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Brun J-S, Vasseur C, Fromont G,

Plotton I, Dufour-Rainfray D,
Caldas-Silveira E, Dupont J,

Froment P and Ducluzeau P-H (2022)
The Hepatokine FGF21 Increases the

Human Spermatozoa Motility.
Front. Endocrinol. 13:775650.

doi: 10.3389/fendo.2022.775650

ORIGINAL RESEARCH
published: 24 February 2022

doi: 10.3389/fendo.2022.775650
The Hepatokine FGF21 Increases the
Human Spermatozoa Motility
Guillaume Bourdon1, Anthony Estienne1, Claire Chevaleyre1, Christelle Ramé1,
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Lifestyle, environment and excess body weight are not only associated with an increased
risk of metabolic disorders, such as type 2 diabetes, but also to other pathological
processes, such as infertility. A hormone produced mainly by the liver called fibroblast
growth factor 21 (FGF21) is closely linked to the energy status and is increased in patients
suffering from obesity or insulin resistance. Recently, FGF21 has been shown to be
associated with female fertility disorders, but no or few data about the role of FGF21 on
humanmale fertility has been described. In the present study, FGF21 was measured in the
seminal fluid at a lower level in comparison to the blood level. Thus, in the present in vitro
study, we aimed to decipher the FGF21 system in human semen. To evaluate the putative
role of FGF21 on spermatozoa function, we incubated human spermatozoa with
increasing concentrations of recombinant human FGF21. The FGF21 in seminal fluid is
potentially produced by male reproductive tract tissues. In spermatozoa, the FGF21 signal
was transduced by the two main receptors FGFR1-c and FGFR3 and the cofactor b-
klotho, which are colocalized in the middle piece of spermatozoa and stimulated the PI3K/
Akt and MAPK pathways. Finally, in vitro treatment by FGF21 significantly increased
sperm motility and ATP levels. Concomitantly, exposure to FGF21 improved the oxidative
stress, as a lower ROS level was observed. Overall, these results seem to indicate that the
metabolic factor, FGF21, positively modifies the activity and quality of the parameters of
human spermatozoa.

Keywords: human, spermatozoa, FGF21 (fibroblast growth factor 21), sperm moTility, metabolism diseases, fertility
INTRODUCTION

Infertility is a public health problem that affects about 15% of couples of childbearing age. In almost
50% of cases, the male factor is involved (1). Furthermore, public health authorities note an increase
in the use of conception centers by patients with metabolic disorders, such as obesity/insulin
resistance. Because of the current prevalence of obesity (up to 20% of adults), the question of
improving the fertility rate score is of great interest. It is now well established that links exist
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between energy metabolism and reproductive activity, involving
both nutritional and hormonal regulations. Changes in
metabolic status result in alterations in hormonal signals
(insulin, IGF-1, and hormones produced by adipocytes called
adipokines) and nutrient flow (fatty acids, glucose, and amino
acids), all acting directly or indirectly on the hypothalamic-
pituitary-gonadal axis (2). Interestingly, recent data support that
a hormone produced mainly by the liver called fibroblast growth
factor 21 (FGF21), is involved in female fertility disorders such as
polycystic ovary syndrome (3–6), suggesting its contribution to
the control of female fertility and raises the question about its
involvement in male fertility.

FGF21 is a metabolic hormone mainly produced by the liver
and described in the 2000s. This peptide belongs to the fibroblast
growth factor (FGF) family, which is constituted of 22 members
divided into seven subfamilies depending on phylogeny and
functions (7, 8). All FGFs have paracrine activity, except the
FGF19/21/23 subfamily, which present the specificity to be
endocrine factors in contrast to others FGFs. FGFs bind
specific FGF receptors (FGFRs) associated with a cofactor.
FGFRs include FGFR1, FGFR2, FGFR3 and FGFR4, and all
these receptors participate in heparan sulfate (HS)-dependent
signaling. However, only the FGF19/21/23 subfamily has been
shown to require cofactors from the Klotho family (a-klotho and
b-klotho) of transmembrane proteins. Thereby, FGF21 needs to
bind to FGFR1c, FGFR3c or FGFR4 associated with the presence
of the b-klotho (KLB) cofactor, conferring the specific FGF21
activity and cell signaling. In humans, FGF21 plasma levels are
detected between 0.05 and 5 ng.ml-1 (8) and between 0.1 and 1
ng.ml-1 in mice (9). However, pronounced interindividual
variations exist in both species. Thus, in patients with type II
diabetes or obesity, plasma concentrations of FGF21 are
significantly increased compared to control healthy subjects
(10). It has also been shown that the expression of FGF21 is
induced by the nuclear receptor, peroxisome proliferator-
activated receptor a, known to be a major regulator of energy
homeostasis (11). The binding of FGF21 to its receptor and the
cofactor b-klotho, causes phosphorylation of ERK1/2 kinases, or
leads to phosphorylation of AMPK. Through these pathways,
FGF21 modulates the activity of several metabolic organs,
including adipose tissue, the pancreas, muscle and brain.
FGF21 is upregulated in both cases (lack or excess of energy)
and regulates glucose and lipid homeostasis by promoting lipid
catabolism, including lipolysis; fatty acid oxidation; and
mitochondrial oxidative activity, resulting in the improvement
of insulin sensitivity (12, 13). For example, in adipose tissue, after
binding of FGF21 to its receptors, it induces an increase in
metabolic protein such as SIRT1, PGC1-a as well as UCP1
ultimately leading to heat dissipation, a sign of lipolysis.

