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Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University,
Guangzhou, China
Wnts are secreted cysteine-rich glycoproteins involved in joint development

and skeletal homeostasis and have been implicated in the occurrence of

osteoarthritis. Over the past decade, Wnt16, a member of the Wnt family, has

received widespread attention for its strong association with bone mineral

density, cortical bone thickness, bone strength, and osteoporotic fracture risk.

In recent years, further studies have shed light on the role of Wnt16 a positive

regulator of bone mass and protective regulator of osteoarthritis progression.

Transduction mechanisms and crosstalk involving Wnt16 signaling have also

been illustrated. More importantly, local Wnt16 treatment has been shown to

ease osteoarthritis, inhibit bone resorption, and promote new bone formation

in bone defect models. Thus, Wnt16 is now a potential therapeutic target for

skeletal diseases and osteoarthritis. This paper reviews our current

understanding of the mechanisms by which Wnt16 signaling regulates bone

homeostasis and osteoarthritis.
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Introduction

Bone is originally formed through the process of bone modeling which is a lifelong

process beginning during development. There are two modes of bone modeling:

intramembranous ossification, which applies to the craniofacial bone and clavicle, and

endochondral ossification, which occurs in limb and trunk bones. Bone remodeling is a

dynamic process where mature bone tissue is removed from the skeleton and new bone

tissue is formed, mainly regulated by osteoblasts and osteoclasts. During this process, old

or damaged bone is resorbed by osteoclasts and replaced with new bone formed by

osteoblasts (1–3). Skeletal homeostasis is maintained when a balance between bone

resorption and bone formation is reached (4). On the contrary, breakdown of this balance

leads to the occurrence of skeletal diseases (5, 6).

Osteoarthritis (OA) is a prevalent chronic joint disease that leads to pain and the loss

of joint function. The pathological characteristics of OA are articular cartilage

degeneration, subchondral bone hyperplasia, joint edge osteogenesis, synovial tissue

inflammation and proliferation, ligament and meniscus degeneration and joint capsule
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hypertrophy (7, 8). Several pathogenic mechanisms are involved

in the mediation of OA, including degradation of extracellular

matrix, deficient newmatrix formation, cell death, and abnormal

hypertrophic differentiation of chondrocytes (9–12).

Wnt signaling is subdivided into two branches: canonical

Wnt signaling, also known as Wnt/b-catenin signaling, and b-
catenin-independent non-canonical Wnt signaling (Figure 1)

(13–15). The involvement of canonical Wnt signaling in skeletal

homeostasis is initially emphasized by the findings that in

human loss- and gain-of-function mutations in Low-density-

lipoprotein-related protein 5 (LRP5) respectively result in

diseases characterized by low bone mass and high bone mass,

and loss-of-function mutations in sclerostin cause high bone

mass-characterized sclerosteosis and van Buchem disease (16–

19). Heterozygous loss-of-function mutations in Wnt1 (the first

identified Wnt ligand signaling via LRP5/6 in human bone

formation) can cause dominantly inherited early-onset

osteoporosis, while biallelic loss-of-function mutations lead to

recessively inherited osteogenesis imperfecta (20–22). These

findings and subsequent studies in genetically modified mouse

models have indicated that Wnt signaling is required for all

aspects of skeletal development (including bone development,

cartilage development and joint formation) (23–27), postnatal

bone and joint homeostasis (15, 28–32). Notably, the complex

fine nature of the Wnt regulatory network in skeletal

homeostasis is highlighted by the findings that both excessive

activation and inactivation of Wnt signaling can cause skeletal

malformation, bone diseases and cartilage loss (23, 33–39). For

example, activation of the classic non-canonical ligand Wnt5a

can promote both bone formation and resorption (40–44).
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Details of this complex network is outside the scope of this

review and has been reviewed elsewhere (45–49).

Wnt16 has emerged as a new Wnt ligand strongly associated

with bone mineral density (BMD) variations (50–55).

