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Chronic kidney disease (CKD) causes considerable morbidity, mortality, and

health expenditures worldwide. Obesity is a significant risk factor for CKD

development, partially explained by the high prevalence of diabetes mellitus

and hypertension in obese patients. However, adipocytes also possess potent

endocrine functions, secreting a myriad of cytokines and adipokines that

contribute to insulin resistance and induce a chronic low-grade

inflammatory state thereby damaging the kidney. CKD development itself is

associated with various metabolic alterations that exacerbate adipose tissue

dysfunction and insulin resistance. This adipose-renal axis is a major focus of

current research, given the rising incidence of CKD and obesity. Cellular

senescence is a biologic hallmark of aging, and age is another significant risk

factor for obesity and CKD. An elevated senescent cell burden in adipose tissue

predicts renal dysfunction in animal models, and senotherapies may alleviate

these phenotypes. In this review, we discuss the direct mechanisms by which

adipose tissue contributes to CKD development, emphasizing the potential

clinical importance of such pathways in augmenting the care of CKD.

KEYWORDS

chronic kidney disease, obesity, cellular senescence, chronic inflammation,
adipokines, senotherapies
1 Introduction

Obesity is a contributing risk factor of 20-25% of chronic kidney disease (CKD) cases

worldwide (1). As per the 2011-2014 National Health and Nutrition Examination Survey,

44.1% of CKD patients in the United States of America (USA) were obese (2). The

number of end-stage kidney disease (ESKD) kidney transplant recipients who were obese
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also grew by 44% from 1999—2009 (3). Diabetes and

hypertension—the two most common causes of CKD

worldwide—frequently accompany obesity and are often put

forward as the major causes of obesity-related CKD. However,

obesity is a risk factor CKD-related disability and mortality after

adjusting for diabetes and hypertension (4, 5). Othman et al.

demonstrated that non-diabetic obese patients were more likely

to undergo CKD progression than non-obese subjects (6). These

results suggest an independent mechanism by which obesity

damages the kidney.

Although lifestyle changes, such as weight loss, are essential

for managing obesity, most patients fail to achieve adequate or

sustained weight loss (7). Recent clinical trials report that the

glucagon-like-peptide-1 (GLP-1) receptor agonist semaglutide

and the GLP and gastric inhibitory peptide (GIP) receptor

agonist tirzepatide induce significant weight loss in obese

patients; high dose terzepatide (10-15 mg weekly) achieved >

20% reductions in body weight, resembling that achieved after

bariatric surgeries (8–12). Sattar et al. concluded that GLP-1

receptor agonists slowed decline in estimated glomerular

filtration rate (eGFR), ameliorated progression to ESKD, and

reduced kidney disease-related mortality (13). Bariatric surgeries

are an option for morbidly obese patients who cannot lose

weight and are refractory to anti-obesity medications. Bariatric

surgery reduces systemic inflammation, proteinuria, and

glomerular hyperfiltration in obese CKD patients (14, 15).

Bariatric surgery also decreases the 5-year risk of mortality by

79% in obese pre-dialysis CKD patients (16). Such data

demonstrate that decreasing adiposity betters various indices

of kidney function and mitigates CKD development

and progression.

The management of obesity-related CKD is still in its

infancy, and evidence-based guidelines are yet to be

established (1). Improvements in risk stratification and

management protocols are urgently needed to improve the

care of obese-related CKD. While diabetes and hypertension

are significant contributors to obesity-related CKD, recent

decades of research have shown that adipocytes are potent

endocrine cells, releasing adipokines which exert direct

pathologic effects on the kidney (17). Adipokines also

indirectly damage the kidney by contributing to the

development of insulin resistance and hypertension (18).

Alternatively, CKD induces several endocrine and

immunologic dysregulations in adipose tissue. Identifying the

key players of this adipose-renal axis may have clinical practice-

changing implications, given the strong links between obesity

and CKD and their paralleled rise in prevalence. Identifying

mediators of adipose tissue-induced kidney disease is essential in

improving risk prediction models of CKD in obese patients and

identifying targets for pharmacotherapies. This review discusses

the adipose tissue-derived mediators of CKD and translational

research on how such mechanisms are targeted.
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2 Adipose tissue inflammation in
obesity and chronic kidney disease
Chronic low-grade inflammation is a biological hallmark of

aging—termed inflammaging (19). Obesity promotes

inflammaging, explaining why obese individuals experience

age-related chronic disease prematurely (20, 21). Conversely,

limiting fat development or inducing adipose tissue depletion

extends health and life span (22). Both obesity and aging impair

adipogenesis, the process by which adipocyte progenitors

differentiate into functional, insulin-responsive adipocytes (23).

Consequently, adipose tissue cannot buffer circulating lipids,

which then deposit ectopically in other organs, such as the liver,

skeletal muscle, and kidney, causing lipotoxicity. Lipotoxicity

impairs insulin signaling in the kidney, liver, and skeletal muscle,

causing insulin resistance (24).

Individual adipocytes hypertrophy in response to impaired

adipogenesis (25). Hypertrophic adipocytes promote adipose

tissue inflammation by producing tumor necrosis factor-a
(TNF-a) and interleukin-6 (IL-6) (26). These proinflammatory

cytokines are critical to the onset of insulin resistance; mice

lacking TNF-a have lower circulating free fatty-acids and are

protected from insulin resistance (27). Hypertrophic adipocytes

also produce macrophage chemoattractant protein-1 (MCP-1),

recruiting adipose tissue macrophages (ATMs) (28). ATMs

constitute less than 10% of the total cell population of adipose

t i ssue in lean indiv idua ls and mice but increase

disproportionately in obesity to make up 40-50% of the

adipose tissue cellular compartment (28). Indeed, increased

ATM recruitment is histologically evident, revealing ATMs

surrounding dead or dying adipocytes, forming crown-like

structures and engulfing lipid droplets (29). ATMs in obesity

are polarized towards a proinflammatory M1 phenotype,

elaborating proinflammatory cytokines such as TNF-a (30).

Therefore, hypertrophic adipocytes and M1-polarized ATMs

actively contribute to adipose tissue inflammation and insulin

resistance. In agreement with these findings, knocking out MCP-

1 or its receptor attenuates macrophage infiltration into adipose

tissue and reduces insulin resistance (31). Pharmacologically

polarizing ATMs towards an M2 phenotype also reduces adipose

tissue inflammation in high-fat diet (HFD) obese mouse models

(32, 33).

