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Interleukin-6 is dispensable in
pituitary normal development
and homeostasis but needed for
pituitary stem cell activation
following local injury

Emma Laporte †, Silke De Vriendt †,
Julie Hoekx and Hugo Vankelecom*

Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental
Biology, Department of Development and Regeneration, University of Leuven (KU Leuven),
Leuven, Belgium
Recently, we discovered that the cytokine interleukin-6 (IL-6) acts as a pituitary

stem cell-activating factor, both when administered in vivo and when added to

stem cell organoid cultures in vitro. Moreover, its expression, predominantly

localized in the gland’s stem and mesenchymal cells, promptly increases

following damage in the adult pituitary, leading to stem-cell proliferative

activation. Given these findings that IL-6 is involved in pituitary stem cell

regulation, we addressed the question whether the cytokine has an impact

on the pituitary phenotype during active phases of the gland’s remodeling, in

particular embryonic development and neonatal maturation, as well as during

homeostasis at adulthood and aging, all unknown today. Using the IL-6 knock-

out (KO) mouse model, we show that IL-6 is dispensable for pituitary

embryonic and neonatal endocrine cell development, as well as for

hormonal cell homeostasis in adult and aging glands. The findings match the

absence of effects on the stem cell compartment at these stages. However,

using this IL-6 KO model, we found that IL-6 is needed for the acute stem-cell

proliferative activation reaction upon pituitary injury. Intriguingly, regeneration

still occurs which may be due to compensatory behavior by other cytokines

which are upregulated in the damaged IL-6 KO pituitary, although at lower but

prolonged levels, which might lead to a delayed (and less forceful) stem cell

response. Taken together, our study revealed that IL-6 is dispensable for

normal pituitary development and homeostasis but plays a key role in the

prompt stem cell activation upon local damage, although its presence is not

essentially needed for the final regenerative realization.
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Introduction

The pituitary gland is the central hub of our endocrine

system, regulating key physiological processes such as body

growth, metabolism, fertility, and stress. To perform this

prime role, the gland accommodates multiple endocrine cell

types such as somatotropes (producing growth hormone [GH]),

corticotropes (adrenocorticotropic hormone [ACTH]),

lactotropes (prolactin [PRL]), gonadotropes (luteinizing

hormone [LH] and/or follicle-stimulating hormone [FSH]),

and thyrotropes (thyroid-stimulating hormone [TSH]), as well

as a population of stem cells (1–4). Upon local damage in the

adult pituitary through transgenic endocrine (somatotrope) cell

ablation, these resident SOX2+ stem cells display an acute surge

in proliferative activity, followed by significant restoration of the

obliterated somatotrope cells in the following 4-6 months (5, 6).

Interestingly, the cytokine interleukin-6 (IL-6) was found to

acutely rise in expression upon this damage infliction,

predominantly occurring in the stem and mesenchymal cell

populations (7). In older work, expression of IL-6 in the

pituitary was reported in the folliculostellate cell population (8,

9), a heterogeneous cell compartment shown to encompass stem

and mesenchymal cells (7, 10). We recently identified IL-6 as a

pituitary stem cell-activating factor (7). IL-6 administration in

vivo results in higher proliferative activity of the pituitary SOX2+

stem cells, while in vitro supplementation of IL-6 to organoid

models that are derived from, and representative for, the

pituitary stem cell population (11, 12), substantially increases

the stem cells’ self-renewal capacity and expandability (7).

Although these findings clearly show that IL-6 is involved in

pituitary stem cell regulation, it is not known whether the

cytokine is important in specific phases of active pituitary

remodeling such as embryonic development and neonatal

maturation, or in pituitary homeostasis at adulthood and

aging (13). Moreover, in several other tissues such as muscle

(14), liver (15) and intestine (16), IL-6 is needed for their

eventual regeneration following injury. It is not known

whether IL-6 occupies a similar key position in the pituitary’s

regenerative realization upon damage.