Several FGFs (FGF1, 2, 4, 5, 8 and 9) and all FGFRs have already
been localized in the mouse testis, including Sertoli, Leydig, and
germ cells (14–16), and also inhuman testis (17). The paracrine and
local functions of these FGFs have been demonstrated during testis
development to stimulate proliferation, survival or to contribute to
the formation of the interstitial compartment of the testis (16, 18).
However, published data are scarce regarding the endocrine
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FGF19/21/23 subfamily. A mouse model overexpressing FGF21
in the liver has shown a strong decrease in pituitary LH levels,
leading to a delay in puberty associated with female infertility.
In addition, the deletion of the fgf21 gene in mice led to elevated
levels of apoptotic germ cells in the testis, which could be rescued
after administration of recombinant FGF21, leading to sperm
production (19). These recent data also support a regulatory role
of theFGF21hormoneon testis andmale fertility.However, nodata
about the role of FGF21 on human semen have been described.

The current work aimed to evaluate the presence of FGF21 in
semen samples raising the question about the role of FGF21 on
the sperm function. We aimed to decipher the FGF21 system in
human semen, by determining the localization of FGF21
receptors and their activities in human sperm cells. To evaluate
the role of FGF21 on spermatozoa function, we incubated human
spermatozoa with increasing concentrations of recombinant
human FGF21.
MATERIALS AND METHODS

Patients
Human blood and semen are issued from the following cohort
“Fertiprotect”, including healthy men and their respective
normal semen quality, according to the WHO (2010)
guidelines. Exclusion criteria include seropositivity for HIV,
HBV or HCV, smoking and male explained infertility
(chemotherapy, varicocele or genital surgery). Patients were
enrolled into the Assisted Reproductive Centers (Tours,
FERTIPROTECT protocol) for couple infertility exploration
during a medical consultation. Forty participants gave full-
informed written consent to participate in the study, and
ethical approval was obtained from the Ethics Committee of
the Vinci Clinic and CHRU Bretonneau. Patients (n = 40, 29–53
years old) (Supplementary Data Sheet 1) were separated in two
groups depending on the body mass index (BMI), with 18.5-25
kg/m2 considered as normal BMI (and noted BMI ≤ 25 kg/m2)
and BMI ≥ 30 kg/m2 considered as obese (Table 1). However,
blood and seminal fluid were recovered from the same individual
in a group of 20 patients (BMI ≤ 25, n=10; BMI ≥ 30, n=10).
Blood and seminal fluid analyses were obtained in fasted
patients, and semen collection was obtained after a
recommendation of 2-5 days of abstinence. For in vitro
analysis, recombinant human FGF21 from Sigma-Aldrich was
prepared in water (100 µg/mL, stock solution). The selective
FGFR1 and FGFR3 inhibitor PD173074 was obtained from
Tocris Bioscience (Minneapolis, MN, USA) and used at the
concentration of 100 nM (20, 21). Analysis of FGF21 was
performed on fresh washed human spermatozoa from others
patients. Spermatozoa were exposed for 15 min (for Western blot
analysis) or 30 min to 0–10 ng/mL recombinant human FGF21,
as described in the legends.

Hormone and Metabolites Assay
ATP concentrations was measured by using the CellTiter-Glo™

ATP Assay Kit (Promega, France), and total-cholesterol
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concentration was measured by using the spectrophotometric
assays (Biolabo, France), according to the manufacturer’s
instructions. Plasma and seminal fluid levels of FGF21 were
measured using the commercial Human FGF-21 Quantikine
ELISA Kit (Bio-Techne, France).

Western Immunoblotting and
Immunoprecipitation
Pellets of human spermatozoa were lysed [Tris 1 M (pH 7.4), NaCl
0.15 M, EDTA 1.3 mM, EGTA 1 mM, VO43−23 mM, NaF 0.1 M,
NH2PO41%, Triton 0.5%] and the protein concentration of samples
was measured using a kit bicinchoninic acid (BCA) protein assay
(Interchim, Montluçon, France) and equal protein concentrations
were electrophoresed (40µg). Saturation ofmembranewas donewith
Tris-Buffered Saline Tween buffer (0.05% of Tween 20 and 5% of
milk) for 30 min at room temperature. Then, the membranes were
incubated at 4°C overnight with the following antibodies (all diluted
at 1/1000): phospho-Akt (ser473), Akt, phospho-ERK (Thr202/
Tyr204), and ERK (Cell Signalling Technologies, USA).
Experiments were performed on five different patients.

Immunoprecipitation of FGF21 in seminal fluid was performed
on a pool of human seminal fluid devoid of spermatozoa (2 mL),
which was incubated overnight with rabbit polyclonal anti‐
FGF21 antibody (Thermo-Fisher Scientific, USA) and
immunoprecipitated by 100 mg protein G agarose beads. After
several washes, the immunoprecipitated proteins and depleted
seminal fluid extract were analyzed by Western blot. Experiments
were performed on five pools of patients. Detection of proteins was
done by using chemiluminescence (Western Lightning Plus-ECL,
Perkin Elmer, Villebon-sur-Yvette, France) with a G-box SynGene
(Ozyme, St Quentin en Yvelines, France).