The array of cytokines and signaling molecules released by

adipose tissue renders them capable of modulating the

inflammatory and immunologic phenotypes of various organs,

including the kidney. In this light, adipose tissue inflammation

exerts detrimental effects on renal function. Plasma TNF-a and

IL-6 are elevated in obese pateints and are associated with CKD

incidence and severity independent of diabetes (34, 35). Weight

loss or bariatric surgery normalizes these proinflammatory

cytokines and reduces glomerular hyperfiltration (14). IL-1b is
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another pro-inflammatory cytokine elevated in obesity.

Importantly, patients with sustained IL-1b elevations post-

bar ia tr ic surgery exper ienced no improvement in

hyperfiltration (36).

Adipose tissue fibrosis is another important mediator of

adipose tissue inflammation in obesity (37). In this regard,

ATMs secrete matrix metalloproteinase-14 (MMP-14) to

induce extracellular matrix remodeling by activating MMP-2

and MMP-9 (38). Furthermore, certain MMPs impair

adipogenesis in obesity (38). In support of the contribution of

MMPs to adipose tissue inflammation, MMP-12-deficient mice

fed a high-fat diet (HFD) showed better insulin sensitivity and

adipogenesis and an anti-inflammatory M2 ATM phenotype

compared to wild-type mice fed an HFD (39). MMP-12

depletion also attenuated glomerular inflammation and renal

fibrosis (39), indicating that changes in the inflammatory and

immune phenotypes of adipose tissue affect the kidney. Along

this line, pharmacologically polarizing ATMs to an M2

phenotype has renoprotective effects by preventing glomerular

and mesangial expansion and fibrosis (32, 33).

Hypoxia contributes to adipose tissue inflammation and

fibrosis. Rapid adipocyte hypertrophy in obesity outgrows its

blood supply, resulting in hypoxia, cell death, and inflammation

(40). Adipocyte tissue hypoxia activates hypoxia-inducible

factor-1a (HIF-1a). HIF-1a does not elicit pro-angiogenic

responses in adipose tissue but rather pro-fibrotic and pro-

inflammatory transcriptional programs, leading to fibrosis and

inflammation (37, 41). Inhibiting HIF-1a via PX-478 or

introducing a dominant negative mutation prevents these

fibrotic and inflammatory responses, even under a high-fat

challenge (42). Hypoxic conditions in visceral adipose tissue

downregulate the insulin receptor, which is reversible if oxygen

supply is restored. Hypoxia-related insulin insensitivity in

adipose tissue is mediated by micro-RNA 128, which

destabilizes mRNA encoding the insulin receptor (43).

Therefore, adipose tissue inflammation in obesity is multi-

factorial and drives renal dysfunction. This adipose-renal

crosstalk is bidirectional. CKD reduces subcutaneous fat

volume with a redistribution of fat to visceral depots and

ectopic lipid deposition in skeletal muscle and the liver with

consequent lipotoxicity (44). Ectopic lipid deposition also occurs

in the kidneys in CKD, increasing renal inflammation (44). A

recent study observed that exposing adipose tissue to uremic

serum activates NFkB and HIF-1a, which drive adipose tissue

inflammation. Indeed, adipose tissue sampled from dialysis

patients also exhibits higher inflammatory markers (45),

suggesting that it may be a source of the chronic low-grade

inflammation observed in CKD patients in a manner unrelated

to excess adiposity (46). CKD promotes macrophage infiltration

into adipose tissue and consequent inflammation, leading to

glucose intolerance and insulin resistance (44, 47, 48). Martos-

Rus et al. recently demonstrated significantly higher ATM
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matched controls (49). ATM recruitment in CKD may be IL-

6-dependent, as IL-6-KO mice showed reduced ATM densities

comparable to wild-type mice. Uremic serum also directly

activates ATMs to a pro-inflammatory M1 phenotype (49).

Lastly, uremia alters the adipokine profile of adipocytes.

Incubating human adipocytes with uremic serum increases

leptin secretion and lipolysis while decreasing perilipin mRNA

transcripts—perilipin promotes fat storage as triglycerides in

adipose tissue (50–52). Urea accumulation in CKD also

increases oxidative stress in adipose tissue, leading to the

production of adipokines resistin and retinol-binding protein-

4, which contribute to insulin resistance (48).
3 Adipokine alterations in obesity
and effects on the kidney

Adipocytes produce various adipokines, enabling them to

modulate the function of remote organs, such as the kidney.

Below we discuss the most studied adipokines, leptin and

adiponectin, and how alterations in these adipokines contribute

to obesity-related CKD (Figure 1). Conversely, CKD also changes

serum leptin and adiponectin levels, which may contribute to

CKD stage progression and systemic complications.
3.1 Leptin

In conditions of nutrient excess, adipocytes produce leptin to

modulate CNS activity, promote satiety, and increase energy

expenditure. Obesity is associated with hyperleptinemia and

leptin resistance (53, 54). Indeed, leptin levels are 5-10x higher

in obese patients compared to non-obese individuals (55, 56).

Since the kidney is the primary organ responsible for leptin

clearance (57), CKD is also associated with hyperleptinemia, the

degree of which correlates with the CKD stage (18, 58, 59). Park

et al. recently demonstrated a significant correlation between

elevated serum leptin levels and the risk of CKD in men after

adjusting for eGFR and age (60). Such associations are even

more evident in females, probably owing to sex-specific

differences in circulating leptin levels (61).

Numerous studies have shown leptin to induce

glomerulosclerosis and hypertension, both risk factors to CKD

(62). The short form of the leptin receptor (Lep-Ra) is the

predominant leptin receptor expressed in the kidney compared

to the long form (Lep-Rb). Glomerulosclerosis and renal fibrosis

in obese mice have been linked to Lep-Rb-dependent JAK2-

STAT signaling in renal mesangial cells (63). Leptin promotes

TGFb-1 release and type IV collagen and fibronectin production

in the glomerulus, leading to proteinuria and glomerulosclerosis

(62). This effect was initially found to be mediated via adenosine
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monophosphate-activated protein kinase (AMPK) activation

(64), which paradoxically inhibits TGFb-1 and protects against

renal fibrosis in several mouse models (65). This discrepancy

suggested that leptin-mediated fibrosis may additionally involve

other signaling pathways in the kidney. Indeed, activation of the

p38/MAPK signaling pathway is involved in leptin-mediated

renal fibrosis (64). Leptin also induces endothelial dysfunction

(ED) by upregulating vascular adhesion molecules such as

intercellular adhesion molecule-1 (ICAM-1) and vascular cell

adhesion molecule-1 (VCAM-1) through AKT/GSK3b and

Wnt/b-catenin signaling pathways, promoting renal

inflammation and vascular remodeling (66, 67). Lastly, leptin

promotes oxidative stress in renal tubular epithelial cells and

stimulates monocytes to release IL-6 and TNF-a, promoting

renal inflammation (68, 69).