Previously, Wnt16 was considered to be a strong determinant

of cortical, but not trabecular, bone mass (56). However,

subsequent studies have provided new insights on the roles of

Wnt16 in both cortical and trabecular bone homeostasis (57–

59). Moreover, the role of Wnt16 as a precision regulator in

skeletal development and as a protective regulator in OA have

also been further illustrated in recent years. Therefore, in this

review article, we will focus on reviewing the latest discoveries

regarding the role of Wnt16 signaling in skeletal development,

bone homeostasis, and OA.
Regulation of bone and joint
development by Wnt16

Current evidence indicates that Wnt16 is involved in both

intramembranous and endochondral ossification (60), and its

overexpression in chondrocytes attenuates endochondral

ossification. Col2a1-Wnt16 transgenic mice, in which Wnt16 is

overexpressed in chondrocytes under the control of the Col2a1

promoter and enhancer, exhibit morphological changes involving

a significant reduction of tissue mineralization and endochondral

ossification during embryonic development (61, 62); this suggests

that Wnt16 overexpression during the embryonic period may

regulate the positioning and rearrangement of columnar

chondrocytes. Further, chondrocyte differentiation and
B C DA

FIGURE 1

Wnt signaling pathway. (A) Wnt/b-catenin Signaling-OFF, (B) Wnt/b-catenin Signaling-ON, (C) Wnt/planar cell polarity (PCP) Signaling pathway,
(D) Wnt/Ca2+ Signaling pathway. GSK3, glycogen synthase kinase 3; APC, adenomatous polyposis; TCF, T cell factor; LEF, Lymphoid enhancer
factor; Fzd, Frizzled receptor protein; LRP5/6, Low-density-lipoprotein-related protein 5/6; DSH, dishevelled; Ror 2, receptor tyrosine Kinase-
like Orphan receptors 2; Ryk, Related receptor tyrosine kinase; DAMM1, Disheveled-associated activator of morphogenesis 1; ROCK, Rho
activates Rho-associated kinase; JNK, c-Jun N-terminal kinase; PLC, phospholipase C; IP3, Inositol triphosphate; DAG, Diacylglycerol; PKC,
Protein kinase C; MAPK, Mitogen-activated protein kinases.
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hypertrophy during endochondral ossification are inhibited by

Wnt16 overexpression in vivo (62).

The congenital deletion of Wnt16 does not appear to have an

effect on mouse embryonic development but dose play a role in

bone and cartilage homeostasis in later development stage.

Systemic and chondrocyte-specific deletion of Wnt16 does not

affect endochondral bone formation in mouse embryos, and the

morphology, cortical bone parameters, trabecular bone

parameters and mechanical parameters of these genetic mice

are normal at birth. However, during the process of postnatal

skeletal maturation, those mutant mice displayed a smaller body

size, lower bone mass, and thinner articular cartilage, suggesting

the role of Wnt16 in later development stage (56, 61, 62).

Likewise, in zebrafish, congenital Wnt16 deletion can lead to

abnormal skeletal development. For instance, knockout of

Wnt16 early in zebrafish embryos causes bone deformities of

the head, spine, and tail in their adulthood, likely as a result of

the down-regulation of genes in the mTOR, FoxO, and VEGF

signaling pathways (63). Furthermore, Wnt16 knockout in

zebrafish leads to altered jaw joint morphology at 5 days post

fertilisation as a result of changes in cell proliferation and

migration (64).