To answer these questions, we applied the IL-6 knock-out (KO)

mouse model (17) and phenotyped pre- and postnatal pituitary at

several stages, as well as acute stem cell and regenerative responses to

local injury. We found that IL-6 is expendable for normal pituitary

development and homeostasis but a keymediator of the acute stem-

cell activation response following local wounding. Regeneration still

occurs in the absence of IL-6 which may be due to redundancy by

other cytokines. This study further expands our insights in pituitary

development, adult/aging homeostasis as well as regeneration, in the

end needed for boosting pituitary repair in conditions of local

physical damage such as trauma and tumorigenesis, or for

counteracting functional decline at aging.
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Materials and methods

Mice and in vivo treatment

C57BL/6 mice were used, maintained in the Animal Housing

Facility of the KU Leuven under conditions of constant

temperature, humidity and 12-hour light-dark cycle, with ad

libitum access to water and food. Animal experiments were

approved by the KU Leuven Ethical Committee for Animal

Experimentation (P153/2018).

Mice heterozygous for the IL-6 mutation (Il6-/+ (Il6tm1Kopf)),

a neor cassette insertion in the first coding exon (17), were

crossed to obtain homozygous offspring (Il6+/+ or Il6-/-) which

were analyzed at embryonic stages E12.5 and E16.5 (E0.5 as day

of vaginal plug), and neonatal [postnatal day (PD) 7], (young-)

adult [8-12 weeks (wks)] or middle-aged [10-15 months (mo)]

phases of life. Offspring was genotyped for the presence of the

neor cassette by PCR using 5’-TTCCATCCAGTTGCCTT

CTTGG-3’ as common forward primer, 5’-TTCTCAT

TTCCACGATTTCCCAG-3’ as wildtype (WT) reverse primer

and 5’-CCGGAGAACCTGCGTGCAATCC-3’ as mutant

reverse primer.

GhCre/+ (Tg(Gh1-cre)bKnmn) mice were crossed with

ROSA26iDTR/iDTR mice (Gt(ROSA)26Sortm1(HBEGF)Awai) to

create GhCre/+;ROSA26iDTR/+ offspring (5), which was

genotyped for the presence of the Cre transgene by PCR using

5’-TGCCACGACCAAGTGACAGCAATG-3’ as forward and

5 ’-ACCAGAGACGGAAATCCATCGCTC-3’ as reverse

primer. These mice were further crossed to the Il6-/- genotype

to create triple transgenic offspring, i.e.

GhCre/+;ROSA26iDTR/+;Il6-/- and associated genotypes

GhCre/+;ROSA26iDTR/+;Il6+/+, Gh+/+;ROSA26iDTR/+;Il6+/+

and Gh+/+;ROSA26iDTR/+/Il6-/-. The mice were intraperitoneally

(i.p.) injected with diphtheria toxin (DT, 4 ng/g body weight;

Sigma-Aldrich) twice a day for 3 consecutive days. Pituitaries,

more in particular the major endocrine anterior lobes (ALs),

were isolated and analyzed the day after DT injection (day (d) 4),

one week later (d11) or 5 mo later (5).
Embryo and pituitary isolation
and dissociation

Pregnant mice were euthanized using CO2 asphyxiation

followed by cervical dislocation. Individual embryos were isolated

from the uterus and extra-embryonic membranes removed.

For isolation of the postnatal pituitary, mice were euthanized

using CO2 asphyxiation followed by decapitation. The intact

pituitary was isolated for immunostaining analysis, while the AL

was separated from the intermediate lobe (InL) and posterior

lobe (PL) under the stereomicroscope for dissociation into single
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cells with trypsin as previously described (12), to be followed by

gene expression and quantitative immunofluorescence analyses.
Immunostaining analysis

Embryos and intact pituitaries were fixed with 4%

paraformaldehyde (PFA, 4% in PBS; Merck) for 24 h at 4°C

and 1-3 h at room temperature (RT), respectively. Samples were

dehydrated with the Excelsior ES Tissue Processor (Thermo

Fisher Scientific) and embedded in paraffin using the Histostar

Embedding Workstation (Thermo Fisher Scientific). Paraffin

sections (5 µm), in sagittal plane for embryos and coronal

plane for pituitary samples, were made with the Microm

HM360 (Thermo Fisher Scientific). Sections were dewaxed,

rehydrated and subjected to antigen retrieval using citrate

buffer (pH 6; 30 min at 95°C). Samples were permeabilized

with 0.1% Triton X-100 (in PBS; Sigma-Aldrich), incubated with

blocking buffer (0.15% glycine (VWR chemicals BDH), 2 mg/mL

BSA (Serva), 0.1% Triton X-100 in PBS) with 10% donkey serum

(Sigma-Aldrich) for 1 h at RT, and then with primary antibodies

(Supplementary Table 1) overnight at 4°C. Secondary antibodies

(Supplementary Table 1) and nuclear dye Hoechst33342 (2 mg/
mL; Sigma-Aldrich) were added for 1 h at RT. Sections were

mounted with ProLong Gold (Thermo Fisher Scientific) and

images acquired using a Leica DM5500 upright epifluorescence

microscope (Leica).