Leptin is also considered a uremic toxin, contributing to

many CKD complications including cachexia, protein-energy

wasting (PEW), insulin resistance, hypertension, cardiovascular

disease, and bone pathologies (70). PEW in CKD features

anorexia, increased energy expenditure, decreased protein

stores and muscle mass, and weight loss. Leptin suppresses

food intake and increases energy expenditure through binding

mineralocortin-4 receptors (MC4-R) in the hypothalamus,

leading to uremic cachexia (71–73). Inhibiting MC4-R

improves cachexia and reduces skeletal muscle wasting in
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preclinical models, but this needs further investigation in

humans (73).

Leptin increases the risk of cardiovascular disease, the most

common cause of mortality in CKD patients. Leptin induces

hypertension by increasing sympathetic outflow, decreasing

nitric oxide (NO) production, and increasing endothelin-1 in

endothelial cells (74–76). Leptin promotes atherogenesis

through endothelial cells, macrophages, and smooth muscle

cells via the Lep-Rb receptor, which is reviewed elsewhere

(77). Similarly, leptin binding to the Lep-Rb receptor on

platelets enhances ADP signaling to induce platelet

aggregation, which may cause the platelet dysfunction

characteristic of uremia (78, 79). Lastly, hyperleptinemia

decreases glucose-stimulated insulin release from pancreatic b-
cells and impairs insulin signaling in hepatocytes (80, 81),

although it should be noted that normal leptin levels enhance

insulin release (80, 81).

Therefore, obesity-associated hyperleptinemia may

contribute to renal pathology and CKD, mainly by causing

secondary glomerulosclerosis. Furthermore, CKD-associated

hyperleptinemia may contribute to numerous CKD

complications. In agreement with these findings, leptin-

deficient mice are significantly protected against albuminuria,

glomerular crescent formation, macrophage infiltration, and

glomerular thrombosis (82). Inhibiting leptin using specific
FIGURE 1

Excess adiposity increases serum leptin and decreases adiponectin. Hyperleptinemia promotes renal fibrosis, leading to glomerulosclerosis seen
in obesity-induced glomerulopathy. Leptin is also considered a uremic toxin, contributing to uremic cachexia and platelet dysfunction. The
decrease in renal adiponectin effect in obesity is causal in the development of albuminuria. Loss of adiponectin effect in obesity also increases
renal oxidative stress, fibrosis, and inflammation. Adiponectin-mediated AMPK activation is responsible for many of adiponectin's renoprotective
effects, with a decrease in AMPK implicated in albuminuria and renal injury. The adiponectin receptor agonist AdipoRon and direct AMPK activators
AICAR, berberine, and PF-06409577 are pharmacological strategies to increase renal AMPK levels and mitigate obesity-related kidney disease.
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antibodies or antagonists also substantially reduces blood

pressure in mice with diet-induced obesity (83) and alleviates

cachexia in CKD mice (84). Weight loss, either through lifestyle

interventions, pharmacotherapies, or bariatric surgeries, is

associated with significant decreases in leptin levels (85–89),

but whether leptin normalization after weight loss directly

improves renal function remains to be investigated.
3.2 Adiponectin

Adiponectin secretion is decreased in obesity, promoting the

development of obesity-related chronic complications. The

development of adiponectin-KO animal models have allowed

causal relationships to be drawn between adiponectin deficiency

and several aspects of the metabolic syndrome. For example,

adiponectin-KO mice develop hepatic steatosis, which is

attenuated by transfecting the adiponectin gene (90, 91). In

skeletal muscle, adiponectin stimulates beta-oxidation and

reduces lipid deposition and consequent lipotoxicity (92).

Furthermore, adiponectin inhibits lipolysis and stimulates

triglyceride storage in subcutaneous adipose tissue.

Adiponectin, therefore, promotes fat storage in AT and

increases insulin sensitivity, with its decrease in obesity a

causal factor in insulin resistance, lipotoxicity, and metabolic

syndrome manifestations (92).

The renoprotective effects of adiponectin are well-

documented (18). Two adiponectin receptor isoforms,

ADIPOR1 and ADIPOR2, are expressed in the kidney.

Stimulation of ADIPOR1 and ADIPOR2 activate AMPK and

peroxisome-proliferator activated receptor-a (PPAR-a),
respectively, which attenuate renal inflammation, fibrosis,

glomerulosclerosis, podocyte effacement, and albuminuria (17).

A rise in intracellular AMPK by ADIPOR1 activation in

podocytes inhibits NADPH oxidase and reduces permeability

to albumin (93). In this light, non-obese non-diabetic mice who

are adiponectin-deficient still develop effacement of podocyte

foot processes and albuminuria due to increased oxidative stress

(93, 94). In mesangial cells, adiponectin increases AMPK to

attenuate angiotensin-II-induced TGF-b1 production,

decreasing renal fibrosis (95).

Adiponectin also exerts anti-inflammatory effects on the

kidney. For example, MCP-1 binds to its cognate CCR2

receptor to promote macrophage infiltration into the kidneys

and renal inflammation (96). Adiponectin-deficient CKD mice

develop significant albuminuria, tubulointerstitial fibrosis, and

inflammation characterized by high MCP-1, TNF-a, NADPH
oxidase, and VCAM-1 upregulation (97). Adiponectin

administration via an adenovirus vector significantly reduces

albuminuria, tubulointerstitial fibrosis, glomerular hypertrophy,

and inflammation by lowering TNF-a, NADPH oxidase, and

VCAM1 (97). Adiponectin has also been shown to directly
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stimulate IL-10 production by macrophages and decrease IL-6

and TNF-a, suggesting polarization to an M2 phenotype (98).

Lastly, ceramides are a group of sphingolipids implicated in

renal disease. Serum levels of several ceramides are independent

risk factors for CKD development and stage progression (99), as

well as insulin resistance and lipotoxicity (100). Ceramides also

act at several levels of the insulin signal transduction pathway to

impair insulin signaling. Notably, both ADIPOR1 and

ADIPOR2 possess intrinsic basal ceramidase activity, which is

enhanced by adiponectin binding (101). Elevated ceramidase

activity by ADIPOR1 and ADIPOR2 overexpression increases

insulin sensitivity and glucose utilization while opposing hepatic

steatosis (102). Ceramidase metabolizes ceramides into

sphingosine-1-phosphate, which has anti-apoptotic effects and

may even induce proliferation (103). These studies indicate that

the pleiotropic metabolic, anti-apoptotic, and insulin-sensitizing

effects of adiponectin may at least partly involve amplifying

receptor-associated ceramidase activity.