Immunohistochemistry
Paraffin-embedded testis, epididymis, prostate and seminal
vesicle samples were retrieved from autopsy specimens from
Frontiers in Endocrinology | www.frontiersin.org 3
the Department of Histopathology and Urology/Andrology of
the CHRU Bretonneau Tours Hospital and Hospices Civils de
Lyon, France, following approval by the ethical committees of
these institutions. Sections (7 µm) of the following human
tissues (testis, epididymis, prostate and seminal vesicle) were
deparaffinized and rehydrated in xylene and in various baths
containing decreasing concentrations of alcohol (100, 90, 75%)
for 10 minutes for each step. Immunohistochemical slides were
washed in a PBS bath and microwaved for 2–3 min in antigen
unmasking solution (Vector Laboratories, Inc., AbCys, Paris,
France). An incubation with PBS 1X/0.1 M Glycine for 15
minutes at room temperature, has been performed to ensure
saturation of aldehyde groups. To permeabilize cells on
sections, an incubation for 15 min with a solution of 0.1%
Triton X-100 (w/v) in PBS has been done. Finally, all
nonspecific binding sites have been obstructed in 2% BSA
solution for 15 min. For FGF21 immunostaining, sections were
incubated overnight at 4°C with PBS/1% bovine serum
albumin (BSA) containing primary antibody against FGF21
(Sigma-Aldrich, USA) at a 1:100 final dilution. Then, the
sections were incubated with a “ready to use” labelled
polymer-HRP anti-rabbit for 30 min (DAKO Cytomation
Envision Plus HRP System, Dako, Ely, UK). Visualization
was achieved by incubation in a DAB peroxidase substrate
solution (Invitrogen, Cergy-Pontoise, USA).

Fresh human spermatozoa were fixed in 4% paraformaldehyde
(PFA)/PBS for 15 min, then washed in a PBS bath. Spermatozoa
were permeabilizedwith PBS-Triton 0.1%, and nonspecific binding
sites were blocked in 2%BSA for 15min, then incubated for 60min
at room temperature with FGFR3 (Thermo-Fisher, USA), FGFR1,
FGFR4 and FGF21 (Sigma-Aldrich, USA) and b-klotho (Thermo-
Fisher, USA) antibodies at a 1:100 final dilution. Rabbit or mouse
IgG (Sigma-Aldrich, USA) antibodies (Sigma-Aldrich, USA) were
used as negative controls. Analyses were performed in five
different patients.
TABLE 1 | Biological and semen parameters of samples from the BMI ≤ 25 kg/m2 group and the BMI ≥ 30 kg/m2 group.

Patients with BMI<25 (n=12) Patients with BMI>30 (n=12) Significance

Age (years) 34.91 ± 1.28 (29 - 43) 37.08 ± 1.83 (30 - 53) NS
BMI (kg/m2) 23.97 ± 0.50 (22 - 25) 34.96 ± 1.36 (30 - 44) **** p<0.0001

fasting glucose (mmol/L) 5.55 ± 0.06 (5 - 6) 5.27 ± 0.28 (5 - 6) NS
cholesterol (mmol/L) 5.40 ± 0.54 (5 - 7) 4.57 ± 0.69 (3 - 6) NS
triglyceride (mmol/L) 1.47 ± 0.80 (0 - 4) 1.72 ± 0.30 (1 - 2) NS

FSH (UI/L) 4.32 ± 0.92 (3 - 8) 3.88 ± 0.87 (2 - 8) NS
TSH (mUI/L) 1.92 ± 0.36 (1 - 3) 2.46 ± 0.61 (2 - 4) NS
LH (UI/L) 4.58 ± 0.41 (4 - 6) 5.30 ± 0.93 (3 - 9) NS
prolactin (mUI/L) 185.56 ± 71.18 (11 - 331) 109.24 ± 97.22 (4 - 498) NS
testosterone (nmol/L) 20.43 ± 1.96 (15 - 29) 13.50 ± 1.28 (10 - 18) **p<0.01
estradiol (pmol/L) 72.00 ± 8.08 (62 - 88) 121.00 ± 36.87 (77 - 231) NS

