the metabolic reprogramming of CRC cells is also
inseparable from the regulation of the immune system, and immune metabolism plays an essential role in the pathogenesis and progression of CRC.
CRC cells consume most nutrients and secrete excessive lactate into the CRC extracellular microenvironment. Hypoxic and lactate-acidified TME have
specific immunosuppressive properties. Lactate also regulates the metabolism of innate and adaptive immune cells by affecting the function of T cells,
natural killer (NK) cells, and dendritic cells(DC). Lactic acid can attract Treg cells and help Foxp3+ regulatory T (Treg) cells to maintain their
immunosuppressive function in an acidic environment. In addition, lactate, as an extracellular molecule regulating tumor-associated macrophages(TAM)
polarization, affects the phagocytic activity and carcinogenic effect of TAM by promoting Sirpa expression. This image was designed by Qianhui Sun and
drawn by Figdraw. All authors confirm the originality of it and retain copyright to it.
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expression or carrying stress-induced proteins will cause the

expression of NK cell-stimulating receptors in tumor cells to be

stimulated by signals and then be expressed uncontrolled with

ligands on tumor cells (64). Typically, another indirect way to kill

tumors is through the immunomodulation of various immune cells

(dendrites, macrophages, T cells, etc.) and their interaction to

produce a variety of cytokines, growth factors, and chemokines

(64). Cancer cells killed by NK cells can deliver tumor antigens to

dendritic cells, triggering their maturation and differentiation (65).

The production of lactic acid in CRC liver metastases reduces the pH

value of the tumor microenvironment, and the excessively acidic

tumor microenvironment can induce mitochondrial stress and

apoptosis of liver-resident NK cells (66).

Mechanistically, lactate produced by tumor cells through

glycolysis is exported to the extracellular space through MCT-1/4

and proton through the overexpression of GLUT1 and lactate

transporter, and the in vitro acidic microenvironment induces

endogenous ROS-mediated apoptosis of liver NK cells (67, 68).

Thus, blocking mitochondrial ROS accumulation can effectively

prevent NK cell apoptosis. Metabolic regulation measures aimed at

restoring local NK cell activity and preventing tumor growth still have

certain prospects and research value (66). Many lactic acids produced

by tumor cell metabolism induce the expression of IFN-g by

inhibiting the up-regulation of NF-kb and NFAT signaling

pathways (Figure 1), which inhibits NK cells and T cells, induces

the apoptosis of immune cells, and leads to immune escape (69).
2.3 Tregs

Based on research findings, Foxp3+ Tregs are a subpopulation of

lymphocytes with unique oxidative properties, which is essential for

maintaining immune homeostasis and self-tolerance (70–72). They

could regulate the function of various immune cells (lymphocytes,

dendritic cells, macrophages, etc.) by secreting immunomodulatory

cytokines and cytolytic molecules, and has a wide range of inhibitory

activities (71, 73). Lactate may also activate CCL20/CCR6 axis by

inducing the expression of TREM-1 in TAM cells, thereby attracting

Treg aggregation and playing an immunosuppressive role (74, 75).

Lactate serves as a fuel to support gluconeogenesis and TCA cycle

function in Treg cells (76). When effector and regulatory T cells are

exposed to high lactate and low glucose, LDH reduces NAD+ to

NADH. Still, the reduced NADH is not available for the NAD+

-dependent enzymatic reactions of GAPDH and PGDH. The targeted

inhibition of glycolysis and serine production regulates T cell

metabolism (77). Tregs suppress glucose metabolism by blocking

the CD28 signaling pathway through CTLA-4 expression (78). The

large amount of lactate produced by glucose deprivation in the TME

also stimulates Foxp3 expression (Figure 1), allowing effector T-cells

to differentiate into regulatory T cells. Foxp3 expression through Myc

transcriptional repression helps Treg cells to regulate in a high L-

lactate environment and simultaneously enhances NAD production

and OXPHOS (79). Recently, Treg cells were indicated to promote the

translocation of NFAT1 into the nucleus through MCT1 transport

during lactic acidosis (Figure 1), and then upregulated the expression

of PD-1 (80). More importantly, Alkbh5 might affect the efficacy of

immunotherapy in CRC by regulating the expression of MCT4/
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Slc16a3 and the composition of lactate in TME, tumor-infiltrating

Treg cells and MDSC cells, which has been identified as a potential

immunotherapy target (81).
2.4 Monocytes, macrophages, and DCs

In sporadic CRC, M1 macrophages can accumulate in adenomas,

but when malignant transformation into CRC occurs, M2

macrophages become the dominant macrophages (82). CRC cells

mainly take advantage of the anti-inflammatory phenotype of M2

macrophages to inhibit tumor killing and immune surveillance (83).

The pro-healing and matrix remodeling activities of M2 macrophages

can promote tumor growth and metastasis (82).

DCs are often damaged in TME and play a critical role in

initiating and promoting antitumor immune responses. Also, DC

dysfunction can lead to immunosuppressive TME, and the highly

immunosuppressive TME of CRC can affect the clearance and

killing of tumors by the immune system (83). In response to lactic

acidosis, monocytes differentiate into dendritic cells with an

immunosuppressive phenotype (84, 85). They can promote CRC

development by inducing the differentiation of TAMs in CRC to an

M2-like phenotype through up-regulation of HIF-1a expression (86,

87). Lactate can also promote the differentiation of monocytes

into macrophages with an inflammatory prototumer phenotype (31,

88). STAT6 phosphorylation in CRC may be an intrinsic key driving

M2-type bone marrow-derived macrophages (BMDMs, Mj)-M2j
polarization (89). The decrease of STAT6 phosphorylation can inhibit

M2F polarization and down-regulate the expression of BRD4 and

PD-L1 in M2F, thereby weakening the immunosuppressive effect of

lactic acid in TME (90).

CircPCLE1 promotes glycolysis to produce lactate in CRC by

regulating the miR485-5p/ACTG1 axis, which drives TAM M2

polarization (manifested as increased IL-10 and MRC1) and EMT

(91, 92). MCT-1 absorbs lactate secreted by CRC cells and

promotes gluconeogenesis and PGE2 production in THP-1

monocytes (93). Activated HIF-1a in THP-1 monocytes

synthesized PGE2 and gluconeogenesis through the transcription

of COX-2 and PEPCK, which ultimately promotes the growth of

inflammation-related colorectal tumors (93). The interaction

between tumor and TAM has long been considered related to

TME, and lactate has recently been reported as an extracellular

signaling molecule that regulates TAM polarization. Its elevated

level is vital for the maintenance of TAMs activity (94, 95).