Serum adiponectin is lower in obese patients compared to lean

individuals. ADIPOR1 and ADIPOR2 expression is also reduced in

the kidneys of obese and diabetic mice (104). Therefore, kidneys

from obese mice and humans showed reduced AMPK levels (105).

Treatment with 5-aminoimidazole-4-carboxamide-1-b-D-

furanoside (AICAR), which enhances adiponectin-mediated

AMPK signaling, increases AMPK levels in obese kidneys and

reduces mesangial expansion and albuminuria (106). The

antioxidant resveratrol also restores ADIPOR expression in the

kidney and increases AMPK activation in diabetic mice, associated

with reductions in albuminuria, oxidative stress, and inflammation

(104). The molecule berberine enhances adiponectin signaling

through AMPK to ameliorate renal pathology in diabetic mice

(107). In animal models of diabetic nephropathy and obesity, the

AMPK agonist PF-06409577 and adiponectin receptor agonist

AdipoRon reduce proteinuria, inflammation, and renal fibrosis

(108–110). These results suggest that targeting adiponectin

receptors or AMPK directly may be beneficial in obesity- and

diabetes-related kidney disease.

Despite adiponectin having numerous renoprotective effects,

adiponectin levels are paradoxically increased in CKD and are

positively correlated with albuminuria, CKD stage, and mortality,

independent of body mass index (BMI) (58, 111). Adiponectin also

predicts adverse cardiovascular outcomes in CKD patients (112).

Unlike leptin, higher adiponectin levels in CKD cannot be simply

explained by decreased renal clearance because the liver clears the

high-molecular-weight form of adiponectin (113). Therefore, why

adiponectin is elevated in CKD and is predictive of disease severity

remains investigational.

Tian et al. induced CKD in non-obese mouse models with

deoxycorticosterone acetate-salt (DOCA) and angiotensin II

infusion (114). Transgenic adiponectin-overexpressing CKD

mice showed significantly lower albuminuria, glomerular and

interstitial fibrosis, and attenuated effacement of podocyte foot
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processes. Markers of tubular injury and inflammation were also

lower in the transgenic models (114). These results are contrary

to the unfavorable prognostic effect attributed to adiponectin in

CKD patients. Yang et al. demonstrated that elevated

adiponectin levels were associated with the presence of bone

marrow-derived fibroblasts in kidneys with unilateral ureteral

obstruction and ischemia/reperfusion injury (115). Adiponectin-

deficient mice showed reduced renal fibroblast and M2 pro-

fibrotic macrophage infiltration. The same study also showed

adiponectin to activate AMPK on bone-marrow-derived

monocytes, thereby increasing a-smooth muscle antigen (a-
SMA) and production of extracellular matrix proteins.

Therefore, the Yang et al. study suggested inhibiting the

adiponectin/AMPK axis may ameliorate fibrotic renal disease

(115). Similarly, Perri et al. reported that administration of

lipopolysaccharide (LPS) induces adiponectin production by

renal tubular epithelial cells to cause renal fibrosis (116).

Numerous other studies have demonstrated the production of

adiponectin by the kidney itself (117, 118). However, how

kidney-derived adiponectin contributes to circulating

adiponectin levels and any potential functional differences are

not yet known.

PPAR-a is also known to exert renoprotective effects. Boor

et al. demonstrated PPAR-a expression in the renal tubular

epithelium but not the interstitium. PPAR-a levels decreased

after fibrosis induction through unilateral ureteral obstruction

and 5/6 nephrectomy (119). Treatment with the PPAR-a agonist

BAY PP1 significantly increased PPAR-a expression, correlated

with a reduction in tubulointerstitial fibrosis, inhibition of

interstitial fibroblasts, lower TGF-b1 levels, and slowed down

the progression of renal dysfunction. Therefore, PPAR-a in

tubular epithelial cells attenuates fibrosis upon renal

injury (119).
4 Cellular senescence in obesity
and CKD

Cellular senescence was initially described by Hayflick and

Moorhead when they observed that fibroblasts stop dividing

after a set number of cell divisions (120). This cell cycle arrest

was due to telomere attrition. The list of senescence-inducing

stimuli has exponentially grown, but most culminate in DNA

damage or oncogene activation, which activate senescence-

inducing pathways. Hence, senescence is defined as an

irreversible growth arrest upon the cell’s exposure to DNA-

damaging or mitogenic stimuli. Senescence is characterized by

numerous structural, biochemical, and metabolic alterations: a

flattened and enlarged cellular morphology, decreased nuclear

Lamin B1 expression, increased p53, p16INK4a and/or p21CIP1

expression, elevated mitochondrial ROS production, elevated
Frontiers in Endocrinology 06
senescence-associated lysosomal b-galactosidase (SA-b gal)

activity, apoptosis resistance via upregulation of senescence-

associated anti-apoptotic pathways (SCAPs), and elaboration of

a senescence-associated secretory phenotype (SASP) (121). The

transient induction of senescence is considered physiological

and critical to embryogenesis, wound healing, and tumor

suppression. However, the chronic accumulation of senescent

cells is implicated in the pathogenesis of numerous age-related

disorders , inc luding osteoporosi s , obesi ty , s troke ,

neurodegenerative diseases, CKD, cancer, myocardial

infarction and the geriatric syndromes (frailty, sarcopenia, and

mild cognitive impairment) (122). Cellular senescence is indeed

considered a biological hallmark of aging.
4.1 Cellular senescence in adipose tissue

Senescence plays a crucial role in propagating age-related

diseases (123). Senescent cells accumulate in most tissues and

organs with aging, including in adipose tissue. Importantly,

obesity increases the senescent cell burden in adipose tissue. The

p53-dependent DNA damage response is the main inducer of

senescence in adipose tissue (124). A study showed that DNA

polymerase-h KO mice (to increase DNA damage) accumulate

senescent cells in adipose tissue (125). SREBP1—a transcription

factor involved in regulating the expression of genes encoding

proteins involved in lipid metabolism—was recently found to also

facilitate DNA repair in adipocytes (126). Deletion of SREBP1

increased DNA damage and accelerated senescence in adipocytes,

followed by adipose tissue inflammation and consequent insulin

resistance (126). Mice with senescent cell accumulation in adipose

tissue are more prone to obesity and adipose tissue inflammation,

even with a standard chow diet (125).