These studies demonstrate that appropriate regulation of

Wnt16 expression is required for normal bone and joint

development, as both excessive and insufficient Wnt16 levels

have been shown to cause developmental defects.
Regulation of bone remodeling
by Wnt16

Over the past decade, genome-wide association studies

(GWASs) have discovered that missense single-nucleotide

polymorphisms (SNPs) in Wnt16 are strongly associated with

bone mineral density (BMD) variations at different skeletal sites

in different populations, leading to the conclusion that Wnt16

positively affects BMD (50–55). The close association of Wnt16

SNPs with peak bone mass, heel/calcaneal ultrasound

parameters, bone geometric parameters (including cortical

bone thickness, axial length, neck buckling ratio and cross-

sectional area), and fracture risk have also been emphasized

(53, 54, 65–68). Notably, despite its success in identifying novel

variant-trait associations, GWASs have been largely

unsuccessful in assessing the role of low frequency and rare

genetic variations. Very recently, two influential GWAS articles

filled this gap, highlighting the association of BMD with a novel

low-frequency non-coding variant near Wnt16 and rare variants

of Wnt16 (69, 70). In addition, as the transcriptional complexity

of Wnt16 has been clarified, transcriptome-wide association

studies, which are more reliable for interpreting the biological

functions of genetic loci than GWASs, have confirmed the

association of Wnt16 expression with total body BMD and

fracture (71) . These new findings provide a more
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comprehensive picture of the role of Wnt16 in regulating bone

homeostasis at the functional level.

Gain- and loss-of-function approaches in mice have

contributed to the functional characterization of Wnt16 in

cortical bone mass and bone strength. In mice from 5 weeks

old to 1 year old, the systemic and osteoblast/chondrocyte-

specific deletion of Wnt16 eventually leads to lower bone

mass, reduced bone strength (even spontaneous fractures),

smaller bone cross-sectional area, and decreased formation of

the cortical bone (56, 61, 62, 66, 72); the opposite effects are

observed when overexpressing Wnt16 (58, 59). It is clear that

Wnt16 plays a role in cortical bone homeostasis during not only

development and growth but also aging. Recently, a tamoxifen-

inducible Wnt16 inactivation model was used to demonstrate

that the effect of Wnt16 on postnatal cortical bone is

independent of its effect on skeletal development (73). This

new finding undoubtably consolidates the scientific foundation

of Wnt16 as a therapeutic target for acquired or age-related bone

diseases, such as osteoporosis.

Gain-of-function experiments in mice highlighted the

positive regulation of Wnt16 in trabecular bone mass and

suggested that a compensatory mechanism to maintain bone

strength in the absence of Wnt16 may exist in mice. Studies have

shown that overexpressing Wnt16 in osteoblasts or osteocytes

increases trabecular bone mass (57–59). Among these studies,

two found that the overexpression of Wnt16 in osteoblasts or

osteocytes primarily increased trabecular bone mass rather than

cortical bone mass, suggesting that trabecular bone may be more

sensitive to altered Wnt16 expression (58, 59). In addition, in a

mouse calvarial defect model, local transplantation of periosteal

derived cells (PDCs), which were genetically engineered to

express Wnt16, significantly increased trabecular bone volume/

tissue volume and trabecular number (74). These findings are in

consistent with human GWAS studies performed by different

groups demonstrating the association between Wnt16 and

spine/heel (predominantly trabecular bone) BMD (54, 67, 75).

While no significant changes were observed in trabecular bone

in the life-long Wnt16 inactivation mouse models used in

previous studies, a recent study demonstrated that high-dose-

tamoxifen-inducible Wnt16 inactivation modestly increased

trabecular bone volume fraction in young adult mice (73).

Moreover, Wnt16 knockdown has been shown to significantly

decrease trabecular bone number in zebrafish (63). It is

speculated that there may be a compensatory mechanism in

mouse trabecular bone to maintain overall bone strength

following reduction in cortical bone thickness (73). To date,

possible reasons for the drastic differences in cortical bone

phenotypes in Wnt16 knockout mouse models versus

predominantly trabecular bone phenotypes in Wnt16

overexpression mouse models include (1): interactions of

complex signaling pathways among several Wnts and their

intracellular and extracellular modulators, (2) differences in

bone micro-environments, (3) influences of mechanical signals
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perceived by the tissue, (4) cross-talk ofWnt signaling with other

signaling pathways, and (5) large differences in physiological

Wnt16 expression levels (high expression in cortical bone but

very low expression in trabecular bone) (58, 59). Further studies

are necessary to decipher the complex regulation of Wnt16 on

trabecular bone, especially in physiological conditions.