For quantitative immunofluorescence analysis, dissociated

AL cells were spun down onto SuperFrost glass slides (Thermo

Fisher Scientific) using the Shandon CytoSpin 3 Cytocentrifuge

(20,000-50,000 cells/slide; 800 rpm; 10 min). Cytospin samples

were subsequently dried for 10 min, followed by a 15 min

fixation in 4% PFA at RT. Cells were permeabilized with

saponin (0.25% in PBS; Sigma-Aldrich) for 15 min and then

blocked with donkey serum (10% in 0.25% saponin/PBS) for

20 min, both steps performed at RT. Primary antibodies were

added overnight at 4°C (Supplementary Table 1). Cells were

labelled with secondary antibodies (Supplementary Table 1) and

nuclear dye Hoechst33342 for 1.5 h at RT, and sections mounted

with ProLong Gold. Pictures were taken with a Leica DM5500

upright epifluorescence microscope. Ratios of immunoreactive

cells were quantified in at least 10 random fields per slide. A

range of 300-1500 cells was counted per slide using the cell

counter plugin in Fiji software (18), with 2-4 slides analyzed per

condition for each biological replicate. Considering the

significant reduction in total cell number in the damaged AL,

as found at final ablation (d11), we calculated the absolute

number of the different immune-positive cells for comparisons

at d11, using their proportion and the total number of cells

obtained per AL, as described before (5).
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Gene expression analysis

Total RNA of embryonic pituitary, and of neonatal and adult

dissociated AL cells was isolated using the RNeasy Micro kit

(Qiagen) and subjected to reverse transcription (RT) with

Superscript III First-Strand Synthesis Supermix (Invitrogen)

according to the manufacturers’ protocol. SYBR Green-based

RT-quantitative PCR (RT-qPCR) was applied on the cDNA

samples using the StepOnePlus Real-Time PCR System (AB

Applied Biosystems) and the Platinum SYBR Green qPCR

Supermix-UDG (Thermo Fisher Scientific). Forward and

reverse primers (Supplementary Table 2) were designed with

PrimerBank (19) and PrimerBLAST (20). b-actin (Actb) was

used as housekeeping gene for normalization, and each sample

was run in duplicate. Relative gene expression levels were

calculated as DCt values (Cttarget – Cthousekeeping gene). Gene

expression levels were compared between sample and

reference as relative expression ratio (fold change), calculated

by the formula 2-(DCt,sample – DCt,reference), or as log2
transformation of the fold change.
Statistical analysis

Statistical analysis was performed (when n ≥ 3) using

Graphpad Prism (v9.4.1; GraphPad Software). Statistical

significance was defined as P < 0.05.
Results

Pituitary embryonic development is not
affected by the absence of IL-6

We assessed the embryonically developing pituitary in IL-6

KO (Il6-/-) as compared to WT (Il6+/+) mice at two time points,

i.e. E12.5 when the pituitary primordium Rathke’s pouch (RP) is

definitively formed, and E16.5 when the different endocrine

lineages [corticotrope (ACTH+), gonadotrope [glycoprotein a-

subunit (aGSU)+], and somatotrope/lactotrope/thyrotrope

(PIT1+)] have emerged (Figure 1A) (21). Of note, Il6 is

expressed in the embryonic pituitary, although at lower levels

than in the adult gland (Supplementary Figure 1). The

morphology of the developing pituitary appeared not different

between Il6+/+ and Il6-/- embryos (Figures 1B-D). In addition,

the embryonic stem/progenitor cells, located around RP lumen

(cleft) and marked by SOX2, as well as by the other pituitary

stem cell markers E-cadherin (E-CAD) and cytokeratin (CK) 8

and 18 (11, 22), did also not display visible differences

(Figure 1B). Similarly, the proliferative cell landscape, as
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B