Oxidative stress-induced senescence in adipose tissue is

linked to higher leptin, IL-6, and TNF-a production in the

SASP, suggesting that adipocyte senescence may be causal in

obesity-related chronic inflammation (124, 127). Depleting

senescent cells in adipose tissue improves glucose homeostasis

and insulin resistance (discussed below). Activin A is another

SASP component which disrupts insulin signaling by decreasing

the expression of insulin-dependent transcription factors

including PPARg and CCAAT-enhancer-binding protein a (C/

EBPa) (128). These observations suggest that senescence in

adipose tissue results in the production of cytokines and

chemokines, leading to adipose tissue inflammation and

insulin resistance. Adipose tissue is composed of many

different cell types, each exhibiting varying susceptibility to

senescence. The discussion herein focuses on the major cell

types comprising adipose tissue and the causes and

consequences of senescence induction in these cell

types (Figure 2).
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4.1.1 Preadipocytes

Preadipocytes are adipocyte precursors are responsible for fat

cell turnover by replacing dead and dying cells—i.e., adipogenesis.

Both irradiation and telomere attrition induce senescence in

preadipocytes, thereby impairing adipogenesis. Impaired

adipogenesis in obesity in turn drives hypertrophic expansion of

the subcutaneous fat compartment, increasing adipose tissue
Frontiers in Endocrinology 07
inflammation and metabolic dysfunction (129). Senescent

preadipocytes also secrete a proinflammatory SASP, driving

adipose tissue macrophage infiltration and inflammation.

Accordingly, eliminating senescent preadipocytes in obese mice

reduces adipose tissue inflammation and improves insulin

sensitivity (130). These results indicate that senescence in

preadipocytes contributes to adipose tissue inflammation and

insulin resistance by impairing adipogenesis.
FIGURE 2

Nutrient excess triggers senescence in adipose tissue through DNA damage response signaling. Various other conditions, such as sleep apnea,
uremia, and gut microbiome dysbiosis, may directly indce senescence in the adipose tissue independent of nutrient status. The adipose tissue is
populated by various subsets of cells, including preadipocytes, adipocytes, endothelial cells, and macrophages. Senescence induction in preadipocytes
impairs adipogenesis; senescence in macrophages and adipocytes enhances adipose tissue inflammation; and senescence in andothelial cells
promotes adipose tissue hypoxia, inflammation, and fibrosis. An increased senescent cell burden in adipose tissue exerts several systemic
consequences through the SASP as part of the inflammaging process, including cardiomyopathy, cognitive dysfunction, and renal impairment.
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4.1.2 Endothelial Cells

The vasculature of adipose tissue is not fenestrated.

Transport across the vasculature into the adipose tissue

interstitium is mediated by ECs, which express key transport

proteins such as CD36 and fatty acid binding proteins (FABPs)

that transport fatty acids between adipose tissue and blood (131).

Importantly, PPARg activation in ECs enhances transendothelial
lipid transport and fat storage in adipose tissue. Free fatty acids

activate PPARg. Additionally, activated endothelial cells release

PPARg ligands that activate PPARg in adipocytes (132). Adipose

tissue storage of fats, therefore, depends on normal endothelial

cell function, and depleting PPARg in endothelial cells leads to

systemic hyperlipidemia (133). ECs also produce factors that

regulate adipose tissue blood flow, such as NO and angiogenic

factors that increase adipose vascularity.

Adipose tissue EC senescence can be detrimental to normal

adipose tissue function. In this context, ECs of HFD-mice

undergo numerous p53-dependent gene expression alterations,

including endothelial nitric oxide synthase (eNOS)

downregulation, a change associated with insulin resistance

(134). However, this study did not explore if p53 expression

was associated with other senescence-related cellular alterations.

Along similar lines, Barinda et al. showed that senescent ECs

release a SASP that propagates senescence in mature adipocytes

in a paracrine manner, associated with downregulation of the

insulin receptor on mature adipocytes and, consequently,

reduced insulin sensitivity (135). Cellular senescence also

reduces PPARg activation, decreasing the ability of endothelial

cells to transport fatty acids, and the fat storage capacity of

adipocytes (136). Lastly, senescent ECs isolated from visceral

adipose tissue of obese individuals show higher expression of

hypoxia-related genes and elaborate a proinflammatory SASP

(136). Therefore, EC senescence may impair the lipid-buffering

capacity of adipocytes by reducing PPARg and cause adipose

tissue hypoxia and inflammation.
4.1.3 Mature adipocytes

Mature adipocytes are not expected to enter the cell cycle and

divide; they respond to obesity by hypertrophying rather than

dividing. However, Li et al. recently demonstrated that mature

adipocytes can enter the cell cycle and increase in cell number in

response to obesity and hyperinsulinemia (137). Chronic

hyperinsulinemia induces premature adipocyte senescence,

which release a SASP comprising MCP-1, TNF-a and IL-6 that

drives adipose tissue inflammation (125, 137). Mature adipocyte

senescence in obesity occurs before adipose tissue inflammation

and insulin resistance, suggesting a causal relationship between

adipocyte senescence and these phenotypes (138).
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4.1.4 Macrophages

Senescence is associated with adipose tissue inflammation

via the SASP. Although ATMs play a key role in adipose tissue

inflammation and consequent insulin resistance, there is a

paucity of data on whether they can senesce and what

consequences this may have on the inflammatory phenotype

of adipose tissue. An elevated senescent cell burden in adipose

tissue with SASP expression drives ATM recruitment and

polarization into a proinflammatory M1 phenotype (139).

Notably, depleting macrophages attenuates adipose tissue

inflammation and fibrosis, with improvements in glucose

tolerance parameters, indicating that macrophage infiltration

contributes to senescence-induced adipose tissue dysfunction.

However, whether ATMs themselves senesce was not

determined in this study (140). A recent study demonstrated

that senescent macrophages accumulate in the visceral adipose

tissue derived from obese subjects who underwent bariatric

surgery, and their numbers correlated with BMI, insulin

resistance and degree of hyperinsulinemia (141). Importantly,

both senescent adipocytes and macrophages elaborated a pro-

inflammatory SASP, which prompted the authors to suggest that

premature adipose tissue senescence in obesity contributes to

inflammaging, possibly explaining why obese individuals

develop age-related disease prematurely (141).
4.1.5 Systemic

HFD mouse models accumulate senescent cells in multiple

organ systems, which is associated with functional impairment.