Wnt16, which is highly expressed in cortical bones, is mainly

produced by osteoblast-lineage cells, especially early/

differentiating osteoblasts. The contribution of osteocytes to

Wnt16 production is relatively small and bone marrow cells

barely express Wnt16 (56, 60, 76). Wnt16 expression decreases

during aging, which may be a possible cause of age-related bone

loss (77). In cartilage of both humans and mice, Wnt16 is not

expressed under normal conditions but is found to be rapidly

upregulated in degenerated articular cartilage areas following

injury or in OA (62, 78, 79). As reported in a recent study,

Wnt16 expression is robustly increased under the stimulation of

oncostatin M (a cytokine member of the IL-6 family) and then

acts as a negative feedback regulator of oncostatin M-induced

osteoclast formation (76). These findings indicate that the

expression of Wnt16 is cell specific, and Wnt16 expression

levels are important for many physiological and pathological

conditions in which Wnt16 plays a role as a protective factor.

Mechanically, the effect of Wnt16 on bone homeostasis

appears to be primarily dependent on its regulation of

osteoblast differentiation and osteoclastogenesis (Figure 2).

The positive effect of Wnt16 on bone mass can be explained
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by its role in promoting osteogenic differentiation and inhibiting

osteoclastogenesis. Recent studies have shown that recombinant

Wnt16 treatment in osteoblasts upregulates many genes

involved in osteoblast differentiation and proliferation,

including Bmpr1b, Bmp7, and Enpp1 (83). Wnt16 is capable of

inducing perivascular stem cell (PSC) proliferation and

enhancing PSC differentiation towards osteoblasts in a c-Jun

N-terminal kinase (JNK) pathway-dependent fashion (80, 81).

Similarly, Wnt16 promotes osteoblast differentiation from

periosteal derived cells (PDCs) (74) as well as the

differentiation of osteoblast progenitors into bone matrix-

synthesizing osteoblasts by inhibiting canonical Wnt activity

and upregulating Runx2 expression (82). However, it is worth

noting that Wnt16 can also promote canonical Wnt activity to

inhibit Runx2 expression and repress the differentiation of pre-

osteoblasts (60). With regards to effects on osteoclastogenesis,

Wnt16 has been shown to directly inhibit osteoclastogenesis by

inhibiting RANKL-induced NF-kB and NFATc1 signaling in

OPG-negative bone marrow-derived macrophages (osteoclast

precursors) in vitro, and indirectly inhibits osteoclastogenesis by

inducing the expression of OPG in a mouse pre-osteoblasts cell

line (MC3T3-E1 cells) (56, 84).

Except for its role in promoting the expression of OPG in

pre-osteoblasts, the effect of Wnt16 on other cell functions is

insufficient to explain its regulatory effect on bone mass. Wnt16

has been shown to exert no effect on the functions of osteoclasts

(56, 84). In addition, reduced periosteal bone formation caused
FIGURE 2

Wnt16 regulation of osteoblast differentiation and osteoclastogenesis. The predominant source of Wnt16 is the differentiating osteoblast. Wnt16
promotes osteoblast differentiation of PDCs, induces PSC proliferation, and increases osteoblast differentiation of PSCs in a JNK pathway-
dependent fashion (74, 80, 81). By activating/repressing Wnt/b-catenin signaling, Wnt16 regulates Runx2 expression to promote/inhibit
osteoblast differentiation of pre-osteoblasts (60, 82). In osteoblasts, Wnt16 upregulates genes involved in osteoblast differentiation and
proliferation (Bmpr1b, Bmp7 and Enpp1) (83). By inhibiting RANKL-induced NF-kB and NFATc1 signaling, Wnt16 directly inhibits
osteoclastogenesis in osteoclast precursors. Moreover, Wnt16 indirectly inhibits osteoclastogenesis by upregulating the expression of OPG in
pre-osteoblasts and osteoblasts, which binds to RANKL and thus inhibits the RANK-RANKL interaction (56, 84). PSC, perivascular stem cell; PDC,
periosteal derived cell; OB, osteoblast; P-OB, pre-osteoblast; OC, osteoclast; P-OC, osteoclast precursor; H-chondrocyte, hypertrophic
chondrocyte; Wnt/b, Wnt/b-catenin signaling.
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by inducible Wnt16 inactivation during adulthood is known to