Additionally, CRC progression has been reported to be associated

with the expression of suppressor receptor signaling regulator

alpha (Sirpa) in TAMs. CRC cell-derived lactate induces nuclear

translocation of transcription factor Ap-2a from the cytoplasm of

TAMs (Figure 1), which promotes Sirpa expression in TAMs by

binding to the mouse Elk-1 promoter (96). Transgenic

macrophages were specifically expressing Elk-1 regulate TAM

phagocytic activity and CRC progression in a SIRPa-dependent
manner (Figure 1), providing a potential target for macrophage

immunotherapy in CRC patients (96). When excessive glucose

consumption cannot give tumor cells continue to power the

tumor microenvironment is in a state of severe hypoxia and

lactic acid acidification, and TME elements such as CAFs and
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TAM and glutamine can replace glucose to CRC cell energy,

transfer to maintain CRC cell proliferation activity (97).
3 Lactate homeostasis in CRC cells

CRC cells mainly use short-chain fatty acids such as butyric acid,

propionic acid, and acetic acid as energy sources, which are converted

to lactic acid through glycolysis to supply energy and energy

conversion for CRC cells (98, 99). Lactic acid is a metabolite in the

final stage of glycolysis. A variety of intestinal bacteria in the

colorectal tumor microenvironment can produce lactic acid by

fermentation (99). Regulation targeting these bacteria can also affect

the proliferation and metastasis of CRC cells through metabolic

reprogramming of lactic acidn (100). LDH can mediate the

bidirectional conversion of pyruvate and lactate and is an

important participant in the anabolism of lactate (101).

Interestingly, lactate efflux and uptake are dependent on the MCT

transporter family. MCT-1 and sodium-coupled monocarboxylate

transporter 1(SMCT1) are two major transmembrane transporters in

enterocytes, located at the apical side of the intestinal epithelium

(102). While cells are highly glycolytic, MCT is employed to transfer

lactate and H+ from intracellular LDH, and MCH can regulate

intracellular lactate and pH to prevent lactic acidosis (103). In the

MCT family, MCT-4 can mediate lactate excretion by tumor cells or

stromal cells, whereas MCT-1 mainly mediates lactate uptake by

oxygen-containing cells in tumors (104). MCT-1 is not only found in

cancer cells but also expressed in stromal cells such as fibroblasts and

endothelial cells. As an important mediator of lactate uptake, MCT-1

can be upregulated on the plasma membrane of cancer cells of the

lung, stomach, respiratory tract, colon, and nervous system (105).

MCT-1 has long been identified as the major butyrate (BT)

transporter in colonic epithelial cells. More importantly, lactate has

been evaluated to play a dual role in CRC progression, with lactate

export for cell survival and BT import for cell death (106). In addition

to the synthesis and translocation of lactate, pathophysiological

changes at other stages of glycolysis may also affect the last step of

glycolys is , such as reprogramming metabol ism of the

metabolite lactate.
4 Effect of lactic acid on
chemoresistance of CRC

Microenvironmental hypoxia as well as abnormal HIF-1 activity

in tumor cells are one of the causes of resistance to chemotherapy

and/or radiotherapy in solid tumors (107–109).This is partly because

most of the patients with CRC have problems of chemoresistance,

recurrence and metastasis, it is necessary to explore the key targets

and drugs to reverse resistance and improve the therapeutic efficacy.

5-FU and platinum are widely used in CRC, and recent studies have

found that chemoresistance to 5-FU is the main reason affecting the

therapeutic outcome of CRC patients (110). At the same time, the

glycolytic phenotype is associated with tumor growth and

chemoresistance, as mentioned above, targeting lactate metabolic

reprogramming, whether signaling molecules or metabolites, maybe
Frontiers in Endocrinology 05
a potential pathway to reverse chemoresistance. The putative

mechanisms of lactate in CRC chemotherapy resistance are

summarized in Figure 2.

In general, patients with chemotherapy resistance are often

accompanied by mismatch repair system (MMR) defects. Qu

discoverd that lactic acid fermented by Clostridium tropicalis can

enhance oxaliplatin tolerance in colon cancer patients, and targeted

therapies that inhibit this metabolic pathway can significantly

improve chemotherapy tolerance and MMR expression in vivo

(111). Targeted inhibition of lactate production metabolism can

significantly improve chemotherapy tolerance and reduce MMR

expression. Furthermore, MLH1 expression could be down-

regulated by the GPR81-cAMP-PKA-CREB axis to promote

chemotherapy tolerance (Figure 2), and targeted inhibition of

lactate production in C. tropicalis may improve the therapeutic

effect (111). Increased levels of m6A and METTL3 were found in 5-

FU resistant CRC cells, and targeted inhibition or knockdown of

METTL3 could inhibit glycolysis in cancer cells and restore chemo-

sensitivity to 5-FU in resistant CRC cells (112). The evidence

highlighted that METTL3 enhanced LDHA expression, catalyzing

the conversion of pyruvate to lactate, thereby promoting glycolysis

and enhancing chemotherapy tolerance to 5-FU in tumor cells.

METTL3/LDHA axis-induced glucose metabolism may be a

potential therapeutic target for CRC cells to overcome 5-FU

resistance (112), which was demonstrated to be associated with

overexpression of GLUT1 in colon cancer cells. Inhibition of

GLUT1 by the specific inhibitor WZB117 significantly increases the

sensitivity of 5-FU-resistant cells to chemotherapeutic agents

(Figure 2), providing an additional therapeutic option for patients

with 5-FU-resistant colon cancer (113).

B7-H3, an immunoregulatory protein, is widely overexpressed in

multiple tumor types and plays a vital role in tumor progression

(114). Up-regulation of B7-H3 can promote glycolysis to produce

large amounts of lactate by promoting the expression of HK2 in CRC

cells, which is a crucial mediator of B7-H3-induced CRC resistance,

and the expression of the two is positively correlated in tumor tissues.