C

D

A

FIGURE 1

Pituitary embryonic phenotype is not affected by absence of IL-6. Overview of mouse embryonic development; embryonic day (E) 12.5 and 16.5
are highlighted and morphology of developing pituitary is shown (created with BioRender.com) (A). Immunofluorescence analysis of Il6+/+ and
Il6-/- pituitary at E12.5 and E16.5 for SOX2, E-CAD and CK8/18 (all yellow) (B), for Ki67 (magenta) (C) and for aGSU, ACTH and PIT1 (all yellow)
(D). Hoechst33342 was used as nuclear stain (grey). Scale bar, 100 mm. A, anterior; D, dorsal; P, posterior; V, ventral; INF, infundibulum; RP,
Rathke’s pouch; InL, intermediate lobe; PL, posterior lobe; AL, anterior lobe.
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visualized using the proliferation marker Ki67 and being most

pronounced in the stem/progenitor cell zone around RP cleft,

remained comparable between the Il6-/- and Il6+/+ developing

gland (Figure 1C). Finally, the lack of IL-6 did not discernibly

affect the emergence and development of the endocrine lineages

(aGSU+, ACTH+, PIT1+) (Figure 1D).

Together, IL-6 does not play an indispensable or decisive

role in pituitary organogenesis, a stage during which embryonic

stem/progenitor cells actively give rise to the emerging

endocrine cells.
Pituitary neonatal maturation is not
affected by the absence of IL-6

In the first weeks after birth, the mouse pituitary undergoes a

dynamic growth and maturation process while containing an

activated stem cell population (10, 13, 23–25). Here, we

investigated whether IL-6 is involved in this active neonatal

pituitary remodeling. Il6 is expressed in the neonatal (PD7)

gland, but still lower than in the later adult stage (Supplementary

Figure 1) (10). The stem cell compartment (encompassing the

marginal zone lining the residual RP cleft), as marked by SOX2,

E-CAD and CK8/18, did not show overt differences between

Il6+/+ and Il6-/- neonatal pituitary (Figure 2A), in line with our

recent findings that the number of SOX2+ cells and their

proliferating subfraction does not change in IL-6 KO neonatal

pituitary (10). Similarly, the topography and size of the different

endocrine cell populations (i.e. ACTH+, PRL+, aGSU+, GH+)

was not affected in the Il6-deficient neonatal pituitary

(Figures 2B, C), robustly substantiating and expanding our

recent findings of unaffected gene expression of lineage

progenitor and endocrine cell markers (10). In addition,

proliferation within the individual hormonal cell lineages did

also not significantly change in Il6-/- versus Il6+/+ condition

(Figures 2B, C).

Taken together, IL-6 is found to be dispensable for the

pituitary’s neonatal maturation process encompassing

activated stem cells and expanding endocrine lineages.
Pituitary adult homeostasis and aging
phenotype are not affected by the
absence of IL-6

Then, we assessed the impact of IL-6 absence on the

pituitary stem and endocrine cell phenotype of (young-)adult

(8-12 weeks-old) and aging (10-15 months-old) mice, in which

Il6 is prominently expressed [(7) and Supplementary Figure 1].

Lack of IL-6 did not visibly impact the expression pattern of the

stem cell markers SOX2, E-CAD and CK8/18 in both adult and

aging gland (Figure 3A), neither is there an overt (significant)

change in the proportion of SOX2+ cells or their proliferative
Frontiers in Endocrinology 05
subfraction (Figure 3B), findings that further expand and

corroborate our recent observations as analyzed for adult mice

(7). Furthermore, absence of IL-6 did generally not entail

significant changes in the endocrine cell lineages or

proliferating (Ki67+) cells, except for a small increase in

corticotropes (ACTH+ cells) and in proliferative cells in the

aging Il6-/- pituitary (Figure 3C), of which the (biological)

relevance is presently unclear (see Discussion).

Taken together, IL-6 is not essential in the homeostatic

process of adult and aging pituitary, during which cell

turnover is very limited and stem cells are highly quiescent (2,

3, 7, 13).
IL-6 is needed for the acute stem cell
activation upon local injury, but not for
the eventual regeneration

Following local injury in the adult pituitary, as inflicted by

somatotrope cell ablation using the GhCre/+;ROSA26iDTR/+ mouse

model, the quiescent stem cells become promptly activated and

enhance in proliferative activity (5–7, 26). Here, damage was

inflicted in triple transgenic GhCre/+;ROSA26iDTR/+;Il6-/- mice

(further referred to as damaged (DMG)–KO) by DT injection

for 3 consecutive days, and the pituitary compared to the

appropriate DT-injected controls [Gh+/+;ROSA26iDTR/+;Il6+/+

(CTRL-WT), GhCre/+;ROSA26iDTR/+;Il6+/+ (DMG-WT), Gh+/+;

ROSA26iDTR/+;Il6-/- (CTRL-KO)] (Figure 4A). We observed a

complete absence of the acute (d4) proliferative stem cell

reaction (i.e. increase in SOX2+/Ki67+ cells as found in DMG-

WT) when IL-6 is lacking (Figure 4B). This finding is in line with,

but much more pronounced than, the 50% reduction in

proliferative SOX2+ cell response that we recently reported

through pharmacological IL-6 inhibition by in vivo antibody

administration (7).