result from a reduction in the number of cells rather than a lower

activity per cell (73). Notably, the complexity and uncertainty of

Wnt16 regulation on cell function has been highlighted by

several other studies, which show that Wnt16 suppresses

osteoblasts maturation and mineralization (56, 83) and life-

long Wnt16 inactivation can lead to a robust reduction in

mineral apposition rate, suggesting reduced cell activity (72).

These findings indicate that Wnt16 is a powerful regulator of cell

differentiation but not of cell function in bone homeostasis. The

regulation of bone cell function may be facilitated by the

coordinated regulation of multiple signaling pathways and/or

downstream effectors triggered by Wnt16 in presence of specific

receptors, co-receptors, antagonists and agonists.

Wnt16 can activate both canonical and non-canonical Wnt

signaling in osteoblasts and chondrocytes (56, 85), but can only

signal through the non-canonical pathway in osteoclasts (56, 79).

IdentifiedWnt16 receptors include AP2b1, Ror2 and CD146 of the

planar cell population (PCP) and JNK pathway (62), and LRP6 of

the canonical pathway (56). However, the specific receptor of

Wnt16 in the skeletal system remains unclear, although a recent

study showed that a non-canonical Fzd1/2/7 receptor may be

Wnt16-specific during early anterior-posterior patterning and

morphogenesis for knockout of the Fzd1/2/7 receptor produced

the same phenotype as Wnt16 knockout (86). Further cellular and

molecular analyses have shed light on the specific intracellular

partners and transcription factors involved in Wnt16 signaling.

Galpha subunits (including Ga12, Ga13, and Gaq) are

intracellular partners of Wnt16 required for both canonical and

non-canonical Wnt signaling activity in osteoblasts (87). In

addition, rs2908007 (an osteoporosis GWAS variant located in
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the Wnt16 promoter) confers G-allele-specific transcriptional

modulation via TBX5/TBX15, USF3, and TWIST1/TCF12.

TBX5 and TBX15 bind to the rs2908007 allele to increase

Wnt16 expression, and USF3 transactivates Wnt16 promoter

activity and antagonizes the repression of Wnt16 by TWIST1

and TCF12, thereby contributing to the enhancement of osteoblast

differentiation and the suppression of osteoclastogenesis in

cultured human osteoblast-like U-2OS cells (88). Moreover,

Mef2c, a negative regulator of bone formation, has been

identified as the most significantly enriched transcription factor

associated with genes repressed by Wnt16, while Fosl2 and Fosl1

(JNK pathway activated transcription factors) are two of the most

significantly enriched transcription factors associated with genes

activated by Wnt16 (Figure 3) (83). The discoveries of these

specific factors undoubtedly add details to the big picture of the

Wnt16 signaling network.