B7-H3 increased glucose consumption and lactate production by

promoting HK2 expression in CRC cells, and HK2 was a key mediator

of B7-H3-induced CRC chemoresistance (115). More importantly,

targeting HK2 inhibitors can reverse B7-H3-induced increase in

aerobic glycolysis and B7-H3-endowed chemoresistance of cancer

cells. B7-H3 may become an emerging regulator targeting and

inhibiting chemoresistance for CRC treatment (115). As a miRNA

molecular sponge, circRNA can be involved in the pathophysiological

processes of CRC cells, such as proliferation, migration, invasion, and

apoptosis. Circ0094343 has been found to inhibit glycolysis and

lactate metabolite production in CRC cells through the miR-766-

5p/TRIM67 axis to play an antitumor role(Figure 2), while also

enhancing the sensitivity to various chemotherapeutic drugs (5-FU,

Oxaliplatin, and doxorubicin) to improve the efficacy of

chemotherapy (116).

Dietary flavonoid kaempferol was found to overcome resistance

to 5-Fu treatment by modulating the miR-326-hnRNPA1/A2/PTBP1-

PKM2 axis to decrease lactate production during glycolysis in

resistant CRC cells (Figure 2) (117). Jiedu Sangen decoction(JSD)

may inhibit glycolysis and reverse 5-FU resistance through PI3K/

AKT/HIF-1a signaling pathway (Figure 2), thereby inhibiting
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glycolysis, inducing apoptosis, and enhancing anti-tumor activity

(118). Currently, wogonin has been regarded as a promising

reversal agent for multi-drug resistance and may reverse cancer

therapy resistance by inhibiting the PI3K/AKT pathway to

downregulate HIF-1a expression and glycolytic flux (119). Also,

wogonin could reverse drug resistance in HCT116 cells during

hypoxia, which was mechanistically associated with down-

regulation of the expression of glycolysis-related proteins (HKII,

PDHK1, LDHA) and reduced lactate production (Figure 2) (120).

The specific PI3K/AKT inhibitor LY294002 has been demonstrated

by in vitro and in vivo experimental studies that the regulation of the

PI3K pathway is associated with the tolerability and therapeutic

effects of chemotherapeutic drugs such as 5-FU, paclitaxel,
Frontiers in Endocrinology 06
oxaliplatin, irinotecan, and adriamycin (121–125). Recently,

LY294002 has been chiefly targeted with other medications, and the

combination of chemotherapeutic drugs is used to overcome

therapeutic resistance and enhance the killing impact on tumor

cells. The combination of PI3K inhibitors BEZ-235 and GDC-0941

was found to have a synergistic effect on CRC cells under hypoxia. It

could inhibit cyclin D1, Bcl-2, pAKT, pS6, p4EBP1, and pERK from

reducing lactate release and increasing the antiproliferative effect of

sorafenib (Figure 2) (126). The mTOR pathway highlights targeting

tumor cell proliferation, survival, and metabolism to play a critical

role in tumor development, treatment resistance, and poor prognosis

(127). Excess lactate secreted by cancer cells undergoing metabolic

reprogramming acts as a signaling molecule to modulate immune
FIGURE 2

Lactate affects the immunometabolic mechanism of chemoresistance in CRC Schematic illustration showing mechanisms of action associated with
targeting lactate metabolic reprogramming to reverse chemoresistance in CRC cells. (A) Schematic illustration showing the effect of lactic acid
fermented by Clostridium tropicalis on chemotherapy tolerance in CRC patients. When Clostridium tropicalis produces large amounts of lactate, the
GPR81-cAMP-PKA-CREB axis is activated, and MLH1 expression is downregulated, increasing chemotherapy tolerance. (B) Schematic illustration showing
lactate regulation and reversal of chemotherapy resistance mediated by the mechanism of regulating gene expression by miRNA. circ_0094343 inhibits
glycolysis of CRC cells through the miR-766-5p/TRIM67 axis, reduces lactate production, and enhances the sensitivity of chemotherapeutic drugs such
as 5-FU. Dietary flavonoid kaempferol can inhibit lactate production and reverse chemotherapy resistance by regulating the miR-326-hnRNPA1/A2/
PTBP1-PKM2 axis. (C) Schematic illustration showing the effects of glycolysis rate-limiting enzymes on lactate metabolism and drug resistance in CRC
tumor microenvironment. When HK2 is inhibited, B7-H3-induced lactate and CRC chemotherapy resistance are reduced. (D) Schematic illustration
showing the reversal of 5-FU resistance by PI3K/AKT pathway in CRC cells. Jiedu Sangen decoction (JSD) and wogonin can inhibit the PI3K/AKT
pathway, down-regulate the expression of HIF-1a, reverse the chemoresistance, and increase the apoptosis of CRC cells. (E) Schematic illustration
showing the effect of the glucose transporter GLUT1 on lactate metabolism and 5-FU resistance. WZB117 can specifically inhibit glucose transport by
GLUT1, reduce glycolytic raw materials and lactate production, and improve 5-FU resistance. nosine monophosphate; PKA, protein kinase A; CREB,
cAMP-response element binding protein; JSD, Jiedu Sangen decoction; HK2, hexokinase 2; MLH1, Recombinant MutL Homolog 1; PTBP1, Recombinant
Polypyrimidine Tract Binding Protein 1;PKM2, Pyruvate kinase isozyme type M2; TRIM 67, Tripartite Motif Containing 67; HIF-1a, hypoxia-inducible
factor-1a.
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responses through extracellular acidification as an energy source by

shuttling between different cell populations and is also a mechanistic

target for inhibiting the mTOR pathway in immune cells (95).