In previous work, we discovered that the adult pituitary

possesses regenerative competence upon injury, as demonstrated

by substantial (~50%) regeneration of the somatotrope cell

population, observed 4-6 months after their obliteration (5, 6).

Intriguingly, despite the lack of an acute stem cell reaction in the

absence of IL-6, we here still detected significant somatotrope

regeneration levels (~40%) in the DMG-KO pituitary

when analyzed 5 months after the somatotrope ablation

(Figures 4A, C), reaching a GH+ cell proportion similar to that

in DMG-WT gland (Supplementary Figure 2A), thereby

indicating comparable regeneration grade. The finding of

regenerative realization is not due to lower extent of damage

(ablation grade) inflicted in DMG-KO pituitary, which is indeed

comparable (~80%; Figure 4C) to the grade as reported before in

the presence of IL-6 (5, 6). As another possible explanation, we

examined whether other cytokines of the IL-6 family, or related

factors, may rescue the function of IL-6 after pituitary damage in

the IL-6 KO mouse. Expression levels of these cytokines in basal
frontiersin.org
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undamaged pituitary were not different between Il6+/+ and Il6-/-

AL, except for Il22 which was lower in the IL-6 KO AL

(Supplementary Figure 2B). Interestingly, the expression of

Il22, as well as of Il11, substantially increased immediately

after pituitary damage (d4) in the IL-6 WT animals, which

quickly returned to baseline levels one week later (d11; DMG-

WT in Figure 4D). Of note, expression of IL-6, also upregulated
Frontiers in Endocrinology 06
immediately after damage, remained higher at d11

(Supplementary Figure 2C). Il22 and Il11 expression was also

increased in the absence of IL-6 (DMG-KO; Figure 4D) although

at a significantly lower level than in DMG-WT (Figure 4D).

Intriguingly, levels did not return to control one week later but

remained elevated (Figure 4D). A similar pattern of sustained

expression, different from control, was found for Lif but not for
B C

A

FIGURE 2

Pituitary neonatal phenotype is not affected by absence of IL-6. Immunofluorescence analysis of neonatal (PD7) Il6+/+ and Il6-/- pituitary for
SOX2, E-CAD and CK8/18 (all yellow) (A) and for ACTH, PRL, aGSU and GH (all yellow), together with Ki67 (magenta) (B). Hoechst33342 was
used as nuclear stain (grey). Boxed areas are magnified in the respective bottom panels. Arrowheads indicate selected double-positive cells.
Scale bar, 100 mm. Proportion of hormone+ cells in total AL cell population (left) or of proliferating (Ki67+) hormone+ cells in the specific
hormone+ cell compartment (right). Bars depict mean ± SEM (n = 3-5, all individually shown; unpaired t-test) (C).
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the other cytokines tested (Cntf, Osm, Ifng) (Supplementary

Figure 2D). Finally, the number of SOX2+Ki67+ cells in the

pituitary stem cell compartment showed a slight trend of

increase, although not significant, in DMG-KO versus CTRL-
Frontiers in Endocrinology 07
KO pituitary at this later timepoint (d11; Figure 4E). Together,

these findings advance the hypothesis that, in the absence of IL-

6, the lower but prolonged upregulation of other cytokines may

compensate for the lack of IL-6 and might still generate a stem
B

C

A

FIGURE 3

Pituitary adult and aging phenotypes are not affected by absence of IL-6. Immunofluorescence analysis of adult (8-12 wks) and aging (10-15
mo) Il6+/+ and Il6-/- pituitary for SOX2, E-CAD and CK8/18 (all yellow). Hoechst33342 was used as nuclear stain (blue). Boxed areas are
magnified in the respective bottom panels. Scale bar, 100 mm (A). Proportion of SOX2+ cells in total AL cell population or of proliferating
SOX2+Ki67+ cells in the SOX2+ cell compartment. Bars depict mean ± SEM (n = 4, all individually shown; unpaired t-test) (B).
Immunofluorescence analysis of adult and aging Il6+/+ and Il6-/- pituitary for ACTH, PRL, aGSU, GH (all yellow) and Ki67 (magenta).
Hoechst33342 was used as nuclear stain (blue). Scale bar, 100 mm (left). Proportion of hormone+ or Ki67+ cells in total AL cell population (right).
Bars depict mean ± SEM (n = 3-4, all individually shown; unpaired t-test, *P < 0.05.) (C).
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B