The Wnt16 signaling network is complex, as Wnt16 signals

crosstalk with other signaling pathways. Analysis of the Wnt16-

regulated transcriptome has revealed that genes regulated by

Wnt16 in osteoblasts include members of the Wnt pathway/

family, mTOR signaling pathway and other pathways. A large

number of Wnt16 targets overlap with the canonical Wnt3a

targets and non-canonical Wnt5a targets (83). This crosstalk was

confirmed in another study using protein-protein interaction

network analysis (63). Functional experiments support the

interactions of Wnt16 with Wnt5a and Wnt3a. The inhibitory

effects of Wnt16 on RANKL-induced osteoclastogenesis can be

abrogated by Wnt5a; however, Wnt16 is unable to inhibit the

Wnt5a-induced expression of RANK in osteoclast precursors,

indicating that Wnt5a and Wnt16 strictly coregulate

osteoclastogenesis in a manner dependent on various
FIGURE 3

Wnt16 signaling transduction mechanisms. USF3, TBX5 and TBX15 bind to rs2908007[G] allele to increase Wnt16 expression. The repression of
Wnt16 by anti-osteogenic TWIST1 and TCF12 is antagonized by USF3 (88). Wnt16 protein transcriptionally represses Mef2c which is a known
negative regulator of bone formation (83). Ga12, Ga13 and Gaq are required as intracellular partners by Wnt16 for Wnt/b-catenin signaling, Wnt/
Ca2+ signaling and Wnt/PCP signaling (87). Ga12, Galpha 12; Ga13, Galpha 13; Gaq, Galpha q.
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conditions (84). Peptide-Wnt16 mRNA nanocomplexes can

antagonize canonical b-catenin/Wnt3a signaling in human

cartilage explants, demonstrating the interaction between

Wnt16 and Wnt3a (89). In addition, it has been shown that

Wnt16 forms a network with other genes by forming

connections with the two genes sulf1 and vegfaa (63).

Together, these findings indicate that the different upstream

signals may product the same effect, and the downstream effects

o f Wnt16 s igna l ing can d i ff e r in d i ff e ren t bone

microenvironments. As we deepen our understanding of the

Wnt16 signaling network, the initial etiology and corresponding

therapeutic targets of complex bone diseases will become clear.
Wnt16 in osteoarthritis pathogenesis

While previous work indicated that there was no association

between Wnt16 gene polymorphisms and osteoarthritis (OA)

(90), recently, two SNPs of the Wnt16 gene (rs2707466 and

rs2908004) known to be associated with BMD have been

implicated in the hip and knee OA phenotypes in Caucasian

patients in a sex-dependent manner (91). This report was the first

to suggest the involvement of theWnt pathway in determining the

OA phenotypes. Furthermore, a more recent study revealed that

two SNPs of Wnt16 (rs2908004 and rs1799986) are associated

with decreased risk of OA, implying that Wnt16 plays a protective

role in the pathology of OA (92). Supporting the functional role of

Wnt16 in limiting cartilage destruction in OA are the findings that

mice with global Wnt16 deletion (Wnt16-/- mice) or

chondrocytes-specific (Col2a-cre) Wnt16 deletion develop more
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severe experimental OA after OA-induced surgery, which is

charactered by deteriorated articular cartilage integrity, an

increased subchondral bone remodeling rate, more severe

synovitis, prominent osteophyte formation, and upregulated

MMP13 and Col10a1 (62, 79, 93). Altogether, these new

findings support the vital role of Wnt16 in OA, although larger-

size studies and studies including other patient populations are

still needed to validate these findings on a broader scale.

From a mechanistic point of view, the protective effect of

Wnt16 on joints in OA is a result of its inhibition on cartilage

catabolism (Figure 4). The first evidence for this effect was the

finding that, in mouse temporomandibular joint (TMJ) cartilage,

Wnt16 not only attenuates IL-1b-induced suppression of

cartilage anabolic factors (including SOX9 and Lubricin), but

also suppresses the expression of IL-1b-induced cartilage

catabolic factors (including MMP13 and ADAMTS5).