semen volume (mL) 4.80 ± 0.48 (3 - 7) 3.42 ± 0.46 (2 - 8) *p<0.05
semen concentration (million/mL) 39.78 ± 9.06 (11 - 95) 68.57 ± 15.75 (2 - 200) NS
vitality (after 1h) 69.20 ± 5.42 (31 - 88) 70.85 ± 2.98 (45 - 84) NS
motility (rapid progression) (after 1h) 35.00 ± 4.09 (20 - 57) 42.00 ± 3.84 (15 - 66) NS
February 2022 | Volume 13 |
Data are expressed as mean ± SEM (range).
NS, non-significant; *, p < 0.05; **, p < 0.01; ****, p < 0.0001.
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Computer-Assisted Semen Analysis
Before FGF21 incubation, fresh semen samples were washed and
centrifuged at 1200 rpm), resuspended in DMEM (Ref D6546,
Sigma-Aldrich, USA) (4500 mg/L glucose, sodium pyruvate, and
sodium bicarbonate, without L-glutamine, without albumin and
with 5% serum) and counted. From each patient, 5 million
spermatozoa were incubated at 37°C in a water bath with
increasing concentrations of recombinant FGF21 (0, 0.01, 0.1,
1, 10, and 100 ng/mL) for 30 min, with or without preincubation
with the specific FGFR inhibitor PD173074 for 15 min. Sperm
motility, as a percentage of motile spermatozoa, was evaluated by
using a computer-assisted semen analyzer (CASA) (Hamilton-
Thorne Sperm Analyser IVOS version 12.2l, Hamilton Thorne
Biosciences, USA) with a Makler Counting Chamber (0.01
sq.mm/0.01 mm Deep). Three microscopic fields were
analyzed, and a minimum of 200 spermatozoa per field were
evaluated. The following parameters were measured: percentage
of motile sperm, percentage of progressively motile spermatozoa,
average path velocity (VAP, average velocity/smoothed average
position of the spermatozoa), progressive velocity (VSL, straight
line distance between the beginning and the end of the track),
curvilinear line velocity (VCL, average velocity measured over
the actual point-to-point track followed by the cell), straightness
(STR, a measure of side-to-side movement of the VCL
determined by the ratio VSL/VAP × 100), linearity (LIN, a
measure of the departure of the cell track from a straight line),
amplitude of lateral head (µm) (ALH), and beat cross frequency
(BCF) (Hz). All results are presented in Table 2.

Viability and Mitotracker Analysis Using
Flow Cytometry
Sperm membrane integrity was assessed with dual fluorescent
probes, SYBR-14 and propidium iodide (PI) (Live/Dead Sperm
Viability Kit, InvitrogenTM, Eugene, OR, USA) and semen were
analyzed by using flow cytometry (MoFlo AstriosEQ, USA).
Mitochondrial activity was determined using a 200 nM
mitotracker (Orange CM-H2TMRos, Invitrogen, Fisher
Scientific, France) and samples were analyzed by using flow
cytometry. Twenty thousand events were collected per sample.
Only sperm emitting orange fluorescence (R1, R2) were classified
with a high mitochondrial membrane potential (HMMP), which
is associated with mitochondrial activity. Orange fluorescence is
Frontiers in Endocrinology | www.frontiersin.org 4
in y axis and SSC in x axis. We have separated a R1 population
with a very high orange fluorescence and a mild fluorescence
population R2, from the negative control (without mitotracker).

All results are presented in Supplementary Data Sheet 4.

Measurement of ROS [Hydrogen Peroxide
(H2O2)]
The contents of the ROS hydrogen peroxide (H2O2) in human
sperm (n=4 patients per condition) was measured by Ros-Glo
H2O2 assay kit (Promega, Charbonnières-les-Bains, France).
Two million spermatozoa previously stimulated by FGF21
were incubated with H2O2 substrate solution during 4 hours.
H2O2 present in samples degradate the H2O2 substrate into
Luciferin Precursor and produce luminescence which is
measured with a luminometer Luminoskan Ascent (Thermo-
Fisher, USA). Luminescence is correlated with the concentration
of H2O2 and the ROS activity as detailed in the Ros-Glo H2O2
assay kit.

Intracellular Calcium Measurements
A total of 2 million spermatozoa were loaded in a 96 microwell
plate for fluorescent plate reader analysis, and the kinetics of
intracellular calcium measurement were performed after a 2 mM
Fluo-4 AM incubation. Fluorescence was measured every 30 s.
The intracellular calcium intensity was plotted as the percentage
change in fluorescence (DF/F0, %) compared with baseline (F0).

Acrosome Integrity
After a 30 minutes exposition with/without FGF21, spermatozoa
were incubated with 10 mM calcium ionophore A23187 to induce
acrosome reaction and stained with 25 mg/mL FITC-conjugated
pisum sativum agglutinin (FITC-PSA; Sigma-Aldrich) for
another 30 min at room temperature. The same experiment
has been performed without calcium ionophore A23187. The
percentage of acrosome reaction was estimated by counting 200
spermatozoa per patient. Only spermatozoa without FITC-PSA
staining or FITC-PSA staining at the equatorial segment were
identified as those with acrosome reactions.

Statistical Analysis
Data were tested for homogeneity of variance by Bartlett’s test
and for normal distribution by the Shapiro-Wilk test. One-way
TABLE 2 | Kinematic parameters of human spermatozoa exposed to FGF21.