Therefore, how to overcome resistance to mTOR inhibitors in the

future, as well as actively target the mTOR pathway using metabolic

disturbances in cancer cells, may be of great help in the treatment of

CRCs (128, 129).
5 CRC therapeutics targeting lactate
production and translocation

5.1 Target lactate synthesis

As part of the tumor microenvironment, the gut microbiota has

attracted much attention in recent years. A variety of intestinal

commensals and their metabolites have been reported to trigger

inflammatory cascades and oncogenic signaling, affecting the

growth and spread of CRC (130), particularly these bacterial

species, such as Peptostreptococcus anaerobic, Bifidobacterium, and

Lactobacillus species (131–134). An intestinal mucosal barrier is a

functional unit, and its inherent properties as a semipermeable barrier

are essential for maintaining health. D-lactate, an oxygenated

carboxylic acid produced by bacterial fermentation, is a valuable

indicator of the integrity of the intestinal mucosal barrier (135). The

gut mucosal barrier is a functional unit, and its inherent properties as

a semi-permeable barrier are essential for maintaining health. D-

lactate, an oxygenated carboxylic acid produced by bacterial

fermentation, is a useful indicator for evaluating the integrity of the

intestinal mucosal barrier (135). Lactococcus produced by lactic acid

bacteria strains can synthesize antimicrobial peptides themselves,

coupled with lactic acid bacteria fermentation to generate large

amounts of lactic acid (Table 1). Acetic acid leads to acidification of

the intestinal microenvironment, which together plays a role in

inhibiting the growth of some pathogenic gram-negative bacteria in

the intestine (136). Metagenics are substances that, unlike probiotics

in the gut, are released by metabolic activities of microorganisms or

are produced through microorganisms and can be applied as

carcinogenic inhibitors (137). Lactate delivered by epigenetic

supplements can maintain epithelial integrity by stimulating

intestinal stem cell ISC proliferation through Wnt/ß-catenin

signal ing in Paneth cel ls and intest inal stromal cel ls ,

downregulating colonic inflammation-regulated immune tolerance

by inhibiting YAP and NF-kB activation through GPR81, a cell

surface receptor for lactate (138, 139).

In recent years, LDH has emerged as an emerging anticancer

target and can mediate the bidirectional conversion of pyruvate and

lactate. It is a tetramer composed of two different subunits, LDHA

and LDHB (101). LDHA is the predominant isoform found in skeletal

muscle and other highly glycolytic tissues that catabolizes pyruvate to

lactate and produces NAD+ (Figure 3). In contrast, LDHB converts

lactate to pyruvate or uses lactate as a nutrient source for oxidative

metabolism or gluconeogenesis (140). Transcription factors HIF-1a
and c-Myc can up-regulate the expression of LDHA gene and inhibit

the expression of LDHB gene from maintaining higher glycolytic

activity and produce more lactate (141). LDH inhibitors have been
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demonstrated to significantly increase radiosensitivity associated with

G2/M cell cycle arrest by downregulating the expression of heat shock

proteins such as HSP70 by increasing extracellular lactate/pyruvate

concentrations, and pharmacological targeting of radiotherapy

combined with LDH in the future can reduce radiotoxicity to

normal tissues while increasing tumor-killing ability (142). N-

Hydroxyindole-based inhibitors are small molecule inhibitors that

compete with pyruvate and NADH and exhibit good antiproliferative

and starvation-inducing abilities in various cancers (143).

Interestingly, the clinical use of LDH inhibitors is limited by the

interaction of other drugs with low selectivity or complex cellular

components, and the heterogeneity of LDH expression between

different cancers requires more cell type-specific studies in this

field. Epigallocatechin gallate inhibited CRC angiogenesis and

lactate production in glycolysis through Circular Ribonucleic Acid

Actin Gamma 2/Micro Ribonucleic Acid-370-5p Pathway and

reduced CRC cell viability (Table 1) (144).

Metabolic reprogramming, widespread in cancer cells, is balanced

oxygen supply by HIF-1 as a master regulator and coordinated at the

transcriptional level. HIF-1 also increases oncogene activity through

the inactivation of tumor suppressors (e.g., VHL) and through PI3K/

AKT/mTOR in cancer cells, ultimately driving cancer progression

and metabolic alterations that are resistant to treatment (145). IDF-

11774 is a HIF-1 inhibitor that targets HSP70 and inhibits

mitochondrial respiration, activates AMPK and downregulates HIF-

1a expression in HCT116 cells under hypoxia, and inhibits

extracellular acidification rate (ECAR) and oxygen consumption

rate (OCR) in cancer cells by downregulating HIF-1a target gene

expression reducing glucose uptake, lactate levels, and NAD+ and

NADP+ contents (Table 1) (146, 147). Although there are many in

vitro and in vivo studies of HIF-1 inhibitors, only a few have reached

clinical trials, and no clinical trials for CRC can be used as a clinical

reference. Atractylenolide was validated to inhibit CRC cells

proliferation and invasion by generating ROS through the AKT/

mTOR signaling pathway and decreasing lactate production during

the Warburg effect (148). Consistently, PI3K/AKT inhibitor

LY294002 or mTOR inhibitor Rapamycin will inhibit CRC

progression by aggravating KLK10 gene knockdown and inhibiting

mTOR-mediated HIF-1a activation and decreasing lactate

production (Table 1). Such results suggest that KLK10 silencing can

affect CRC cells growth and glucose metabolism through PI3K/AKT/

mTOR signaling and may become a potential target to support CRC

treatment in the future (149, 150).
5.2 Target lactate transport

P. freudenreichii uses lactate in colon cells as an ideal carbon

source for producing hyperpropionic acid and acetic acid, which

oxidizes to pyruvate and then reduces to propionic acid (Table 1)

(151). Typically, the increase of short-chain fatty acids such as acetic

acid and propionic acid can not only enhance the cytotoxicity to CRC

cells but also play a particular role in immunity by promoting histone

acetylation and regulating the transcriptional activity and

immunoregulatory genes of various tumor suppressors, thereby

reducing the risk of inflammatory CRC (105, 152). It has been

confirmed that infection of CRC cells with Fusobacterium
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TABLE 1 The most relevant pre-clinical and clinical trials of drugs targeting the regulation of lactate metabolism against CRCs.