Mechanistically, Wnt16 has been shown to signal through

both the canonical Wnt/b-catenin and non-canonical Wnt/

JNK-cJUN pathways and exert protective effects via Runx2-

mediated suppression of MMP-13 in TMJ fibrochondrocytes

under inflammatory conditions (85). Furthermore, during OA

pathogenesis, Wnt16 suppresses chondrocyte hypertrophy,

thereby contributing to a reduction in Col2a1 (the major

component of the cartilage matrix), via PCP/JNK-mTORC1-

PTHrP cascade (62). Moreover, Wnt16 may compete with other,

more effective Wnts (such as Wnt3a and Wnt8) to limit the

over-activation of the canonical Wnt pathway, which is known

cause of severe OA in Wnt16-deficient mice, thereby protecting

cartilage in OA (79, 94). Collectively, Wnt16 inhibits cartilage

catabolism in OA by inhibiting IL-1b-induced inflammation,
FIGURE 4

Wnt16 regulation of OA. Excessive activation of Wnt/b-catenin signaling causes cartilage loss, while Wnt16 protects cartilage by antagonizing
over-activated Wnt/b-catenin signaling (79, 94). Wnt16 attenuated IL-1b induced suppression of cartilage anabolic factors SOX9 and lubricin and
IL-1b induced activation of cartilage catabolic factors MMP13 and ADAMTS5, probably through Wnt16/b-catenin and Wnt16/JNK signaling
pathways. Also, Wnt16’s suppression of MMP13 under inflammatory conditions is the result of Wnt16 inhibiting IL-1b induced Runx2 expression
(85). Wnt16 supports the phenotype marker profile of superficial zone cells (SZCs) and may upregulate lubricin expression partially through
Wnt16/b-catenin signaling (79, 85, 89). Through Wnt16/JNK-mTORC1-PTHrP cascade, Wnt16 inhibits chondrocyte hypertrophy and thus inhibits
cartilage catabolism (62). IL-1b: Interleukin-1b; MMP13: Matrix Metallopeptidase 13; ADAMTS5: a disintegrin and metalloproteinase with
thrombospondin motifs 5.
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suppressing chondrocyte hypertrophy, and antagonizing over-

activated canonical Wnt signaling.

Wnt16 also protects joints by maintaining or inducing

cartilage anabolism during OA pathogenesis (Figure 4). In

addition to the excessive activation of Wnt/b-catenin
signaling, severe OA in Wnt16-/- mice was associated with the

reduced expression of lubricin (an essential anabolic factor) and

increased apoptosis of articular cartilage superficial zone cells

(SZCs), which contribute to lubricin production and articular

cartilage self-renewal (79). In vivo, as mentioned above, Wnt16

can upregulate lubricin expression during inflammation induced

by IL-1b (85). In vitro, Wnt16 not only upregulates lubricin

expression in primary bovine articular chondrocytes and human

cartilage explants, but also supports the phenotype marker

profile and upregulates lubricin production in SZCs (79, 89).

Mechanistic studies have shown that high doses of Wnt16

strongly upregulate lubricin by weakly activating canonical

Wnt signaling (79). Overall, Wnt16 promotes cartilage

anabolism in OA by upregulating the expression of lubricin

and supporting the phenotype marker profile of SZCs.
Effects of local Wnt16 treatment
in vivo

As a key regulator of skeletal homeostasis and OA

progression, Wnt16 has great potential to serve as a locally

delivered molecule for treating skeletal disorders. Indeed, the

inherent difficulties in stabilizing and delivering the hydrophobic

Wnt protein as a bioactive reagent in vivo have been overcome

——liposomes are effective delivery vehicles of preserving both

in vitro and in vivo Wnt proteins stability and activity (95, 96).

Current research on the effect of local Wnt16 treatment focus on

three major aspects: Wnt16 application in healthy bones and

joints, in OA models, and in bone defect models.

In the Wnt16-treated healthy tibia, local BMD is

significantly higher as compared with the contralateral tibia

treated with empty liposomes, consistent with the genetic

finding that Wnt16 is a positive regulator of BMD (56) and

indicating that local application of Wnt16 can increase bone

mass. Although there are doubts about whether high BMD is a

risk factor for OA (97–102), a recent study demonstrated that

high bone mass resulting from Wnt16 overexpression was not

associated with more severe OA, suggesting that bone mass is

not the main contributor to OA severity and treatment strategies

targeting the regulation of Wnt16 are unlikely to increase the

risk of developing OA (103). However, another study

unexpectedly found that Wnt16 application may have a

negative effect on cartilage in healthy joints: in joints without

OA symptoms, intra-articular injection of adenovirus-Wnt16

resulted in an increase in canonical Wnt signaling and led to

superficial erosive lesions and several other lesions in cartilage

(104). Therefore, we suggest that local Wnt16 application,
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especially in health sites, should not be applied until there is

sufficient supporting evidence.