0 ng/mL rFGF21 0.01 ng/mL
rFGF21

0.1 ng/mL
rFGF21

1 ng/mL rFGF21 10 ng/mL
rFGF21

PD173074 PD173074 + 10 ng/mL
rFGF21

VSL (µm/sec) 35.5 ± 2.1 27.1 ± 0.7 43.1 ± 2.9 43.6 ± 2.9 45.41 ± 4.0* 37.9 ± 1.6 36.0 ± 2.6
VCL (µm/sec) 62.2 ± 2.6 71.6 ± 1.4 78.14 ± 2.6** 73.98 ± 2.3* 73.8 ± 4.6* 68.1 ± 2.0 67.9 ± 3.9
VAP (µm/sec) 40.8 ± 1.9 37.1 ± 0.8 51.5 ± 2.3* 51.1 ± 2.9* 56.0 ± 6* 46.4 ± 2.0 44.1 ± 2.7
ALH (µm) 2.8 ± 0.3 3.0 ± 0.1 3.2 ± 0.2 3.0 ± 0.1 3.0 ± 0.2 2.6 ± 0.1 3.0 ± 0.2
LIN (%) 56.4 ± 2.5 54.9 ± 0.7 56.5 ± 3.0 59.4 ± 2.4 60.1 ± 1.5 59.3 ± 1.6 55.8 ± 1.8
BCF (beats/sec) 20.3 ± 1.4 16.3 ± 0.4 19.7 ± 1.2 15.5 ± 1.1 17.2 ± 0.8 18.6 ± 1.2 18.7 ± 1.3
STR (%) 84.3 ± 1.2 82.5 ± 0.8 83.0 ± 2.0 84.2 ± 1.2 83.6 ± 1.1 83.8 ± 0.9 83.6 ± 1.7
February 202
Computer-assisted sperm analysis (CASA) of spermatozoa were performed after 30 min of recombinant human FGF21 exposition with or without preincubation with the selective FGFR1-3
inhibitor PD173074 for 15 min. The following kinematic parameters were measured : VSL, Straight-Line Velocity; VCL, Curvilinear Velocity; VAP, Average Path Velocity; ALH, Amplitude of
Lateral Head; LIN, Linearity; BCF, Beat Cross Frequency; STR: VAP, Straightness. All results are expressed as Mean ± SEM, n=9.
*p < 0.05, **p < 0.01, compared with 0 ng/mL rFGF21.
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ANOVAs were performed with Tukey’s multiple comparisons
tests or Dunnett’s multiple comparisons tests as appropriate.
Data from the CASA system were compared by the Friedman
test and Dunn’s multiple comparison test. All statistical analyses
were performed using GraphPad Prism 6 (La Jolla, CA, USA).
The results are expressed as mean ± SEM. Values were
determined to be significant when * p < 0.05, ** p < 0.01, and
*** p < 0.001, **** p < 0.0001, indicating a significant difference
between the groups and control (p < 0.05).
RESULTS

FGF21 Concentrations in Seminal Fluid
Firstly, we have investigated the presence of FGF21 in human
seminal fluid by an ELISA and immunoprecipitation assay. We
have analyzed the FGF21 levels in fasting conditions in blood
and seminal fluid from two groups of patients using the BMI, a
normal BMI in the range 18.5–25 kg/m2 and with obese patients
with a BMI ≥ 30 kg/m2 (Figure 1 and Table 1). FGF21 plasma
Frontiers in Endocrinology | www.frontiersin.org 5
levels were 2.4-fold higher in obese patients in comparison to
control patients (Figure 1A). However, a similar FGF21 level was
measured in the seminal fluid of both groups (Figure 1A). We
observed that the FGF21 concentration was nearly 12 to 28 times
lower in the seminal fluid as compared to that in the plasma, and
the FGF21 seminal fluid/FGF21 plasma ratio was lower in obese
patients (Figure 1B). Due to the lower levels in seminal fluid, we
had confirmed the presence of FGF21 in seminal fluid after
immunoprecipitation and its absence in the depleted protein
extract (Figure 1C). No significant relationship between plasma
or seminal FGF21 levels and semen parameters (semen volume,
sperm concentration, motility, or sperm abnormality) was
observed (Table 1 and Supplementary Data Sheets 1, 2).

Because the majority of seminal fluid proteins are produced by
the epididymis, seminal vesicles and prostate, immunochemistry
against FGF21 has been performed on the male reproductive tract
(Figure 2). The expression of FGF21 was reported in Leydig cells
in the testis, in the epithelium of the epididymis, and in the
seminal vesicles, with weaker staining in the epithelium of the
prostate gland (Figure 2). However, no staining was observed in
human spermatozoa (Figure 3B.1).
A

B C

FIGURE 1 | Presence of FGF21 in human plasma and seminal fluid. (A) FGF21 was determined, from two groups of fasting patients, in plasma (n = 10/BMI group)
and in seminal fluid (n = 12/BMI group), in function of their body mass index (BMI). Control corresponding to a BMI ≤ 25 kg/m2, and obesity corresponding to a BMI ≥ 30
kg/m2. (B) Ratio of fasting FGF21 level between seminal fluid and plasma in the two groups of patients. (C) Immunoblot of a pool of human seminal fluid protein extracts
(400 mg protein per sample) after immunoprecipitation with the FGF21 polyclonal antibody. Human recombinant FGF21 was loaded as the control to confirm the
molecular weight of the immunoprecipitated FGF21 protein. *p < 0.05, **p < 0.01.
February 2022 | Volume 13 | Article 775650
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FGF21 Receptors and Cofactor Are
Localized in Spermatozoa
As reported in the literature, FGF21 signaling is transduced by
activating the b-klotho-FGFR1c/FGFR3 complex, which
stimulates the components of the MAPK and PI3K pathways,
and the calcium-dependent protein. In our condition, we have
confirmed, by Western blot, the presence of FGFR1, FGFR3,
FGFR4 and KLB proteins in human spermatozoa (Figure 3A). In
order to localize the FGFR complex, a confocal microscopic
analysis was performed and demonstrated the colocalization of
the two FGF21 receptors (FGFR1 and FGFR3) with the cofactor
KLB (Figure 3B; 5, 8) in the middle piece of the spermatozoa,
behind the head and weakly in the tail. Weak staining of the
FGFR4 receptor was reported in the head and in the neck of the
spermatozoa (Figure 3B; 9).