C

D

E

A

FIGURE 4

IL-6 is necessary for the acute stem cell activation upon local injury, but dispensable for the eventual regeneration. Overview of the experimental set-up
(created with BioRender.com) (A). Immunofluorescence analysis of AL cell cytospin samples from CTRL-WT, DMG-WT, CTRL-KO and DMG-KO mice
for SOX2 (magenta) and Ki67 (green) at d4. Hoechst33342 was used as nuclear stain (blue). Arrowheads indicate double-positive cells. Scale bar, 100 mm
(left). Proportion of proliferating SOX2+Ki67+ cells in the SOX2+ cell compartment (right). Bars depict mean ± SEM (n = 4, all individually shown; one-
way ANOVA with Tukey’s multiple comparisons test, *P < 0.05) (B). Immunofluorescence analysis of AL cell cytospin samples of CTRL-KO and DMG-KO
mice for GH (grey or green) at d11 and 5 mo. Hoechst33342 was used as nuclear stain (blue). Scale bar, 100 mm (left). Percent difference in pituitary
absolute GH+ cell number compared to CTRL-KO at d11 and 5 mo (right). Bars depict mean ± SEM (n = 3, all individually shown; unpaired t-test, *P <
0.05) (C). Gene expression levels of Il22 and Il11 in DMG-WT and DMG-KO AL at d4 and d11, relative to CTRL-WT and CTRL-KO (dotted line),
respectively. Graphs show mean ± SEM (n = 3-5, all individually shown; two-way ANOVA with Tukey’s multiple comparisons test, **P < 0.01,
***P<0.001, ****P<0.0001; ns, non-significant) (D). Immunofluorescence analysis of AL cell cytospin samples of CTRL-WT, DMG-WT, CTRL-KO and
DMG-KO mice for SOX2 (magenta) and Ki67 (green) at d11. Hoechst33342 was used as nuclear stain (blue). Arrowheads indicate double-positive cells.
Scale bar, 100 mm (left). Proportion of proliferating SOX2+Ki67+ cells in the SOX2+ cell compartment (right). Bars depict mean ± SEM (n = 3-4, all
individually shown; paired t-test, *P < 0.05) (E). DT, diphtheria toxin.
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cell reaction although in a delayed and less forceful manner.

However, it should be noted that this interpretation is still

hypothetical and should be taken with the necessary caution

(see Discussion).

In conclusion, IL-6 plays a key role in the acute pituitary

stem cell activation response upon local damage. In its absence,

other cytokines such as IL-11 and IL-22 may compensate, with

lower but prolonged expression, thereby potentially entailing a

delayed (and less potent) stem cell activation response toward

eventual regenerative realization (summarized as hypothetical

model in Figure 5).
Discussion

In the present study, we explored the pituitary’s phenotype

in the absence of IL-6 using the IL-6 KO mouse model to assess

its importance in embryonic development, neonatal maturation,

homeostasis at adulthood and aging, and stem cell reaction and

regeneration upon local injury.

In embryonic and neonatal development, IL-6 deficiency

does not affect pituitary morphology nor stem and endocrine cell

phenotypes. These findings may be in line with only low

expression of Il6 at these early ages. In addition, or

alternatively, compensation by other cytokines may occur as

we recently showed that Il11, Lif and Tnf are increased in the

neonatal Il6-/- pituitary (10). Compensation of IL-6 absence by

other cytokines has also been reported in other tissues. For

example, upregulation of TNFa functionally compensates for
Frontiers in Endocrinology 09
the lack of IL-6 in induced systemic inflammation (27).