Agents Targets Intervention mechanism Functions Stage References

D-lactate Oxygenated
carboxylic acids
produced by
bacterial
fermentation

Intestinal mucosal barrier
dysfunction leads to bacterial
translocation

Increased d-lactate levels are characteristic of
intestinal mucosal barrier dysfunction in
patients with early CRC

Preclinical
study

135

Lactococcus Lactic acid bacteria
strains

Inhibition of invasion of Caco-2/
TC7 cells by gram-negative bacteria

Antimicrobial peptides together with fermented
lactic acid acetic acid lead to acidification of the
intestinal microenvironment and inhibit the
growth of some pathogenic gram-negative
bacteria in the intestine

Preclinical
study

136

Lactate Epigenetic
supplements

Wnt/ß-catenin signaling in Paneth
cells and intestinal stromal cells,
and GPR81-related signaling
pathways inhibit YAP and NF-kB
activation

Maintaining epithelial integrity by stimulating
intestinal stem cell ISC proliferation through
Wnt/ß-catenin signaling in Paneth cells and
intestinal stromal cells, and downregulating
colonic inflammation-regulated immune
tolerance by inhibiting YAP and NF-kB
activation through GPR81-related signaling
pathways

Preclinical
study

138, 139

Epigallocatechin gallate —— Circular Ribonucleic Acid Actin
Gamma 2/Micro Ribonucleic Acid-
370-5p Pathway

Decreasing CRC cell viability by inhibiting
angiogenesis and glycolytic lactate production in
CRC

Preclinical
study

144

Atractylenolide —— AKT/mTOR signaling pathway Decreasing lactate production during the
Warburg effect

Preclinical
study

148

IDF-11774

HIF-1 inhibitor Targeting HSP70, inhibiting
mitochondrial respiration, activating
AMPK, and downregulating HIF-1a
expression

Inhibiting extracellular acidification rate (ECAR)
and oxygen consumption rate (OCR)

Preclinical
study

146, 147

LY294002
PI3K/AKT inhibitor PI3K / AKT / mTOR signaling

pathway
Impacting CRC cell growth and glucose
metabolism by silencing KLK10

Preclinical
study

151

Rapamycin mTOR inhibitor PI3K / AKT / mTOR signaling
pathway

Reducing lactate production by aggravating
KLK10 gene knockdown and inhibiting mTOR-
mediated HIF-1a activation

Preclinical
study

152

P. freudenreichii Enteric
microorganism

Stimulated by extracellular lactate in
CRC to promote the "Warburg
effect"

The increase of short-chain fatty acids such as
acetic acid and propionic acid can not only
enhance the cytotoxicity to CRC cells but also
play a certain immunosuppressive role and
reduce the risk of inflammatory CRC by
promoting histone acetylation and regulating
the transcriptional activity and
immunoregulatory genes of various tumor
suppressors

Preclinical
study

105, 151, 152

Fusobacterium
nucleatum

Enteric
microorganism

Decreasing levels of Toll-like
receptor 4 signaling to MYD88,
leading to activation of the nuclear
factor-kB, increased expression of
miR21, and RAS GTPase RASA1 by
activating Toll-like receptor 4
signaling to MYD88, leading to
activation of the nuclear factor-kB

Patients with higher tissue Fusobacterium
nucleatum DNA and miR21 levels are,
therefore, more likely to have a poor prognostic
survival outcome

Preclinical
study

152

AZD3965 A selective inhibitor
of MCT-1

Increasing TCA cycle-related
metabolites,13c-glucose
mitochondrial metabolism enhanced
oxidative pyruvate dehydrogenase
and anaplastic pyruvate carboxylase
flux

The increase of the bioenergy of HT29 cells by
causing an increase in circulating metabolic
intermediates in the TCA cycle in MCT-4 +

HT29 cells

Phase 1
clinical
trials

156, 157

Dickkopf2(DKK2) —— VEGF/VEGFR independent
pathway, activating downstream
mTOR signaling pathway: via
demethylation of miR-493-5p in an
autocrine or paracrine manner

Accelerating aerobic glycolysis in CRC cells and
secretes more lactate to stimulate angiogenesis.
Stimulating CRC progression

Preclinical
study

159

(Continued)
F
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nucleatum can increase their invasion and proliferation activity and

xenograft tumorigenicity in mice (152). Mechanistically,

Fusobacterium nucleatum decreased Toll-like receptor 4 signaling

to MYD88, leading to activation of the nuclear factor-kB, increased
expression of miR21, and RAS GTPase RASA1 by activating Toll-like

receptor 4 signaling to MYD88, leading to activation of the nuclear

factor-kB. Patients with higher tissue Fusobacterium nucleatum DNA

and miR21 levels are, therefore, more likely to have a poor prognostic

survival outcome (152).

Hence, Fusobacterium nucleatum can be used as a probiotic to

regulate the conversion of lactic acid and short-chain fatty acids to

regulate immune responses in the prevention or treatment of colon

cancer. MCT-1 mediated transport of 14C-BT in Caco-2 cells is

regulated by acute or chronic exposure to some drugs (indomethacin,

acetaldehyde, caffeine, theophylline) and drugs of abuse

(tetrahydrocannabinol and 3, 4-methylene dioxymethamphetamine)

(153–155). Acetaldehyde, structural analogs of butyric acid such as

indomethacin, competitively inhibit the uptake of butyric acids, such

as acetate promoting plasma membrane relocation of MCT-1 and

further triggering metabolic changes such as increasing glucose

consumption and lactate production, thereby increasing the

glycolytic phenotype of CRC cells (105). AZD3965, as a selective

inhibitor of MCT-1 in CRC therapy, may cause an increase in

circulating metabolic intermediates in the TCA cycle in MCT-4+
Frontiers in Endocrinology 09
HT29 cells, which is further converted into bioenergy in HT29 cells

(Table 1) (156, 157). In addition, AZD3965-induced substitution of

SR13800, an inhibitor of MCT-1 in Raji cells, reported a decrease in

bioenergetics and levels of tricarboxylic acid cycle intermediates

accompanied by lactate accumulation (156, 157). These findings

exploit the potential to combine MCT-1 inhibitors with

mitochondrial-targeted therapies clinically. AZD3965 is currently in

Phase 1 clinical trials and is entering the expansion phase of the trial.

Understanding how it acts on cellular metabolism and identifying

pharmacodynamic(PD) biomarkers for MCT-1 regulation are

necessary to develop further and promote this combination of

drugs and other mitochondrial-targeted therapies (156).