After 15 min of stimulation of fresh human spermatozoa with
increasing concentrations of recombinant human FGF21 (0.01
Frontiers in Endocrinology | www.frontiersin.org 6
ng/mL-10 ng/mL), we observed a dose-dependent increase in the
phosphorylation of both Akt and ERK, which was significant at
the 10 ng/mL FGF21 concentration (in comparison to control,
phospho-Akt had a 4.3-fold increase and phospho-ERK had a 2-
fold increase) (Figures 4A, B). We observed that, at the low dose
of 0.1 ng/mL, phospho-Akt increased 2.6-fold, but this increase
was statistically insignificant. In addition, we observed that 15
min after exposure to recombinant human FGF21, the
intracellular flux of Ca2+ was increased in a dose-dependent
manner and significantly at the 10 ng/mL concentration of
FGF21 (Figure 4C).

FGF21 Increased Sperm Motility
To determine the effect of FGF21 on spermatozoa, we incubated
fresh human spermatozoa with recombinant FGF21 for 30 min.
The investigation of time effect was performed on spermatozoa
with progressive motility, as presented in Supplementary Data
FIGURE 2 | Localization of FGF21 in reproductive organs. FGF21 was localized by immunohistochemical staining in human testis (1 and 2), epididymis (4 and 5),
seminal vesicles (7 and 8) and prostate (10 and 11). Negative controls (3, 6, 9, and 12) were sections incubated with IgG. We observed FGF21 expression in Leydig
cells and the epithelia of the epididymis, prostate and seminal vesicles (see arrow), which contained all secretory cells.
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Sheet 3A, showing that 30 min is the optimal time. No
consequence on the viability of sperm after FGF21 stimulation
was measured by SYBR-14 or propidium iodide staining
(Supplementary Data Sheet 3B).
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We have analyzed the effect of FGF21 on the motility of sperm
motility after exposing human spermatozoa to FGF21 for 30 min
at 37°C. Compared to the control condition, FGF21 was able to
significantly increase progressive motility at the 0.1 ng/mL
A

B

FIGURE 3 | Localization of FGF21 receptors on human spermatozoa. (A) Detection of sperm cofactor KLB and the FGFR1, FGFR3, and FGFR4 using Western
immunoblotting. Red ponceau was used to check protein deposition on the membrane. Each lane represents extracts from different donors. Receptors and cofactor
were tested on different gels. (B) FGF21 (1 and 2), FGFR1, FGFR3, FGFR4 (3, 6, and 9), and KLB (4 and 7) localization in human spermatozoa were analyzed by
confocal microscopy after immunofluorescence. FGFR1, FGFR3 and FGFR4 were stained by Alexa Fluor 488 goat anti-rabbit IgG (green) and KLB (4 and 7) by Alexa
Fluor 633 rabbit anti-mouse IgG (red). Merged picture of FGFR1 and FGFR3 with KLB showing the colocalization in the mid-piece of spermatozoa (5 and 8).
Negative control was incubated with IgG (10). DNA was counterstained with DAPI.
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and higher concentrations of FGF21 (Figure 5A). Preincubation
with the FGFR inhibitor PD173074 was able to eliminate
the stimulatory effect induced by 10 ng/mL FGF21
(Figure 5A). Moreover, the average velocity and curvilinear
line velocity of the spermatozoa determined by VCL and VAP
were also improved by about 20% to 27% (0.1-10 ng/mL
FGF21) and were returned to control values i f a
preincubation with PD173074 was performed (Table 2).
Because motility is highly associated with mitochondria
activity, the ATP level and mitochondrial membrane
potential were analyzed. Despite spermatozoa still having a
Frontiers in Endocrinology | www.frontiersin.org 8
high mitochondrial membrane potential (control: 45.71% ±
1.89; FGF21: 0.1 ng/mL: 46.33% ± 2.12; FGF21: 1 ng/mL:
47.19% ± 2.19; FGF21: 10 ng/mL: 46.72% ± 2.15)
(Supplementary Data Sheet 4), a significant increase of both
the ATP and cAMP levels in the spermatozoa was measured at
the 10 ng/mL FGF21 concentration as compared to those in
the control (Figures 5B, C).