Redundancy of cytokines signaling through the common

gp130 co-receptor (such as IL-6, IL-11 and LIF) has also been

shown before. For instance, in adult hematopoiesis IL-11

deficiency is compensated for by IL-6 or LIF (28). Along the

same line, although mice lacking individual members of the IL-6

family display only mild phenotypes, animals lacking gp130 are

not viable (29). Thus, specific conditional knock-out of gp130 in

the pituitary (stem and/or endocrine) cells would be needed to

discern gp130-associated cytokine redundancy in the developing

pituitary (30).

In the adult gland, Il6 expression is higher and found to be

predominantly expressed by the stem and mesenchymal cell

populations (7). Yet, in unperturbed homeostatic conditions, no

changes in stem and endocrine cell phenotypes were observed in

the IL-6-deficient gland. These findings are considered to be in

line with the overall slow turnover (31) and highly quiescent

nature of the stem cells in the adult gland (2, 3, 7, 13). Indeed, a

role for IL-6 in crypt homeostasis has been observed in the

intestine which is a highly dynamic tissue with very active stem

cells (32). Nevertheless, upon local pituitary injury, the resident

stem cells become rapidly driven into proliferative behavior (5–

7). This prompt stem cell activation reaction is not observed in

the Il6-/- pituitary. Similar findings were reported in the intestine

in which lower crypt proliferation was observed in IL-6 KO mice

upon local epithelial wounding (16). Thus, IL-6 plays a key role

in the prompt pituitary stem cell reaction to local damage.

However, less expectedly, the ensuing regeneration still occurs

in the absence of IL-6. Other cytokines, in particular Il22 and
FIGURE 5

Proposed hypothesis on role of IL-6 in pituitary stem cell activation and regeneration upon local injury. In unperturbed (IL-6 WT) conditions,
levels of cytokines are at basal (low) level. Upon local damage, expression is promptly upregulated (d4) and stem cells are activated into
proliferation. One week later (d11), levels of cytokines except IL-6 have returned to basal levels. In the absence of IL-6 (IL-6 KO), cytokines (in
particular IL-22 and IL-11) are also acutely upregulated (d4) following local injury although at lower level than in IL-6 WT conditions, while stem
cells do not show activation at this timepoint. However, expression levels remain high for a longer period (d11), possibly resulting in stem-cell
proliferative activation which thus might occur in a delayed manner in the absence of IL-6. In both IL-6 WT and KO conditions, significant
regeneration of the ablated endocrine cells is eventually realized (created with BioRender.com).
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Il11, were also found to be upregulated upon injury. Although

occurring at lower level in the IL-6 KO mouse, the cytokines

remained elevated for a longer period, which might entail a

delayed (and less forceful) stem cell-proliferative reaction in the

absence of IL-6 (Figure 5). Although this interpretation should

still be taken with the necessary caution, it is interesting to see

that a similar observation was reported in skeletal muscle injury,

in which the initial reaction was delayed in Il6-/- mice, but full

recovery of the muscle mass was still achieved, leading to the

authors’ conclusion that “IL-6-regulated processes occurring

early in the recovery process may affect the initial recovery

rate, but are not required if sufficient recovery time is

allowed” (33).

Finally, we here corroborated our previous observations in the

aging pituitary (6, 7) of decline in number and functional

(proliferative) activity of SOX2+ stem cells when compared to

young-adult gland (compare age panels in Figure 3B). In addition,

we found that proliferating (Ki67+) cells are increased, although

subtly, in the IL-6 KO pituitary. We have previously discovered that

the aging pituitary suffers from inflammaging [referring to chronic

low-grade inflammation that develops with advancing age (34)],

typified by a pronounced inflammatory phenotype including high

levels of IL-6 (7). Absence of IL-6 may, at least partly, relieve this

restrictive impact of the inflammatory milieu on pituitary cell

behavior (such as proliferation, being at low level). A trend of

higher proliferation is also seen specifically in the stem cell

population although not statistically significant (Figure 3B, right

panels, 0.37% in Il6+/+ versus 0.58% in Il6-/-), which is in linewith the

regained functionality of aging pituitary stem cells when cultured as

organoids outside of the inflammatory obstruction (7). Whether the

increased proliferation of corticotrope (ACTH+) cells should also be

considered in this context, is not clear.

In conclusion, our study shows that IL-6 is dispensable for

normal pituitary early-development and homeostasis. However,

upon perturbation by local tissue injury, IL-6 is needed for a

prompt and maximal stem cell activation. These findings expand

our knowledge on pituitary (stem cell) regulation which in the

future may help in translational efforts toward restoring and

rejuvenating pituitary function.
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