DKK2 is a secreted protein highly expressed in metastatic CRC

tissues. It can stimulate angiogenesis by accelerating aerobic glycolysis

and secreting more lactate in CRC cells through the classical VEGF/

VEGFR independent pathway or activating the downstream mTOR

signaling pathway (158). In addition, DKK2 stimulates CRC

progression by initiating the demethylation of miR-493-5p in an

autocrine or paracrine manner through a novel VEGF-independent,

but energy-metabolism-related pathway (159). In these cases, DKK2

may be a potential anti-angiogenic target in treating patients with

advanced CRC (159). 7ACC2, as an inhibitor of MCT, can increase

PH in the microenvironment by blocking lactate trafficking from

tumor cells, inhibit Human Umbilical Vein Endothelial Cells tube
TABLE 1 Continued

Agents Targets Intervention mechanism Functions Stage References

7ACC2 Inhibitor of MCT Increasing PH in the
microenvironment by blocking
lactate trafficking from tumor cells,
inhibiting Human Umbilical Vein
Endothelial Cells tube formation

Increasing PH in the microenvironment by
blocking lactate trafficking from tumor cells,
inhibit Human Umbilical Vein Endothelial Cells
tube formation

Preclinical
study

159

Lonidamine Inhibitors of MCT-1,
MCT-2, and MCT-4

Enhancing glutamine catabolism Inhibiting lactate transport, leading to
intracellular lactic acidosis and promoting other
metabolic pathways (e.g., glutamine catabolism)
to compensate for reduced glycolytic flux

Preclinical
study

160, 161

a-cyano-4-
hydroxycinnamic acid,
4,4'-
diisothiocyanatostilbene-
2,2'-disulphonic acid,
and quercetin

Inhibitor of MCT Disrupting the glycolytic phenotype Increasing intracellular lactate content and
induced tumor cell death in CRC cells

Preclinical
study

162

WZB117 GLUT1 inhibitors Stimulating platelet-derived growth
factor

Increasing glycolysis, intracellular lactate
content, and other acidic metabolites

Preclinical
study

165, 166

Oridonin Active diterpenoid Rapidly inactivate p-AMPK, down-
regulate the expression of GLUT1
and MCT-1

Inhibiting glucose uptake, reducing lactate
output, and inducing autophagy and death in
CRC cells

Preclinical
study

167, 168

Dioscin —— Enhancing the binding of the E3
ligase FBW7 to c-myc, which helps
to inhibit HK2

Inhibiting glycolysis in CRC cells to exert
antitumor activity

Preclinical
study

172

Benz A selective HK2
inhibitor

Inhibiting HK2 enzymatic activity Decreasing lactate production and leading to
increased apoptosis and mitochondrial
membrane potential loss

Preclinical
study

173

Epigallocatechin-3-
gallate

Phosphofructokinase
inhibitor

Up-regulating P53 gene and
regulating NF-kB, JAK/STAT3
pathway, and inhibiting PFK
activity

Reducing the rate of lactate production by
glycolysis

Preclinical
study

175–178
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formation, reduce subcutaneous tumor growth, and ultimately inhibit

CRC progression and metastasis in vivo and vitro (159).

LND acts as a common inhibitor of MCT-1, MCT-2, and MCT-4,

inhibiting lactate transport, leading to intracellular lactic acidosis, and

promoting other metabolic pathways (e.g., glutamine catabolism)

to compensate for reduced glycolytic flux (160, 161). Amori et al.

have found that a-cyano-4-hydroxycinnamic acid, 4,4 ’-

diisothiocyanatostilbene-2,2’-disulphonic acid, and quercetin

disrupt the glycolytic phenotype and induce tumor cell death by

targeting the inhibition of MCT (162). In addition, these MCT

inhibitors combined with 5-FU application can enhance the

cytotoxicity of 5-FU and enhance the anticancer effect because they

inhibit the proliferation of CRC cells (162). MCTs responsible for

extruding lactate into the extracellular space may play a key role in

CRC development. The application of these transporters combined

with conventional treatment of CRC is expected to be a potential new

therapeutic target. Therefore, further investigation is warranted to

understand how LND drugs can be combined with chemotherapy and

physical therapy in the future to improve selectivity for lesion tissues

and maintain low toxicity in normal tissues (163).
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5.3 Target glucose transport

GLUT1, as a human glucose transporter, can transfer glucose into

cells and metabolize it to pyruvate through glycolysis for further

reduction to form lactate (164). GLUT1, as a target gene of HIF-1, is

involved in the regulation of glucose metabolism together with LDHA

and MCT-4, and some studies have found that even in the presence of

GLUT1 inhibitors (such as WZB117), if platelet-derived growth

factor is stimulated, it increases glycolysis, intracellular lactate

content and other acidic metabolites in colon cancer cells and

promotes tumor progression (Table 1) (165, 166). Oridonin is an

active diterpenoid isolated from Rabdosia rubescens in the 1970s

(167), which can rapidly inactivate p-AMPK, down-regulate the

expression of GLUT1 and MCT-1 while inhibiting glucose uptake,

reduce lactate output, and induce autophagy and death in CRC cells.

Therefore, it can be used as a glucose metabolism targeting agent for

CRC therapy (168). Oridonin has been primarily investigated

individually and in combination over the past decade. Future

studies of resistance during or after reversal therapy can be

targeted, as well as continuing to explore its novel biological
FIGURE 3

Schematic illustration showing the metabolic regulatory mechanisms of lactate involved in CRC treatment. Usually, the last step in glucose metabolism in
cancer cells is aerobic glycolysis, which efficiently breaks down the produced lactic acid. GLUT1 transports glucose from the extracellular
microenvironment into the cell and generates pyruvate through a series of reactions. This is the first stage of glycolysis, and a variety of enzymes, such as
HK and PFK, are the rate-limiting enzymes in this stage. LDHA and LDHB can mediate the bidirectional conversion of pyruvate and lactate, and sustained
activation of HIF-1a, c-Myc, and mTOR pathways induce abnormal expression of multiple glycolytic enzymes, thereby promoting aerobic glycolysis of
cancer cells. MCT-1 can mediate BT transport, and acetate promotes lactate production through the plasma membrane relocalization of MCT-1.
Glutamine and pyruvate participate in the TCA cycle in mitochondria for oxidative energy supply. Lactate controls CRC metabolic reprogramming in
multiple steps to meet the metabolic energy demands of cancer cell proliferation and metastasis. This image was drawn by Figdraw.
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mechanisms and functions in inflammation and immune

regulation (169).
5.4 Targeting rate-limiting enzymes in
glycolysis

The three rate-limiting enzymes in glycolysis are HK, PFK1 and

PK, and their reactions are irreversible (Figure 3). HK is the rate-

limiting enzyme in the first stage of glycolysis, and its expression level

helps to distinguish cancer cells from normal cells, which is a novel

antitumor therapeutic target (170, 171). HK2 is most closely related to

malignant tumors, and dioscin has been shown to promote

ubiquitination and degradation of c-myc by enhancing the binding

of the E3 ligase FBW7 to c-myc, which helps to inhibit HK2 and

inhibit glycolysis in CRC cells to exert antitumor activity (172).