Furthermore, we did not observe any consequence of FGF21
exposure to the already high percentage of acrosome-reacted
sperm induced with by calcium ionophore [Figure 5D-(2)] or
without [Figure 5D-(1)]. But, FGF21 improved oxidative stress
A

B

C

FIGURE 4 | Signaling pathways activated by the exposure of human spermatozoa to FGF21. (A, B) Western blot and analysis of phosphorylated (ser473) Akt and
phosphorylated (Thr202/Tyr204) ERK in human spermatozoa exposed to recombinant FGF21 (0.01-10 ng/mL), as described in Materials and Methods section.
Results are representative of at least four independent experiments. (C) Intracellular calcium responsiveness of sperm to recombinant FGF21 stimulation determined
by fluorescence intensity relative to baseline (DF/F) at 30 min. *p < 0.05, **p < 0.01.
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by reducing the levels of reactive oxygen species (ROS) in a dose-
dependent manner in human sperm (Figure 5F). Moreover, the
stimulation of sperm by FGF21 induced a significant increase in
cholesterol levels (Figure 5E).
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DISCUSSION

We demonstrated the presence of FGF21 in human seminal fluid
and argued that seminal FGF21 could be produced by the
A

B

D

E F

C

FIGURE 5 | FGF21 treatments increase spermatozoa motility. (A) Sperm progressive motility analyzed by computer-assisted sperm analysis (CASA) after 30 min of
stimulation with recombinant FGF21, was presented in percentage of control. A preincubation with the FGFR inhibitor PD173074 was also used in presence of
absence of a 30 min of stimulation with recombinant 10 ng/mL FGF21, (n = 8 patients). (B, C) Concentration of ATP in sperm stimulated for 30 min with
recombinant FGF21 (10-8M per 2.106 cells) and cAMP production in percentage of control, (n = 7 patients). (D) Percentage of acrosome-reacted sperm with (2) or
without (1) calcium ionophore A23187 was quantified after PSA staining (percentage of PSA negative cells). Acrosome reaction of spermatozoa after 30 min of
stimulation with recombinant FGF21 (n = 5 patients). (E) Total cholesterol concentration quantified in human spermatozoa after 30 min of stimulation with
recombinant FGF21 (µg per 2.106 cells, n = 7 patients). (F) ROS levels in human spermatozoa incubated with increasing concentrations of recombinant FGF21 for
30 min (relative luminescence units per 2.106 cells, n = 7 patients). *p < 0.05, **p < 0.01.
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different tissues of the male reproductive tract. Our
immunohistochemical studies on human sperm revealed that
FGF21 can transduce signaling by activating the b-klotho-
FGFR1c or FGFR3 complex in the mid-piece of spermatozoa.
The in vitro sperm stimulation by FGF21 leads to increased
mobility by boosting the production of ATP in spermatozoa, and
reduced oxidative stress. FGF21 activated in a dose-dependent
manner the Akt and ERK phosphorylation and modification of
the calcium efflux (Figure 6).

As in the literature, significant variations in plasma
concentrations of FGF21 were measured: between 50 and 5
000 pg/mL in humans (9) and between 100 and 1 000 pg/mL
in mice (22). We showed the presence of FGF21 in seminal fluid
with concentrations 20-fold lower than that in the plasma.
Interestingly, we observed that the levels of FGF21 in seminal
fluid are independent of the BMI, semen volume, sperm
concentration or sperm abnormalities. Changes in FGF21
plasma levels due to BMI were not recovered in seminal fluid.
This raises two hypotheses regarding its origin. Firstly, FGF21
crosses (passively or actively) the testicular barrier from blood or
secondly, seminal FGF21 is produced by local cells. Because the
seminal vesicles secrete up to 75% (23) of the total volume of
seminal fluid and are also completed by the prostate gland, we
performed immunohistochemical studies of FGF21 in these
human glands. The strong staining of FGF21 in human
epididymis and seminal vesicle samples is coherent with the
physiological role of these tissues. In hepatocytes, FGF21 is
known to be regulated by starvation and PPARa activity.
Interestingly, PPARa has already been described to be
expressed specifically in epithelial cells of the prostate, which,
in our study, also expressed the FGF21 protein (24, 25). To
elucidate the origin of FGF21 in seminal fluid, the use of
transgenic mouse lines with conditional knockouts could better
determine if FGF21 is produced locally or not.
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FGF21 preferentially activates FGFR1 and FGFR3, with the
recruitment of the specific b-klotho cofactor (8). In our
conditions, in human spermatozoa, we colocalized the FGFR1,
FGFR3, and b-klotho in the mid-piece of the spermatozoa. Then,
the machinery for signal transmission of FGF21 is in place in the
part of spermatozoa that contain the mitochondria. These results
are similar with previous immunocytochemical studies that
allowed the localization of FGFR1, 2, 3 and 4 in ejaculated
human sperm (17). In adipocytes, activation of receptors by
FGF21 leads to phosphorylation of MAPK (ERK) and Akt
(26, 27). As in adipocytes, we report, in human semen, an
increase in phosphorylated (ser473) Akt and phospho-
(Thr202/Tyr204) ERK. Some components of these pathways,
such as ERK, PI3K and Akt, have been described to play an
essential role in the maintenance of sperm function in
mammalian sperm (28, 29). It has been shown that inhibition
of Akt decreases sperm motility in mice, and activation of Akt
stimulates sperm motility in humans (17, 30, 31). In somatic
cells, the FGF/FGFR1 system has been shown to facilitate cell
motility and migration by activation of the PI3K and ERK
pathways (15, 32). From these data, it is not surprising to
observe an enhancement of ATP levels in spermatozoa, as well
as an increasing percentage of motile sperm. Sperm requires
exceptionally high amounts of ATP when compared to somatic
cells (33). Interestingly, an autocrine FGF (FGF2) has been
reported to be present directly in human spermatozoa and 10
ng/mL recombinant FGF2 is able to enhance the motility of
sperm (34). We notice that FGF2 needs a different receptor
complex for FGF21, using the HS cofactor.