HFD mice show senescent cell accumulation in the liver and

hepatic steatosis (142). In the brain of HFD mice, senescent cells

accumulate near the lateral ventricle, which is associated with

anxiety and gliosis (143). Kidneys of HFD mice also reveal a

higher senescent cell burden, associated with renal dysfunction

(144). Sawaki et al. demonstrated that aging adipose tissue

releases osteopontin and TGF-b—in the SASP—which

stimulate cardiac fibroblasts and drive myocardial fibrosis

(145). Removing visceral adipose tissue in these mice reduced

cardiac fibroblast activation, increased fibroblast senescence, and

ameliorated myocardial fibrosis (145). Although this study did

not directly examine senescence in visceral adipose tissue, Khan

et al. reported that an elevated senescent cell burden in adipose

tissue is associated myocardial fibrosis. p53-KO mice or

removing senescent adipose tissue mitigated myocardial

fibrosis (146). To correlate these findings clinically, myocardial

fibrosis is a known mediator of obesity-associated

cardiomyopathy; clinical studies are needed to explore whether

targeting senescence may be beneficial in ameliorating this

condition (145).
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4.2 Senescence in CKD

Numerous studies report a higher senescent cell burden in

diseased and aged kidneys. The regenerative potential of the

kidney after injuries diminishes with aging and CKD. Cellular

senescence is believed to impair regenerative mechanisms in

aged and diseased kidneys, leading to maladaptive repair

and fibrosis.

Proximal tubular epithelial cells are particularly affected by

senescence. Biopsies of transplanted kidneys and those with

glomerular diseases stain positive for senescence markers

p16INK4a and p21CIP1 in the proximal tubular epithelial cells

(147, 148). Telomere attrition, elevated SA-b gal, p16INK4a, and

p21CIP1 expression have also been directly correlated with IgA

nephropathy progression (149). Baker et al. showed that

senescent cells accumulate in aging kidneys in INK-ATTAC

transgenic mice. An elevated renal senescent cell burden was

associated with glomerulosclerosis, which was attenuated by

depleting senescent cells in INK-ATTAC mice (150). Braun

et al. demonstrated that transplanted kidneys in wild-type mice

exhibit elevated senescence markers and incrementally undergo

atrophy and fibrosis (151). By contrast, transplanted kidneys in

p16INK4A-KO mice show less atrophy and fibrosis after

ischemia-reperfusion injury (151). Transplanting kidneys from

senescence-depleted mice consistently show better longevity and

proliferation of tubular epithelial cells. An elevated senescent cell

burden may therefore contribute to long-term allograft kidney

deterioration and CKD development in humans (151).

In vivo mouse models of aged and irradiated kidneys

demonstrate elevated senescence markers, reduced proliferative

repair after injury, and produce TGF-b as a part of their SASP to

induce fibrosis. Using the senolytic ABT-263 to eliminate

senescent proximal tubular epithelial cells improves these

parameters (152). A recent study demonstrated renal tubular

epithelial cell senescence – evidenced by higher p16INK4a, p19,

and p21CIP1 expression – secondary to chronic ischemia from

renal artery stenosis in mice and humans. A dasatinib and

quercetin senolytic combination alleviated renal dysfunction in

these mice, suggesting a causal relationship between chronic

ischemia, cellular senescence, and kidney damage (153). Diabetic

nephropathy is the major cause of CKD worldwide and a

significant contributor to obesity-related kidney disease.

Biopsies of kidneys from patients with type 2 diabetic

nephropathy show elevated senescence markers SA-b gal and

p16INK4a in proximal tubular epithelial cells, mesangial cells,

podocytes, and endothelial cells (154). WT diabetic kidney

disease mouse models develop proteinuria and glomerular

hypertrophy, and both effects are attenuated in p21CIP1-KO

mice (155). Dasatinib and quercetin combination also reduce

AKI to CKD transition in murine models of cisplatin and

radiation-induced kidney injury (156). Senescent markers

SA-b gal, p16INK4A, and p21CIP1 are also elevated in the
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kidneys of rats and cats with CKD (157, 158). These data

show cellular senescence underpins various renal pathologies

that lead to CKD, and senolytics could mitigate this progression.

CKD is considered a systemic premature aging phenotype,

known as uremia-associated aging (159). Uremic patients can

develop age-related conditions, including osteoporosis,

sarcopenia, frailty, impaired wound healing, infections, insulin

resistance, cognitive dysfunction, hypogonadism, and vascular

aging (160–163). Hence, certain uremic toxins expectedly

accelerate biological aging hallmarks, including cellular

senescence, to precipitate a premature aging phenotype (164).

Uremia-induced senescenced was first demonstrated in the

aortas of hypertensive rats, where indoxyl sulfate-related

cellular senescence was correlated with aortic wall calcification

and thickness, a sign of vascular aging (165). Uremia-induced

senescence is mediated by oxidative stress and consequent DNA

damage response signaling and upregulation of p21CIP1 and p53

(166). A recent review by Huang et al. summarized the

mechanisms behind CKD-induced senescence (167). The

uremic toxins indoxyl sulfate and p-cresyl sulfate induce

senescence in mesenchymal stem cells, evidenced by elevated

p21CIP1 expression (168, 169). A normocytic normochromic

anemia is common in CKD pateints, and is mainly thought to

be due to low erythropoietin production by the kidney. Mas-

Oodi et al. recently demonstrated that indoxyl sulfate induced

senescence in CD34+ hematopoietic stem cells, thereby arresting

their proliferation and reducing erythropoiesis (170). Indoxyl

sulfate also induces senescence in renal proximal tubular

epithelial cells in CKD through ROS-dependent p53

expression (171). Senescent proximal tubular cells display a

proinflammatory and profibrotic protein signature, with

elevations in NFkB and TGF-b production, possibly

contributing to further declines in renal function (171, 172).

P-cresyl sulfate activates NADPH oxidase and induces

oxidative stress in mouse 3T3-L1 adipocytes. Exposure to p-

cresyl increases TNF-a and IL-6 production by 3T3-L1

adipocytes and increases ATM infiltration, suggesting that this

uremic toxin is a mediator of CKD-induced adipose tissue

inflammation (172, 173). In agreement with these findings,

Koppe et al. reported that administering p-cresyl sulfate to

normal mice for 4 weeks triggered lipotoxicity and insulin

resistance (174). Although senescence markers were not

evaluated in these studies, it is conceivable that the

intracellular accumulation of p-cresyl sulfate may induce

adipocyte senescence, since oxidative stress is the major

pathway of adipose tissue senescence. In the context of the

adipose-renal axis, these studies suggest that the accumulation of

uremic toxins in CKD trigger senescence in adipose tissue,

amplifying the inflammaging seen in CKD pateints. Further

studies are needed to determine which uremic toxins induce

adipose tissue senescence, the mechanisms involved, which

subpopulations of cells in adipose tissue are affected, the
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important SASP components by which uremia-induced

senescent adipose tissue exerts pathologic systemic effects, and

whether senolytic or other senescent-targeting strategies are

effective in ameliorating uremia-induced senescence. Another

pathway to consider in the adipose-renal axis in CKD is the gut

microbiome. CKD alters the symbiotic relationship between the

intestinal microbiome and the body (i.e., gut microbiome

dysbiosis), leading to the fermentation of macronutrients and

production of various uremic toxins, including indoxyl sulfate,

p-cresyl sulfate and others. CKD-related impairment of the

intestinal epithelial barrier allows for the spillover of these

toxins into the bloodstream, which drive systemic oxidative

stress and inflammation (175, 176). Whether and how certain

dietary modifications lifestyle interventions such as exercise,

restore host-enterobiome symbiosis and alleviate senescence in

the context of the adipose-renal axis is an important topic for

future studies to address.
4.3 Senotherapies in obesity and
kidney disease

Targeting senescent cells pharmacologically can alleviate

numerous age-related diseases. Baker et al. initially

demonstrated that depleting senescent cells prevents the

development of age-related changes in adipose tissue, skeletal

muscle, and eyes of INK-ATTAC transgenic mice (150).