Benserazide (Benz), a selective HK2 inhibitor, significantly inhibited

HK2 enzymatic activity in vitro, decreased lactate production and

intracellular ATP levels, and may lead to increased apoptosis and

mitochondrial membrane potential loss (173). Li further conducted in

vivo studies on the preparation of benserazide nanoparticles. The

results showed that 100 and 200mg/Kg of lipofectamine benserazide

had potent inhibitory results on SW480 cell xenograft mice.

Intraperitoneal injection of Benz at 300 and 600mg/Kg inhibited

cancer growth in tumor-bearing mice without showing toxic effects

(173). From a composite library of 8871 clinically used and well-

annotated pharmacological compounds, Druzhyna et al. identified

benserazide as an antitumor agent that inhibits colon cancer cell

proliferation by reducing Cystathionine-b-synthase (CBS) activity in

HCT116 and HT29 cell lines with high CBS expression. Such results

suggest that benserazide might be a potential candidate for the

experimental treatment of CRC. However, further pharmacokinetic

and pharmacodynamic studies, preclinical studies, and clinical trials

are warranted to evaluate the therapeutic potential of benserazide in

CRC (174). Phosphofructokinase (PFK) acts on the rate-limiting

enzyme of fructose-6-phosphate, and regulating of this enzyme is

also an essential step in regulating glycolysis. Epigallocatechin-3-

gallate is a safe and influential component in green tea and can

induce CRC cell apoptosis by up-regulating the P53 gene and

regulating NF-kB, JAK/STAT3 pathway, and inhibiting PFK

activity, reducing the rate of lactate production by glycolysis (175–

178). The most pre-clinical and clinical trials of drugs targeting the

regulation of lactate metabolism against CRCs are showed in Table 1.
6 Conclusion and prospect

It was well known that cancer cells can reprogram their own and

neighboring stromal cell metabolic pathways, and the more common

glycolytic processes are often deregulated to meet accelerated

bioenergetic and metabolic demands. Cancer therapy based on the

Warburg effect requires targeting cancer-specific glycolytic targeting.

As highlighted in this review, lactate plays an important role in

colorectal carcinogenesis and accelerated progression, while lactate

research has been at the forefront of defining mechanisms that

integrate nutritional signaling into metabolite fluctuations, immune
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cell plasticity, and apparent modification of cancer. Intestinal

microflora in the human intestinal microenvironment as, a

component of TME, can ferment and generate lactic acid to

regulate CRC cell activity. LDH is one of the main enzymes

connecting tumors and stroma, which can affect the interaction

between CRC and stroma through the generation of lactic acid. The

monocarboxylate transporter family is a crucial transmembrane

carrier, of which only MCT-1, MCT-2, and MCT-4 are involved in

lactate transfer in tumor cells. They try to block the final stage of

glycolytic synthesis in cancer cells by targeting lactate synthesis and

transport, which can be used as a new therapeutic target for CRC. But

MCT inhibitors also have shortcomings such as 1) lack of persuasive

pharmacodynamic trials and drug toxicity studies, 2) weak selection

specificity, and 3) combined with other targets, clinical trials related to

efficacy evaluation of chemoradiotherapy, which requires further

more meticulous studies. Targeting other stages of glycolysis, such

as the level of regulatory rate-limiting enzyme activity, can also affect

the energy supply of cancer cells, and lactate flux in the TME may

help design future complementary therapies. More importantly,

targeted lactate metabolism reprogramming has the potential to be

a potential pathway to reverse chemoresistance and increase

treatment sensitivity, and METTL3/LDHA axis-induced glucose

metabolism may be a potential therapeutic target for CRC cells to

overcome 5-FU resistance (112). WZB117, a specific inhibitor of

GLUT1, could shed light on a drug-resistant colon cancer patient

because it could promote the chemotherapeutic effect of 5-FU. The

MCT1 inhibitor AZD3965 is considered to have the potential to

combine mitochondrial targeting therapy, most likely because it has

been shown to block pyruvate-lactate transport and activate

mitochondrial metabolism in the presence of large increases in

lactate (156). Moreover, AZD3965 is currently in phase I clinical

trials and is progressing to phase II clinical trials. In order to further

evaluate the therapeutic effect and safety of drugs targeting lactate

metabolism reprogramming in CRC, more in vivo evidence needs to

be presented, and multi-center clinical trials with expanded scope

are necessary.

Currently, the epigenetic regulation of lactate on CRC genes is still

in its infancy, so it will be interesting to comprehensively define how

lactate metabolism in CRC affects epigenetic programming under

different TME conditions. Lactate-related metabolites, immune cells,

and matrix environment regulation form a close relationship

network. The upcoming results may provide clinical solid evidence

to explore effective mode of lactate-related metabolic enzyme

inhibitors in combination with other drugs and the mechanism of

treatment resistance, which may contribute to treatment strategies

and survival benefits in CRC.

However, adverse reactions, dose-limiting toxicity, low stability,

limited bioavailability, and non-specific pharmacological action

distribution in the treatment of CRC create several challenges (179).