In the case of metabolic syndrome, these observations raise
questions about the expression and the role of the endocrine
FGF21 factor in sperm. Currently, a protective role for FGF21 is
advanced, as well as multiple positive actions, and FGF21 could
lead to the activation antioxidant pathways in targeted cells (35).
FIGURE 6 | Representative schema of FGF21 effects on human spermatozoa. Representative schema of the localization of FGFRs and KLB in spermatozoa and
effects of FGF21 on human sperm. FGF21 induced phosphorylation of the Akt and ERK pathways and calcium levels, then increased the sperm motility associated
with ATP content in a dose-dependent manner, and reduced oxidative stress.
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In our study, we investigated the levels of ROS in human semen
and describe a decrease in the ROS level 30 min after sperm
stimulation by FGF21, suggesting a putative role in the observed
improvement in motility. Indeed, the high susceptibility of sperm
cells to ROS results from the composition of its membranes,
which is rich in polyunsaturated fatty acids (PUFA) and thus
highly susceptible to attack by ROS (36, 37). The low ROS levels
after FGF21 treatment suggests a possibility to improve the
quality and/or motility of human spermatozoa (38).

Events that are associated with capacitation include elevation
of intracellular Ca2+, higher levels of intracellular cAMP, and
cholesterol efflux from the membranes of sperm that increases
membrane fluidity (39). In sperm, Ca2+ plays a central role in the
events preceding fertilization, such as motility, chemotaxis, and
the acrosome reaction. In our conditions, we observed a FGF21
dose-dependent increase in Ca2+ efflux in spermatozoa; however,
because the acrosome reaction was already elevated, no change in
the acrosome reaction was noted. In the same way, the
membranes of sperm and cholesterol efflux contribute to
mechanisms that control sperm capacitation (40, 41).
We observed a significant increase in cholesterol levels after
FGF21 stimulation. In somatic cells, FGF21 promotes the efflux
of cholesterol (42). If we transpose this knowledge to
spermatozoa, we can hypothesize that FGF21 promotes
cholesterol efflux, which can occur to the capacitation process.

The hepatokine FGF21 can be associated with other similar
metabolic signals called adipokines, which have recently been
shown to be involved in male fertility. Over the last decade,
several adipokines have been detected in seminal fluid (43, 44)
and have been shown to have a role in sperm functions, such as
leptin (which is found to enhance sperm capacitation). Similarly
to FGF21, differences in the concentrations of adipokines
between seminal fluid and plasma have been reported with
lower or enhanced concentrations in seminal fluid (45–47). It
would be interesting to see if the concentrations of FGF21 in
seminal fluid are associated with metabolic markers in blood and
could be used as a biomarker related to fertility. Likewise, a better
identification of the origin of FGF21 (between local secretion and
peripheral) would make it possible to not only use the circulating
rates as a predictor of the quality of male fertility but also to
know whether the use of an FGF21 agonist would impact
the spermatozoon.

In conclusion, we propose the endocrine factor FGF21 as a
novel regulator of male reproductive function with direct
actions on germ cells. FGF21 is able to improve sperm
motility, oxidative stress, and markers of capacitation. FGF21
is then involved in the crosstalk between human metabolism
and spermatogenesis.
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Supplementary Data Sheet 1 | Biological and semen parameters of samples
from all patients (n=40). Data are expressed as mean ± SEM (range).

Supplementary Data Sheet 2 | Correlations between FGF21 levels (plasma or
seminal fluid) and sperm parameters (n=20).

Supplementary Data Sheet 3 | (A) Investigation of time effect on spermatozoa
progressive motility. The optimal time to observe a change in sperm motility, in
FGF21 (1ng/ml) condition was after 30 min of stimulation. All results are expressed
as mean ± SEM (n = 4). *p < 0.05, **p < 0.01, Mann-Whitney Test. (B) Effect of
FGF21 on semen viability was determined by a double-fluorescent labeling
technique (SYBR-14 and propidium iodide). The PI negative and SYBR-14 positive
population showing green fluorescence was considered alive. Samples were
analyzed using flow cytometry (MoFlo AstriosEQ, USA).
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Supplementary Data Sheet 4 | Mitochondrial activity was determined using
a 200 nM mitotracker (Orange CM-H2TMRos, Invitrogen, Fisher Scientific,
France). Samples were analyzed using flow cytometry (MoFlo AstriosEQ,
USA). Twenty thousand events were collected per sample. Only sperm
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emitting red fluorescence were classified with a high mitochondrial membrane
potential (HMMP), which is associated with high mitochondrial activity. The
‘R2’ window is Mitotracker negative cells and the ‘R1’ window is Mitotracker
positive cells.
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