Under inflammatory conditions, local application of Wnt16

in the articular cavity was reported to ease the severity of OA. It

has been reported that intra-articular injection of adenovirus-

Wnt16 into mouse knee joint cavities significantly improved all

OA parameters and attenuated cartilage degradation, while

Wnt16 knockdown mice exhibited more severe OA after

anterior cruciate ligament transection surgery (62).

In a mouse model of bone defect, Wnt16 delivered in

liposomes prevented bone loss, demonstrating that Wnt16 has

the capacity to improve bone status in vivo (56). In another study,

after transplantation of PDCs infected with Wnt16-containing

virus supernatant into a mouse calvarial defect model, new bone

formation was observed in the defect area, suggesting that local

Wnt16 application may induce bone formation (74).

Taken together, evidences to date indicates that, Wnt16

treatment in the joint cavity can ease OA, and local

application of Wnt16 in bone defect sites is beneficial for

preventing bone loss and inducing bone formation. However,

it is worth noting that the application of Wnt16 in healthy joints

may have risks. Also, current animal models for studying the

effect of local Wnt16 treatment in vivo are still limited to mouse

and rat models. Additional animal and clinical experiments

together with long-term efficacy trials of local Wnt16

treatment are required to progress the development of this

putative treatment strategy.
Conclusions and perspectives

In this review, we provided new insights regarding the role of

Wnt16 as a regulator of both cortical and trabecular bone

homeostasis and discussed the role of Wnt16 as a protective

regulator in OA. In addition to clarifying these roles of Wnt16, we

also emphasized the precise mechanisms regulating Wnt16

signaling, including its role in the regulation of skeletal

development, postnatal management of bone hemostasis

independent of developmental influences, mechanisms on

osteoblastogenesis and osteoclastogenesis, and multidimensional

protective mechanisms in OA. Notably, in animal models, the

local application of Wnt16 in inflamed joints as well as in bone

defect sites exhibit exciting therapeutic effects. With an increasing

number of transcription factors and crosstalk signals still to be

discovered, a broader understanding ofWnt16 signaling will bring

more insights and greater opportunities for the targeted therapy of

bone diseases.

The spatiotemporal expression of Wnt16 has been described

by several studies: during embryonic development, Wnt16 is

selectively expressed in mouse perichondrium, periosteum and

joints, and in zebrafish dermomyotome and developing

notochord (105, 106), while in postnatal environment, Wnt16

is highly expressed in mouse cortical bone and zebrafish
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notochord sheath (56, 105). Researches have suggested that

changes in hormone level caused by aging, diseases and

hormone therapy can affect the expression of Wnt16.

Ovariectomy or estrogen deficiency has shown to decrease

Wnt16 expression, whereas estradiol and Tamoxifen treatment

increase Wnt16 expression in mouse cortical bone (59, 77). In

addition, glucocorticoid treatment suppresses Wnt16

expression, probably via direct DNA-binding mechanisms

(107–109). However, how hormones affect the spatiotemporal

expression of Wnt16 and how Wnt16 coregulate bone

homeostasis with hormones have not been clearly clarified.

Although Wnt16 restored glucocorticoid-induced suppression

of bone formation and protected against glucocorticoid-induced

bone loss in two studies (107, 108), one study showed that

upregulation of Wnt16 expression was insufficient to prevent

glucocorticoid-induced bone loss in mice (109). Moreover, it is

shown that the bone-sparing effects of estrogen and Wnt16 are

independent of each other (59). Therefore, much more

knowledge is needed regarding the spatiotemporal expression

of Wnt16 and its association with hormones in physiological and

pathological conditions to truly open novel avenues for the

therapy of a variety of skeletal diseases.
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