Numerous strategies have emerged to deplete senescent cells

or mitigate their harmful effects. Briefly, senolytic drugs inhibit

SCAPs characteristic of senescent cells, allowing for the selective

depletion of senescent cells. Dasatinib, quercetin, and fisetin are

the most studied senolytics in preclinical animal models thus far,

and numerous clinical trials testing their efficacy in age-related

disorders are underway (177). Senomorphic drugs inhibit

various SASP components without inducing senescent cell

death. Most senomorphics target transcriptional regulators of

the SASP, including ATM, p38 MAPK, JAK/STAT, NFkB, and
mTOR pathways. Other strategies are also emerging, recently

reviewed by Zhang et al. (178, 179). Many preclinical studies

have shown senolytics to alleviate aging phenotypes, including

cancer, chemotherapy- and radiation-induced premature aging,

diabetes, osteoarthritis, neurodegeneration, glaucoma, age-

related macular degeneration, idiopathic pulmonary fibrosis,

heart failure, and CKD (180).

The impact of senescent cell depletion has also been

investigated in obesity and kidney disease. Palmar et al.

cleared senescent cells either by senolytic combination

dasatinib+quercetin or by selective depletion of p16INK4a-

expressing cells and observed reduced adipose tissue

inflammation and improved glucose tolerance and insulin

sensitivity (181). Since DNA damage is the major inducer of

senescence in adipose tissue, interventions such as exercise, N-

acetylcysteine, and senolytics that reduce oxidative stress in
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adipose tissue decrease adipose tissue SC burden and attenuate

ATM infiltration and adipose tissue inflammation (125).

Another study showed that senescent cell clearance in adipose

tissue of HFD obese mice by dasatinib+quercetin and navitoclax

improved insulin sensitivity and increased plasma adiponectin

levels (182). Consistent with higher adiponectin levels, senescent

cell clearance anormalizes microalbuminuria and podocyte

barrier integrity (181). An HFD increases senescent cell

burden in mouse kidneys—detected by p16INK4a, p19, and p53

expression and SASP upregulation—linked to renal fibrosis and

functional impairment (144). Quercetin administration reduced

senescent cell burden in the kidney, attenuated renal fibrosis,

increased renal cortical oxygenation, and lowered plasma

creatinine levels (144).

These findings suggest that depleting adipose tissue-resident

senescent cells by senolytics restores adipogenesis, reduces

adipocyte hypertrophy, improves glucose tolerance and insulin

sensitivity, reduces macrophage infiltration into adipose tissue,

and increases adiponectin secretion.
5 Sleep apnea, obesity and CKD

Obstructive sleep apnea (OSA) is a globally prevalent

disorder increasing in incidence. OSA is characterized by

collapse of the upper airway during sleep, causing arousal with

or without oxygen desaturation, leading to sleep fragmentation

and daytime sleepiness. Obesity is a strong risk factor for OSA:

OSA affects 40% of moderately obese (BMI >30 kg/m2) and 90%

of severely obese patients (BMI >40 kg/m2) (183). A 10%

increase in bodyweight increases the Apnea-Hypopnea Index

(AHI) by 32%, whereas a 10% decrease in body weight decreases

the AHI by 26% (184). Obesity increases pharyngeal

collapsibility by reducing upper airway diameter and lung

volume, predisposing to collapse and consequent OSA (185).

OSA patients are at a significantly higher risk of stroke,

myocardial infarction, arrhythmias, insulin resistance and

diabetes, heart failure, pulmonary hypertension, and CKD.

The pathogenic hallmark of OSA is chronic intermittent

hypoxia (CIH), which exerts direct pathologic effects in

multiple organs. Although the kidney receives 25% of the

cardiac output, blood flow to the renal medulla is tightly

regulated to maintain the interstitial medullary osmotic

gradient which facilitates water reabsorption. The renal

medulla is, therefore, highly vulnerable to ischemic injury.

CIH leads to significant tubulointerstitial damage by increasing

oxidative stress and inflammation (186). In agreement with

these findings, treatment with lipoic acid, an antioxidant,

ameliorates hypoxia-related renal injury by decreasing

oxidative stress, renal cell apoptosis, and tubular injury (187).

CIH also activates interstitial fibroblasts and induces renal

tubular epithelial cells to undergo an epithelial-to-

mesenchymal transition by upregulation of HIFs, leading to
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renal fibrosis (188–191). Nocturnal hypoxia in OSA patients

over-activates the sympathetic and renin-angiotensin-

aldosterone systems, associated with long-term renal

impairment (192–194). These experimental models explain

clinical studies showing that OSA contributes to CKD

development and progression. For example, a cross-sectional

analyzing over 7700 subjects with OSA for CKD revealed that, in

additional to traditional CKD risk factors, lower nocturnal

oxygen saturation was associated with CKD, with a 2% rise in

CKD probability for every 1 unit drop in oxygen saturation

(195). Furthermore, studies following OSA patients

longitudinally have revealed that nocturnal hypoxia is

independently associated with steeper declines in eGFR,

cardiovascular mortality, and all-cause mortality (196–200).

Continuous positive airway pressure (CPAP) therapy is the

mainstay of treating OSA and resolves CIH. CPAP significantly

reduces snoring and daytime sleepiness and improves the quality

of life in OSA patients. CPAP significantly decreases renal

sympathetic and RAAS activity and blood pressure, improves

renal hemodynamics, slows the rate of eGFR decline, and

reduces microalbuminuria in patients with severe OSA (201–

204). However, data suggest that CPAP may be ineffective at

improving renal function in moderate nocturnal hypoxia and

men (205, 206). Furthermore, CPAP is ineffective at reducing the

incidence of a composite clinical end point of cardiovascular

mortality, myocardial infarction, stroke, transient ischemic

attack, and heart failure in patients with moderate-to-severe

OSA (207, 208). Varying degrees of compliance to treatment

among patient groups may partly be responsible for these

discrepant findings. Nevertheless, such data highlight the need

for elucidating the pathogenesis of OSA-related kidney disease.