For instance, nanotechnology has been tried to be applied in the

treatment of CRC because of its good biocompatibility,

biodegradability, and unique carrier advantages of targeted delivery

as a hotspot of pharmaceutical technology (180). Polylactide-glycolic

acid (PLGA) is an aliphatic polyester with a wide range of biomedical

applications. In terms of material composition, PLGA is a random

copolymer composed of lactic acid and glycolic acid, which has been
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approved by the FDA as an effective carrier for drug delivery and a

scaffold for tissue engineering (181). Current evidence suggests PLGA

nanoparticles as specific delivery vectors to load chemotherapeutic

drugs such as 5-FU and oxaliplatin, which improve the proliferation

inhibition and apoptosis induction effect on CRC cells and improve

the efficacy of chemotherapy (182–186). Combining PLGA

nanotechnology polymerized with other modern medical strategies

can play a role in synergizing and reducing treatment tolerance and

contribute to rational new drug development for CRC. Unfortunately,

PLGA has not yet been popularized due to its high cost and

professional preparation technology, which remains to be

further improved.
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56. Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3
reprograms t cell metabolism to function in low-glucose, high-lactate environments. Cell
Metab (2017) 25:1282–93.e7. doi: 10.1016/j.cmet.2016.12.018

57. Wu H, Estrella V, Beatty M, Abrahams D, El-Kenawi A, Russell S, et al. T-cells
produce acidic niches in lymph nodes to suppress their own effector functions. Nat
Commun (2020) 11:4113. doi: 10.1038/s41467-020-17756-7

58. Wang Y, Yu G, Liu Y, Xie L, Ge J, Zhao G, et al. Hypoxia-induced PTTG3P
contributes to colorectal cancer glycolysis and M2 phenotype of macrophage. Biosci Rep
(2021) 41:BSR20210764. doi: 10.1042/BSR20210764

59. Robert H, Joanne S, Vidalba RR, Suchita N, Trinidad MM, Fulvio D, et al. Lactate
regulates metabolic and pro-inflammatory circuits in control of t cell migration and
effector functions. PloS Biol (2015) 13:e1002202. doi: 10.1371/journal.pbio.1002202

60. Zhou ZH, Song JW, Li W, Liu X, Cao L, Wan LM, et al. The acid-sensing ion
channel, ASIC2, promotes invasion and metastasis of colorectal cancer under acidosis by
activating the calcineurin/NFAT1 axis. J Exp Clin Cancer Res (2017) 36:130. doi: 10.1186/
s13046-017-0599-9

61. Gang W, Yu-Zhu W, Yang Y, Feng S, Xing-Li F, Heng Z. The critical role of
calcineurin/NFAT (C/N) pathways and effective antitumor prospect for colorectal
cancers. J Cell Biochem (2019) 120:19254–73. doi: 10.1002/jcb.29243

62. Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse
lymphoid cells against syngeneic and allogeneic tumors. i. distribution of reactivity and
specificity. Int J Cancer. (1975) 16:216–29. doi: 10.1002/ijc.2910160204

63. Kiessling R, Klein E, Wigzell H. "Natural" killer cells in the mouse. i.
cytotoxic cells with specificity for mouse moloney leukemia cells. specificity and
distribution according to genotype. Eur J Immunol (1975) 5:112–17. doi: 10.1002/
eji.1830050208

64. Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for
malignant diseases. Cell Mol Immunol (2013) 10:230–52. doi: 10.1038/cmi.2013.10

65. Nguyen-Pham TN, Yang DH, Nguyen T, Lim MS, Hong CY, Kim MH, et al.
Optimal culture conditions for the generation of natural killer cell-induced dendritic
cells for cancer immunotherapy. Cell Mol Immunol (2012) 9:45–53. doi: 10.1038/
cmi.2011.23

66. Harmon C, Robinson MW, Hand F, Almuaili D, Mentor K, Houlihan DD, et al.
Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-
resident NK cells in colorectal liver metastasis. Cancer Immunol Res (2019) 7:335–46.
doi: 10.1158/2326-6066.CIR-18-0481

67. Pavlova N, Thompson C. The emerging hallmarks of cancer metabolism. Cell
Metab (2016) 23:27–47. doi: 10.1016/j.cmet.2015.12.006

68. Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, et al. LDHA-
associated lactic acid production blunts tumor immunosurveillance by t and NK cells. Cell
Metab (2016) 24:657–71. doi: 10.1016/j.cmet.2016.08.011

69. Sica A, Dorman L, Viggiano V, Cippitelli M, Ghosh P, Rice N, et al. Interaction of
NF-kappaB and NFAT with the interferon-gamma promoter. J Biol Chem (1997)
272:30412–20. doi: 10.1074/jbc.272.48.30412

70. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory t cells and immune
tolerance. Cell (2008) 133:775–87. doi: 10.1016/j.cell.2008.05.009

71. Okeke EB, Uzonna JE. The pivotal role of regulatory t cells in the regulation of
innate immune cells. Front Immunol (2019) 10:680. doi: 10.3389/fimmu.2019.00680

72. Shevyrev D, Tereshchenko V. Treg heterogeneity, function, and homeostasis. Front
Immunol (2019) 10:3100. doi: 10.3389/fimmu.2019.03100

73. Vignali DA, Collison LW, Workman CJ. How regulatory t cells work. Nat Rev
Immunol (2008) 8:523–32. doi: 10.1038/nri2343

74. Li X, Zhang Y, Ma W, Fu Q, Liu J, Yin G, et al. Enhanced glucose metabolism
mediated by CD147 contributes to immunosuppression in hepatocellular carcinoma.
Cancer Immunol Immunother. (2020) 69:535–48. doi: 10.1007/s00262-019-02457-y

75. Wu Q, Zhou W, Yin S, Zhou Y, Chen T, Qian J, et al. Blocking triggering receptor
expressed on myeloid cells-1-Positive tumor-associated macrophages induced by hypoxia
reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver
cancer. Hepatology (2019) 70:198–214. doi: 10.1002/hep.30593

76. Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM,
Grebinoski S, et al. Metabolic support of tumour-infiltrating regulatory t cells by lactic
acid. Nature (2021) 591:645–51. doi: 10.1038/s41586-020-03045-2

77. Quinn WJ3rd, Jiao J, TeSlaa T, Stadanlick J, Wang Z, Wang L, et al. Lactate limits t
cell proliferation via the NAD(H) redox state. Cell Rep (2020) 33:108500. doi: 10.1016/
j.celrep.2020.108500

78. Zappasodi R, Serganova I, Cohen IJ, Maeda M, Shindo M, Senbabaoglu Y, et al.
CTLA-4 blockade drives loss of t(reg) stability in glycolysis-low tumours. Nature (2021)
591:652–8. doi: 10.1038/s41586-021-03326-4
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