No pharmacological treatments are currently available for OSA.

Identifying mediators of the systemic organ dysfunction caused

by OSA may reveal pathways that may be clinically beneficial to

target and supplement CPAP therapy to enhance the long-term

outcomes of these patients.

In this regard, OSA may alter patients’ adipokine profiles. OSA

patients have significantly reduced adiponectin compared to non-

OSA patients, regardless of sex, age, or BMI (209, 210). Low serum

adiponectin levels are associated with decreased cystatin C urinary

excretion in male OSA patients (192). Ding et al. demonstrated that

CIH in rats increased oxidative stress andmarkers of apoptosis in the

kidney compared to normal controls (211). Treating CIH rats with

adiponectin reduces oxidative stress and renal cell apoptosis (211).

Similar results have been observed in cardiomyocytes, neurons, and

pulmonary cells (212–214). Improving sleep quality in OSA patients

with cardiovascular disease either by CPAP, nocturnal supplemental

oxygen, or sleep hygiene education significantly increased serum

adiponectin levels and improved glucose tolerance parameters (215).

Therefore, low serum adiponectin in OSA may contribute to their

higher risk of systemic complications including renal impairment

and insulin resistance.
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OSA also increases leptin levels with consequent leptin

resistance (216). Li et al. concluded that leptin is significantly

higher in OSA than non-OSA patients and correlates with a

higher AHI (217). Obesity, a frequent comorbidity of OSA,

causes hyperleptinemia and leptin resistance. Leptin is key in

stabilizing upper airway muscles and stimulating CNS

respiratory drive (218–221). Therefore, it is conceivable that

leptin resistance may contribute to the higher risk of OSA in

obese individuals. Administering leptin intranasally to obese

mice alleviates OSA independent of body weight reduction

(222). OSA also increases leptin levels and causes leptin

resistance through CIH. A recent study reported that CIH for

96 days in rats significantly increased leptin levels (223).

Furthermore, while leptin injections into normoxic controls

reduced food intake, no such effect was observed in the CIH

animals, indicating leptin resistance (223). High levels of leptin

drive oxidative stress and chronic inflammation that underlie the

long-term cardiovascular complications of OSA (224).

Aging is a significant risk factor for many complications seen

in OSA, suggesting that OSA may accelerate aging at the cellular

level and precipitate a premature aging phenotype (225–228).

Sleep deprivation activates a DNA damage response in

peripheral blood mononuclear cells of older adult humans,

with consequent increases in p16INK4a expression and

elaboration of a SASP (229). Sleep fragmentation also induces

senescence in the aorta of adult male C57BL/6J mice (230),

possibly related to a pro-oxidant response in the vascular

endothelium induced by CIH that accelerates vascular aging

(231). Indeed, CIH induces a state of systemic chronic low-grade

inflammation through NFkB activation, which can induce

senescence (232–234). Lee et al. recently demonstrated CIH in

elderly mice to increase lung oxidative stress, inflammation, and

fibrosis (235). Many of the pro-inflammatory cytokines

measured—such as TNF and IL-6 —are SASP components,

although the lungs of these mice were not examined for

senescence markers. Polonis et al. reported that OSA-related

CIH induces senescence in human preadipocytes—expressing

p16INK4a, SA-b gal, and gH2AX —through a ROS-dependent

pathway (236). The subcutaneous abdominal adipose tissue of

OSA patients also demonstrated higher p16INK4a and gH2AX

than non-OSA individuals. Importantly, treatment with statins,

aspirin and/or a RAS inhibitor significantly reduced senescent

cell burden in vitro and in vivo (236). A recent study by Khan

et al. showed that two weeks of CIH increased senescence in the

visceral white adipose tissue of C57BL6 male mice through a

DNA damage response (146). Adipose tissue senescence was

accompanied by increased adipose tissue fibrosis, macrophage

infiltration, and inflammation. Furthermore, CIH was associated

with the upregulation of pro-fibrotic genes in the myocardium

and consequent myocardial fibrosis (146). A major finding of

this study was that p53-KO mice (i.e., a defect in a key

senescence-inducing pathway) did not develop myocardial
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fibrosis, and resection of senescent adipose tissue also prevented

myocardial fibrosis (146).

In summary, the findings above indicate that CIH, which is a

hallmark of OSA, induces senescence in adipose tissue and

several other organs, contributing to systemic functional

impairment. For future research, it will be important to

ascertain whether the available senolytics reduce senescent cell

burden in OSA and whether this ameliorates OSA severity and

prevents complications. OSA-related senescence has also not

been investigated in the kidney but is likely since renal artery

stenosis, which, similar to CIH, leads to chronic ischemia that

induces senescence in the renal tubular epithelium and causes

renal dysfunction (153). It is also important to note that CKD

itself can dysregulate sleep and is a risk factor for OSA

development and/or progression through a variety of

mechanisms (237–240). These observations suggest the

existence of a positive feedback loop, whereby OSA, obesity,

and CKD all worsen systemic oxidative stress, inflammation,

and senescence in multiple organs.
6 Conclusion and perspectives

The increasing prevalence of obesity and kidney disease

necessitates a better understanding of the mechanisms behind

obesity-induced kidney disease. Although weight loss and

lifestyle interventions represent the primary modality of

treating obesity, peripheral treatments based on normalizing

the adipokine profile or reducing senescent burden in obesity

could better clinical outcomes in these patients.

We described the most studied adipokines implicated in

obesity-induced kidney disease, but a myriad of other adipokines

—including resistin, visfatin, angiotensinogen, and lipocalin—

have also been studied in this context. Multiple studies have

demonstrated the existence of an adipose-renal axis, whereby

obesity-derived cytokines and adipokines damage the kidney,

and CKD-related metabolic dysregulation accelerates adipose

tissue aging and dysfunction. This axis is influenced by senescent

cell burden and the presence of sleep apnea, both of which can

amplify inflammation in obesity and CKD. Gut microbiome

dysbiosis is another pathway to consider in the adipose-renal

axis in obesity and CKD (241–243).
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How cellular senescence plays into the adipose-renal

crosstalk is largely unexplored in both laboratory and clinical

studies but is likely since senescent cells accumulate with age,

and obesity-related senescence in adipose tissue and other

organs is well-established. Investigating senescence in different

CKD complications could also reveal novel biomarkers and

targets for pharmacologic intervention. Senolytic and

senomorphic drugs could have potential clinical practice-

changing implications in treating multiple conditions,

including obesity and CKD. Still, their efficacy and, more

importantly, safety profile remains to be shown in ongoing

clinical trials.
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